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Analyses of Markov decision process structure regarding the 
possible strategic use of interacting memory systems
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Behavioral tasks are often used to study the different memory systems present in humans 
and animals. Such tasks are usually designed to isolate and measure some aspect of a 
single memory system. However, it is not necessarily clear that any given task actually does 
isolate a system or that the strategy used by a subject in the experiment is the one desired 
by the experimenter. We have previously shown that when tasks are written mathematically 
as a form of partially observable Markov decision processes, the structure of the tasks 
provide information regarding the possible utility of certain memory systems. These previous 
analyses dealt with the disambiguation problem: given a specifi c ambiguous observation of the 
environment, is there information provided by a given memory strategy that can disambiguate that 
observation to allow a correct decision? Here we extend this approach to cases where multiple 
memory systems can be strategically combined in different ways. Specifi cally, we analyze the 
disambiguation arising from three ways by which episodic-like memory retrieval might be cued 
(by another episodic-like memory, by a semantic association, or by working memory for some 
earlier observation). We also consider the disambiguation arising from holding earlier working 
memories, episodic-like memories or semantic associations in working memory. From these 
analyses we can begin to develop a quantitative hierarchy among memory systems in which 
stimulus-response memories and semantic associations provide no disambiguation while the 
episodic memory system provides the most fl exible disambiguation, with working memory 
at an intermediate level.
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observable Markov decision process, reinforcement learning

of the mechanism. Here we extend an earlier theoretical analysis 
of this type (Zilli and Hasselmo, 2008b) to explore such interac-
tions between memory mechanisms. An example of the utility of 
this approach is that it can inform theoretical models by identify-
ing memory system interactions that are redundant or not use-
ful, thus simplifying architectures without losing functionality or 
capability.

In particular, we consider interactions between the memory 
mechanisms for episodic memory and working memory described 
in Zilli and Hasselmo (2008a) as well as a new, semantic-like mem-
ory mechanism. However, here we heed the advice of Baddeley 
(1986) on the value of distinguishing between “a theoretically neu-
tral description of a type of task and… the name of a theoretically 
controversial system that is assumed to be partially responsible 
for that task” by referring not to those memory system names but 
rather to mechanisms that may underlie them. Thus claims made 
about the mechanisms we focus on apply only to the memory sys-
tems inasmuch as these mechanisms actually are involved in the 
memory systems.

Episodic memory in humans is often characterized as the capa-
bility for mental time travel (Tulving, 1972, 2002; but see, e.g., 
Schwartz et al., 2005 for operational defi nitions used in animal stud-
ies). That is, it is the capability to mentally re-experience past events 
in their original spatial and temporal context, as opposed to the 
memory for specifi c facts, which lack a fi rst person or  experiential 

INTRODUCTION
Behavioral tasks are often used to experimentally study the different 
memory systems present in humans and animals (Eichenbaum and 
Cohen, 2001) and are specifi cally designed to examine only a subset 
of the distinct memory systems that are hypothesized to exist in the 
brain (Schacter and Tulving, 1994; Squire, 2004; Squire and Zola-
Morgan, 1991). However, with this approach it is not necessarily 
clear that the subject is actually using the memory strategy that the 
experimenter desires. The theoretical study of memory systems is 
often carried out through simulations of different physiological 
systems at varying levels of detail to demonstrate that a model can 
show appropriate neural activity for the memory system in ques-
tion (e.g., Deco and Rolls, 2005; Fransén et al., 2002) or that these 
types of neural activity can guide behavior in an agent performing 
appropriate tasks (Dayan, 2007; Frank et al., 2001; Hasselmo and 
Eichenbaum, 2005; Moustafa and Maida, 2007; O’Reilly and Frank, 
2006; Phillips and Noelle, 2005; Zilli and Hasselmo, 2008a).

An alternative theoretical approach (Marr, 1982) would be to 
begin with both abstract characterizations of memory mechanisms 
and mathematical descriptions of tasks and determine if a particu-
lar memory mechanism is of use in solving a particular task. This 
type of implementation-agnostic approach allows general explo-
ration of the ways that memory mechanisms may interact with 
each other and how they depend on the structure of tasks in ways 
that may not be clear from simulations of particular  instantiations 
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an agent will generally have a limited number of GAMMs which 
eventually will have to be reused. Second, simulations usually use 
an action selection mechanism like ε-greedy or softmax (Sutton 
and Barto, 1998) which occasionally selects random actions, thus 
unpredictably overwriting a GAMM’s contents.

Finally, we consider semantic-like associations (Eichenbaum and 
Cohen, 2001; Tulving, 1972, 1985) in a very general sense as the 
ability for the agent to retrieve categories, relations, internal models, 
observations, etc. associated with some given observation through 
some unspecifi ed process. This is analyzed as a set of static associa-
tions from observations to partially observable Markov decision 
processes (POMDPs), which we call a static association mecha-
nism (SAM). Although POMDPs are generally used to represent 
task environments, they actually provide a powerful formalism for 
representing semantic information. If the states of a POMDP corre-
spond to spatial locations and the actions to spatial movements, the 
POMDP can represent spatial knowledge. If the states correspond 
to views of an object and the actions to rotations of that object, the 
POMDP can represent knowledge of object shape and structure. 
POMDPs can also represent more abstract knowledge: if the states 
are countries or cities, the action “Capital” might lead from a coun-
try state to its capital city state. A static association memory is thus 
a collection of an arbitrary number of such POMDPs representing 
a static body of knowledge.

The analyses in Zilli and Hasselmo (2008b) addressed the dis-
ambiguation problem (essentially the problem of choosing how to 
act given an observation that may correspond to multiple distinct 
underlying states) by considering each of these systems in isolation. 
We now consider disambiguation produced by different combina-
tions of pairs of these memory systems. We ask how well the memory 
systems work together (i.e., when combined, how do the capabili-
ties of an agent with the memory systems change?). Specifi cally, we 
identify which subset of states the agent can be in, given particular 
contents of the agent’s memory systems. The present analyses can 
answer questions such as: What information is provided by cuing 
CASRM using a static associate of some present observation? What 
information is provided by holding in GAMM some observation 
from a previously retrieved CASRM? These types of questions 
are important, because it may be that interactions among a small 
number of simple memory mechanisms can support a variety of 
complex strategies, allowing the decomposition of any particular 
strategy of interest into the mechanisms that support it.

We show there is a hierarchy of the three memory systems con-
sidered in terms of their fl exibility in disambiguating observations 
in concert with other systems. This fl exibility is defi ned in terms of 
the increased information provided by combinations of memory 
systems over using each of them on their own. The provided infor-
mation, which we call disambiguation, relates the agent’s observa-
tion of the environment to the true states the environment can be 
in. Increased information or disambiguation means that there is 
a smaller set of possible hidden environmental states. Static asso-
ciations of other memories are shown to never provide additional 
disambiguation, whereas CASRMs cued by memories from any 
of the systems can provide disambiguation beyond that provided 
by CASRMs cued by the current environment observation alone. 
GAMMs are shown to be slightly less fl exible than CASRMs in the 
ways they can be usefully combined with other memory systems.

quality. To motivate our formal version of episodic memory, con-
sider that mental time travel requires the selection of a “destination” 
and, intuitively, the destination would be identifi ed in terms of 
the content of the episodic memory to be retrieved (we retrieve a 
memory at location X or regarding object or event X). We suggest 
that one cannot, however, retrieve memories that occurred at a 
specifi ed time (unless awareness of the time was part of the episode) 
or occurring at a specifi c interval in the past (at least not without 
additional cognitive effort to reason out what the content of the 
memory should be for a particular interval). This property is called 
content-addressability. Thus we assume that the retrieval of an 
episodic memory always begins with some specifi ed cue which is 
part of the memory to be retrieved. We assume that the memory 
retrieved is always the most recent occurrence of the cue for three 
reasons. First, intuitively, it seems as though the retrieved memory 
for a cue is always the most recent such memory (where multiple 
cues may be combined to identify the earlier episodes, e.g., the cue 
movie-theater should retrieve a memory no older than the com-
bined cues movie-theater and blind-date). Second, this allows for 
the simplest analysis (although the analyses below could be adjusted 
for other possibilities, such as decreasing probabilities of retrieving 
each earlier instance of the cue). Third, previous simulations using 
this assumption have proven suffi cient for modeling behavioral 
tasks (Hasselmo and Eichenbaum, 2005; Zilli and Hasselmo, 2008a). 
Episodic memory is also said to represent events in their original 
temporal context, so our formal model allows the agent to retrieve 
sequences of events one “frame” at a time. Although humans can 
retrieve sequences in either forward or reverse order, evidence sug-
gests the two may be the result of distinct processes (Drosopoulos 
et al., 2007; Li and Lewandowsky, 1995) and we focus here on the 
forward direction of retrieval (although the analyses can be modi-
fi ed to allow for bi-directional retrieval). Retrieval may thus be 
advanced one frame at a time, and we assume that as each new 
frame is retrieved, the previous frames immediately pass out of 
awareness (unless specifi cally held in working memory, see below). 
We call any mechanism that has both of these properties a content-
addressable, sequential retrieval memory (CASRM). A variety of 
such mechanisms have been used previously both in neural network 
modeling (Hasselmo, 2007; Hasselmo and Eichenbaum, 2005) and 
in reinforcement learning (RL) simulations (Zilli and Hasselmo, 
2008a), and in earlier analysis (Zilli and Hasselmo, 2008b).

Working memory is the name for the mechanism that allows 
subjects to maintain task-relevant information in memory (Miyake 
and Shah, 1999). In this case, we focus on gated, active maintenance 
memory (GAMM) of information about prior observations (Frank 
et al., 2001; O’Reilly and Frank, 2006), consistent with use of the 
term in models and experimental data focused on persistent spiking 
activity during the delay period of a behavioral task (Fransén et al., 
2002; Fuster, 1995; Lisman et al., 1998; Miller et al., 1996; Zipser 
et al., 1993). However, we do not specifi cally focus on the separate 
modality-specifi c components of working memory defi ned by 
Baddeley and Hitch (1974) or working memory systems that hold 
multiple observations (Cowan, 2001; Jensen and Lisman, 2005; 
Miller, 1956), though such components can easily be considered 
in this system by including multiple GAMMs. A practical limita-
tion to the use of GAMMs is that they are not expected to be able 
to maintain information indefi nitely for at least two reasons. First, 
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we explore a different approach in which the contents of memory 
mechanisms can provide surrogate information which identifi es 
the agent’s current state. This works without the agent needing to 
know information about the underlying states and transitions and 
immediate rewards (i.e., it is model free, although this informa-
tion is needed in the following analyses to show why the approach 
works).

MEMORY SYSTEMS
The common way of including biologically inspired memory 
mechanisms into the RL framework (Dayan, 2007; Moustafa and 
Maida, 2007; O’Reilly and Frank, 2006; Zilli and Hasselmo, 2008a) 
is to treat each memory mechanism as a part of the environment in 
the sense that the agent interacts with the memory system through 
actions and the contents of memory are provided to the agent as 
part of the observation from the overall environment. Moustafa and 
Maida (2007) called this the uniform selection hypothesis: putting 
cognitive and motor actions on equal footing for the purpose of 
action selection (based on an earlier idea from Frank et al., 2001 
and Prescott et al., 2003).

For action selection, the contents of each memory system 
must be combined with sensory observations to create a single 
state from which the agent’s policy can select an action. We call 
this combined information a policy-state. The number of possible 
policy-states grows combinatorically with the number of memory 
systems (or other environments included), causing increasingly 
slow learning rates as the number of systems increase (the curse of 
 dimensionality). This suggests a general advantage for architectures 
with fewer memory mechanisms that can be fl exibly combined to 
perform more complex functions.

The essence of the approach analyzed here is that if a policy-state 
is only attainable when the agent is in a particular hidden state, 
then the agent can act as though it knows its true sensory state and 
select an action appropriately. We call this disambiguation. The 
smaller the set of hidden states from which a given policy-state is 
reachable, the better the resulting disambiguation. The following 
analyses can determine these sets of hidden states corresponding to 
a particular policy-state and AMDP. This is done by fi rst fi nding 
the policy-states that are reachable from a given sensory state and 
then identifying the corresponding hidden states.

When an agent has multiple memory systems, there are two 
general ways that the information from each may be combined. 
The simplest case is when each memory system acts in parallel, 
in which case each provides independent disambiguation. If one 
memory system indicates the agent is in one hidden state from 
a set S

1
 and another independently indicates the agent is in one 

hidden state from a set S
2
, then the agent must be in a state in 

the intersection of S
1
 and S

2
. The second possibility is when one 

memory system uses information from another, so the constraints 
are no longer independent, but rather one depends on the other. 
Most of the present analyses are of this condition: showing how 
the dependency is taken into account in the calculation of the set 
of possible hidden states.

We consider the following types of memory mechanisms: 
GAMM, CASRM, and static associations from observation to 
POMDPs (stimulus–stimulus memory, in a sense). Each is charac-
terized by the actions it responds to and the observation it produces 

We fi rst briefl y review the Markov decision process framework 
and give our formal defi nitions of three memory systems to dem-
onstrate how they function in this framework. Next we consider the 
utility of the CASRM system when its cue is provided by each of the 
three memory systems in turn. Then we examine the disambigua-
tion provided when the contents of different memory systems are 
maintained in a GAMM. We conclude by summarizing the results 
and briefl y considering their value.

MATERIALS AND METHODS
By its nature, the analysis of interacting memory systems requires 
formal defi nitions of the analyzed memory mechanisms and of 
the ways they can be used. We express the models in the terms 
of RL theory (Sutton and Barto, 1998). In this framework there 
is an agent which exchanges information with an environment. 
The agent selects actions that are sent to the environment, which 
changes its state in response to the action and sends the agent an 
observation refl ecting its new state. The agent’s goal is to learn a 
policy (a function that produces an action, possibly probabilisti-
cally, given an observation) that maximizes the expected temporally 
discounted reward the agent will receive over time. Popular algo-
rithms for learning such a policy are temporal difference methods 
(Sutton and Barto, 1998) such as actor-critic learning or Q-learning 
(Watkins and Dayan, 1992). Under reasonable assumptions, these 
algorithms provably converge to an optimal policy (Dayan, 1992; 
Tsitsiklis, 1994; Watkins and Dayan, 1992). Though the environ-
ment can be any sort of system that receives actions and produces 
observations, one of the assumptions for the convergence proofs 
is that the environment has the Markov property, so environments 
are often represented as Markov decision processes (MDPs).

An MDP is a tuple <S, A, P, R> of, respectively, a set of states, a 
set of actions, a set of probabilities P(s, a, s′) giving the probability 
of transitioning to state s′ after taking action a in state s, and a real-
valued reward function defi ned on the state transitions.

In an MDP the complete state of the environment is always 
available to an agent. For animals, only a subset of the true state 
of the environment is usually available to the senses and even this 
information can be noisy. For this reason, environments can instead 
be represented as POMDPs (Kaelbling et al., 1998; Monahan, 1982). 
In this formalism, states and observations are separate sets (S and 
O), and each observation has a certain probability of appearing 
when the environment is in each state [taking action a from state 
s results in o observed in state s′ with probability P(s, a, s′, o)]. It 
is convenient to consider a map A from a hidden state s to the 
set of observations corresponding to that state A(s). The present 
work actually uses a simplifi cation of POMDPs that we call aliased 
Markov decision processes (AMDPs). In an AMDP each state cor-
responds to only a single observation, | A(s) | = 1 for all s, although 
multiple states may correspond to the same observation. In this 
way, the probability of an observation is either 1.0 or 0.0, greatly 
simplifying the analyses.

In this more realistic formalism, convergence to an optimal 
policy is no longer guaranteed. It is possible to fi nd an optimal 
policy on what is called the belief space of a POMDP by updating 
an estimate of the probability that the agent is in each state, but 
this is only useful to an agent that knows the complete details of 
the POMDP it is interacting with (Kaelbling et al., 1998). Here 
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as a function of the agent’s history and actions taken. These mecha-
nisms are treated as independent modules which can in theory be 
arranged in a variety of ways. Any particular arrangement of zero 
or more copies of zero or more modules we term an architecture.

That the present analysis is focused on these three memory 
mechanisms is not meant to suggest that these are the only three 
needed to solve all tasks. A number of other mechanisms might 
be included to more closely match the capabilities of animals. Some 
of these are mentioned in the Section “Discussion.”

GATED ACTIVE MAINTENANCE
A gated active maintenance memory (GAMM) mechanism provides 
a single memory action to the agent which, when used, changes the 
state of the mechanism to a representation of the current observation 
of a target environment and maintains this representation over time 
until the action is taken again (when its contents are overwritten). The 
observation information it contributes to the policy-state is the cur-
rently maintained representation as well as the amount of time that 
representation has been held in memory. If the GAMM action was 
last taken at time t − i when the agent saw some observation o

t−i
, then 

the GAMM’s current observation is the pair (o
t−i

, i). Although simula-
tions using this type of system in the past (Dayan, 2007; Frank et al., 
2001; Moustafa and Maida, 2007; O’Reilly and Frank, 2006; Phillips 
and Noelle, 2005; Zilli and Hasselmo, 2008a) have not included age 
information and were nonetheless successful, an earlier analysis (Zilli 
and Hasselmo, 2008b) suggests this age information can be very use-
ful. GAMM is the only memory mechanism whose state is not cleared 
when the agent takes a motor action. That is, GAMMs provide the 
only means of keeping memory information directly accessible over 
time in the architectures described here. Including an action to clear 
the GAMM does not affect the results.

An architecture of memory mechanisms along with a specifi ed 
sensory AMDP implicitly create a policy-state space. That is, the 
two together defi ne the set of possible policy-states that an agent 
might experience and also identify which policy-states can lead to 
which others.

For example, an architecture containing only a GAMM that tar-
gets the sensory observation has a policy-state that can be written 
as the triple: (sensory observation, GAMM observation, age of item 
in GAMM) or, as above, (o

t
, o

t−i
, i). The policy-state (o, p, i) is only 

reachable at a state observed as o if observation p can actually occur i 
steps before o in the sensory AMDP. If one wanted to actually deter-
mine whether (o, p, i) is a valid policy-state, one could examine each 
sensory state that can be observed as o, fi nd all states i steps before 
those and see whether any of those states can be observed as p.

It can be convenient to abbreviate “all states i steps before states 
that can be observed as o” and similar statements. To do so, we 
introduce a function that looks a specifi ed number of steps back-
ward from a specifi ed observation or state. We write b

O
(o, i) to 

mean the set of observations that can be found i steps before any 
state observed as o (see Appendix A). To refer to the set of states 
instead of the set of observations, we use a subscript S instead of 
O: b

S
(o, i). For instance, in Figure 1A, b

S
(yellow, 1) = {G

1
, G

2
} and 

b
O
(green, 2) = {yellow, magenta}. Using this, we can say that (o, p, i) 

is valid if observation p is in the set b
O
(o, i).

If (o, p, i) turns out to be a valid policy-state, then an agent 
might actually experience it while performing a task. It could be 

that there are many states in the AMDP that are observed as o, 
but perhaps only one such state, s, is actually preceded i steps 
earlier by a state observed as p. For instance, consider idling at 
a street intersection where a left turn leads to home and a right 
turn to a pizzeria. The intersection is an observation correspond-
ing to many hidden states: some states where going home is the 
optimal action, some where getting pizza is the optimal action, 
and perhaps others. Suppose the policy-state is actually: (inter-
section, text message “pick up pizza,” 30 s ago). A policy-state can 
correspond to a single state, so the policy-state becomes a useful 
proxy for learning values and selecting actions appropriate to the 
true, hidden state. In this example, the policy-state indicates that 
the agent is in a state where turning right is the optimal action. 
But this is not always the case: it could be that a state observed 
as p is always found i steps before a state observed as o, so the 
policy-state (o, p, i) would provide no extra information about 
the agent’s true state.

CONTENT-ADDRESSABLE, SEQUENTIAL RETRIEVAL
CASRM is a mechanism that allows the controlled retrieval of a 
sequence of observations starting from a point in time identifi ed 
by a provided retrieval cue. The mechanism has one or more target 
environments whose observations it records. CASRM provides two 
actions to the agent. The fi rst action cues retrieval by fi nding the 
most recent point in the past that the retrieval cue was present. The 
second action advances retrieval by one step, setting the observation 

FIGURE 1 | Content-addressable, sequential retrieval memory (CASRM). 

(A) Example aliased Markov decision process (AMDP). States are circles 
identifi ed by a letter and number and the corresponding observation by the 
color of the circle (which corresponds to the state’s letter). (B) Unwinding the 
AMDP for each of the two green observations G1 and G2. CASRM retrieval 
cued by green at a green observation (top of the “trees”) will begin at one of 
the green observation at the bottom of the tree and proceed upward as the 
memory is advanced. Regardless of the bottom state retrieval began at, the 
observation at the third level uniquely identifi es the agent’s current state at 
the top of the tree.



Frontiers in Computational Neuroscience www.frontiersin.org December 2008 | Volume 2 | Article 6 | 5

Zilli and Hasselmo Analyses of interacting memory systems

of the CASRM to be the next observation in the sequence currently 
being retrieved.

Figure 1 demonstrates the CASRM system. Figure 1A is a simple 
AMDP containing one ambiguous observation green, correspond-
ing to two states: G

1
 and G

2
. In Figure 1B the AMDP has been 

“unwound” separately for each of the two green states. For each 
state, a tree is made with that state as the root. Then the states just 
before the root state are added, then the states just before those 
are added, and so forth. A branch of the tree ends at a leaf when a 
state is reached with the same observation as the root. These leaf 
states are the states at which retrieval may begin when retrieval is 
cued from the root observation. Advancing retrieval corresponds to 
moving upward in the tree. The particular starting state of retrieval 
depends on the path the agent most recently followed. The utility of 
CASRM arises because sometimes an observation will only occur 
on a particular level for a subset of trees. In Figure 1B, red only 
occurs in the third position when the agent is at G

1
, whereas yellow 

can occur in the second position for either state.
Formally, let o

t
 be the observation of the target environment at 

time t, and let c = o
t−x

 be a retrieval cue observation, which most 
recently occurred at time t − x (x > 0). A CASRM has an internal 
variable y indicating whether it is currently retrieving and, if so, 
what the time corresponding to the currently retrieved observation 
is (let y = −1 mean not retrieving). The effect of the cue retrieval 
action with cue c is to set y ← t − x and the CASRM’s observation 
becomes (o

y
, 0), where o

y
 is the observation that occurred at time y. 

The effect of the advance retrieval action is to set y ← y + 1 and 
the CASRM’s observation becomes (o

y
, y − (t − x)). If advancing 

retrieval would set y > t, the action fails. The y − (t − x) element is 
a difference between times y and (t − x), refl ecting the number of 
steps memory has been advanced, much as a GAMM’s observa-
tion indicates the age of the memory. And like the age of an item 
in GAMM, an earlier analysis suggests it may be useful, though 
simulations of this system (Zilli and Hasselmo, 2008a) and of a 
simpler version of this system (Hasselmo and Eichenbaum, 2005) 
have been successful without it. To see why it is useful, consider 
the agent at state X having just experienced either the sequence 
X-Y-X or X-Z-Y-X. If the agent cues CASRM with X, it can retrieve 
Y by advancing retrieval either one step or two step, and knowing 
the number of steps advanced allows it to disambiguate the two 
cases. When the agent takes a motor action, the state of CASRM 
is cleared (y ← −1).

An architecture containing only a CASRM that targets the 
sensory observation has a policy-state that can be written as the 
triple: (sensory observation, CASRM observation, number of 
steps retrieval has been advanced) or, as above, (o

t
, o

t−x+j
, j). It is 

straightforward to determine whether a particular policy-state is 
ever reachable in a given AMDP. Policy-state (o, q, j) is only reach-
able if observation q is reachable j steps after observation o. Again, 
this can be determined by examining whether any state observable 
as q can occur j steps after a state observable as o. For instance, in 
Figure 1, (green, red, 2) is a valid policy-state because a red state 
is found two steps after a green state. Where above we defi ned a 
backward function b

O
, here we can use a forward function: we write 

f
O
(o, j) to represent the set of observations found j steps forward 

from any state observed as o (see Appendix A). So (o, q, j) is a valid 
policy-state if observation q is in f

O
(o, j).

Given such a valid policy-state, from which hidden sensory states 
is that policy-state reachable? Taking policy-state (o, q, j), in terms of 
trees like those shown in Figure 1B, this asks for the states at the top of 
the trees in which q is found as the jth observation. Given a set of these 
trees, it is easy to determine the states (o, q, j) is reachable from. There 
are alternatives, however. Let q

1
, q

2
,… be states observed as q. Suppose 

only q
1
 and q

2
 are found j steps after an o observation. Also suppose, 

for instance, that q
1
 is in the trees for states o

1
, o

3
, o

5
,… and q

2
 is in the 

trees for states o
2
, o

4
, o

6
,…. Then if we formed a tree going forward 

from q
1
 and stopping the branches when hitting states observed as 

o, the leaves on this one tree would be o
1
, o

3
, o

5
,… (and similarly for 

q
2
). We will call the set of states in this tree the o-delimited, reach-

able states from q
1
 and write this as r

S
(q

1
, o) (see Appendix A). Or 

combining the trees for q
1
 and q

2
, we write r

S
(q, o). Now policy-state 

(o, q, j) is reachable from some state o
i
 if o

i
 is in r

S
(q, o) (where it will 

be a leaf on one of the trees with a q state as its root).
That is: can the agent retrieve q after j steps of retrieval while 

at state o
i
 (i.e., is policy-state (o, q, j) reachable from o

i
)? It can if 

(1) at least one q state can occur j steps after at least one o state [i.e., 
(o, q, j) is a valid policy-state], and (2) o

i
 is in the forward tree that 

stops at o states of one such q state [so o
i
 is in r

S
(q, o)].

STATIC ASSOCIATIONS
A SAM is modeled as a set of internal POMDPs that do not change 
on a behavioral time scale. Each observation o is associated with 
a POMDP P. Because POMDPs need not have connected state-space 
graphs, an observation can actually be associated with multiple 
POMDPs that are just treated as one large POMDP with specifi ed 
probabilities for starting in each state in each sub-POMDP. The 
structures of the POMDPs are assumed to be learned over time in 
an unspecifi ed manner, but do not change during performance of 
a task (they might change on a very slow timescale or change may 
require an off-task consolidation period, e.g., Squire and Alvarez, 
1995). A SAM has a target environment, and it has one cue action 
in addition to the actions of the POMDPs. When the cue action is 
taken, the state of the POMDP corresponding to the target environ-
ment’s observation is selected probabilistically per that POMDP’s 
starting state probabilities. The actions of the POMDP may then be 
taken and the state of the POMDP changes accordingly. A SAM also 
keeps track of the number of POMDP actions k that have been taken 
since the cue action was last taken. The observation from a SAM is 
(o

m
, k) where o

m
 is the current observation of the POMDP. The state 

of SAM and k are cleared when the agent takes a motor action.
An architecture containing only a SAM has a policy-state we 

write as (o
t
, o

m
, k). This policy-state is reachable only if observation 

o
m
 in o

t
’s SAM-associated POMDP is reachable in exactly k steps 

from one of the starting states in that POMDP.
In contrast to GAMMs or CASRMs, for SAM a policy-state 

reachable from one hidden sensory state is reachable from all hid-
den sensory states with the same observation, because the behavior 
of the SAM system does not depend on the agent’s history. Thus the 
use of SAM never provides more information regarding the agents 
hidden sensory state than does the sensory observation itself.

INTERACTIONS
Zilli and Hasselmo (2008b) described an analysis of GAMM and 
CASRM (under the names working memory and episodic  memory), 



Frontiers in Computational Neuroscience www.frontiersin.org December 2008 | Volume 2 | Article 6 | 6

Zilli and Hasselmo Analyses of interacting memory systems

giving, for example, the probability that the agent is in some hid-
den state s given that i steps ago it observed observation p and 
arranged these in a matrix with the past observations as rows and 
the hidden states as the columns. Of particular interest are those 
memory observations for which the corresponding policy-state is 
reachable only from a single hidden state, in which case the memory 
mechanisms allow the hidden state to be identifi ed.

The rest of this manuscript extends this analysis to consider ways 
in which pairs of these mechanisms can interact. The general form 
of the analysis remains the same: an architecture (how many mecha-
nisms are used and what their targets are) and the corresponding 
form of the policy-states (which information from the mechanisms 
is used in decision making) are determined. For a given sensory 
AMDP observation of interest (e.g., a choice point in a task), we 
fi rst identify policy-states reachable from that observation, then 
relate the reachable policy-states to the possible hidden sensory 
states that may correspond to the observation of interest.

To formalize the interaction between mechanisms, we examine 
the policy-state of the architecture in response to a fi xed sequence 
of memory actions and arbitrary motor actions that end in a 
state with a particular observation. For instance, we might consider 
the sequence “hold sensory observation in GAMM, take two motor 
actions, cue CASRM with observation in GAMM” which ends 
with the agent observing o and ask which policy-state might the 
agent be in and which hidden sensory states can policy-states cor-
respond to. The analysis of GAMM in Zilli and Hasselmo (2008b) 
would correspond to action sequences of the form “GAMM action, 
n motor actions.” The analysis of CASRM in Zilli and Hasselmo 
(2008b) would correspond to action sequences “CASRM cue 
action, j CASRM advance retrieval actions.”

We have now introduced the formal memory systems and the 
basic concepts needed to consider interactions between these sys-
tems. Just as before, we are interested in the set of hidden states 
corresponding to a specifi ed policy-state. More than that, we are 
interested in comparing the set of hidden states resulting from 
two memory systems interacting to the set of hidden states from 
one system on its own. This shows how the capabilities of an agent 
changes when memory systems can interact.

ALTERNATIVE CASRM RETRIEVAL CUES
In the content-addressable, sequential retrieval system as previously 
described and analyzed (Zilli and Hasselmo, 2008a,b), only the 
agent’s current observation was usable as a retrieval cue. Everyday 
experience, however, suggests that the retrieval cues used for our 
episodic memories are not restricted to currently observed sensory 
cues: we can use internally evoked cues, such as static associates of 
observed stimuli (Polyn et al., 2005) or we can use other, more com-
plex cognitive processes to interact with episodic memory (Cabeza, 
2008; Ciaramelli et al., 2008). This motivates the consideration of 
other ways in which the CASRM cue may come about.

Adapting the analysis to consider arbitrary retrieval cues is 
straightforward. Retrieval cued by the current observation o begins 
at the previous occurrence of an o in the agent’s history and identi-
fi es whether subsequent observations disambiguate which o state is 
currently occupied. If retrieval were cued by some general observa-
tion o′, retrieval could proceed no farther than the subsequent o′. 
Here there may be multiple occurrences of o within any path from 

one o′ to another. The fact that the states to be disambiguated are no 
longer the end states on the path is the cause of the largest modifi ca-
tion needed. Previously, in Zilli and Hasselmo (2008b), occupancy 
of only the end states was of interest, but the present analysis of 
arbitrary cues focuses on occupancy of all states on the paths lead-
ing up to the end states (the o′-delimited reachable states).

Earlier we suggested the form of the policy-states for a CASRM-
only architecture was (sensory observation, CASRM observation, 
number of steps retrieval has been advanced), but really this is the 
case only when the retrieval cue can only be the current sensory 
observation. When more than one retrieval cue can be used (e.g., 
if observations from other memory systems can be used as cues), 
then the cue can be included in the policy-state, giving the form 
(sensory observation, CASRM cue, CASRM observation, number 
of steps retrieval has been advanced).

This section considers three ways in which the retrieval cue for 
CASRM might come about. These correspond to the following 
types of action sequences: (1) Cuing retrieval with an  observation 
from SAM: “k SAM actions, CASRM cue with SAM observation, 
j CASRM advance retrieval actions,” (2) Cuing retrieval with 
an observation from GAMM: “GAMM action, n motor actions, 
CASRM cue with GAMM observation, j CASRM advance retrieval 
actions,” and (3) Cuing retrieval with an observation retrieved with 
CASRM: “CASRM cue with sensory observation, i CASRM advance 
retrieval actions, CASRM cue with CASRM observation, j CASRM 
advance retrieval actions.”

In each of these action sequences, there is more than one possible 
cue observation that can arise from the memory systems used (e.g., 
more than one possible observation held in GAMM from n steps 
earlier, in the second sequence). For each cue, there is a separate 
set of policy-states, so each cue can be considered independent of 
the others. So, for each possible cue, the analysis is applied: the 
reachable policy-states are found, then their correspondence to 
hidden sensory states is found.

This can be informally summarized as follows. If observation o′ 
is used as a CASRM retrieval cue and retrieval is advanced j steps, 
which results in retrieved memory of observation q [one of possibly 
many memories that might be retrieved, specifi cally one from the 
set f

O
(o′, j)], then a particular policy-state including q and j results. 

The hidden state corresponding to the retrieved memory is one 
of the set of states that are observed as q and occur j steps after a 
state observed as o′ [the subset of f

S
(o′, j) which can be observed 

as q]. Finally, the set of o′-delimited, reachable states from the states 
found j steps after o′ that are observable as q is the set of states from 
which the policy-state containing q is reachable using cue o′. The 
analyses only differ in that each has a different set of possible cues 
o′, but this difference is important in practice.

If the retrieval cue itself were not included in the policy-state, an 
additional step would be needed. In this step, the sets of states from 
which a policy-state with a given retrieved observation q is reachable 
would be combined (unioned) over each possible cue value.

Allowing arbitrary observations to be used as cues does allow the 
agent to make one type of systematic error: the use of over-specifi c 
cues. For example, if an agent is attempting to recall what it had 
for breakfast this morning, consider the cue “morning” versus the 
cue “Thursday morning.” While the former may generally be suc-
cessful, the latter will only work when today is actually Thursday. 
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Roughly, an appropriate retrieval cue in this formalism should be 
an observation that occurs with the same frequency as the desired 
memory and which occurs just before or at the same time as the 
desired memory (because we only consider forward retrieval).

Though we do not specifi cally focus on CASRMs with limited 
capacities (i.e., a system where only the n most recent observa-
tions are retrievable), it is easy to see how a limited capacity can 
be accounted for. If the agent’s current sensory observation is o 
and observation o′ is used as a retrieval cue, but o′ most recently 
occurred far enough in the past that it is no longer retrievable, the 
agent’s policy-state may be written (o, o′, –, 0) (where the hyphen 
indicates no observation retrieved). This policy-state is reachable 
from a state s that can be observed as o only if the sensory AMDP 
allows a sequence of n observations ending with s in which o′ never 
occurs. Thus a failure to retrieve a memory given a cue is informa-
tive in that it indicates the cue observation has not been observed 
in a long time (the past n steps).

SAM CUE FOR CASRM RETRIEVAL
The policy-state for an agent with both SAM and CASRM combines 
the forms given earlier into (o

t
, o

t−x+j
, j, o

m
, k) and the SAM observa-

tion o
m
 (which must be reachable in k steps from o

t
 using SAM) used 

as a CASRM cue means o
t−x

 = o
m
 for some lowest integer x for which 

this holds for the given o
m
 (assuming o

m
 has been observed in the 

past, otherwise retrieval fails). Holding o
t
, j, o

m
, and k constant, we 

consider the possible values of o
t−x+j

. The hidden states correspond-
ing to o

t−x+j
 are f

S
(o

m
, j). A particular retrieved memory o (and the 

policy-state containing it) corresponds to the subset S of the set of 
states f

S
(o

m
, j) that can be observed as o. The hidden sensory states 

from which the policy-state (o
t
, o, j, o

m
, k) is reachable are those in 

the set r
S
(S, o

m
) that can be observed as o

r
. Each of these policy-states 

would correspond to one row of a disambiguation matrix in the 
approach of Zilli and Hasselmo (2008b).

Because CASRM can only retrieve a memory given a cue, its 
potential use is limited by the cues presently available to the agent. 
Static associations can provide a larger pool of observations, allow-
ing access to memories that would otherwise be unavailable in a 
particular situation.

As an example of a situation where this strategy can be useful, 
consider a Where Did I Park? task. In this task, the agent must recall 
in which parking lot its car is parked (it is assumed that recalling 
the lot is suffi cient to fi nd the car). On each trial the agent experi-
ences three task-relevant states (and a number of irrelevant states). 
The agent begins in the car observation (parking its car) then is 
randomly presented with one of multiple parking lot observations, 
and then passes through perhaps many irrelevant observations 
(work, errands, etc.). Finally, it is presented with the test observa-
tion where it must recall where it parked. From this test observa-
tion (which corresponds to one of multiple hidden states: one for 
each parking lot), there is a “go to parking lot A” action, a “go to 
parking lot B” action, etc. The agent is rewarded for selecting the 
action corresponding to the lot where it parked its car (e.g., in the 
test observation corresponding to having parked in parking lot A, 
the parking lot A action is rewarded). The agent may then go on 
to experience a number of other task-irrelevant observations (car, 
driving to a warehouse, fi ght club, etc.) before eventually beginning 
the next trial.

While observing test, CASRM can only retrieve a memory begin-
ning at the most recent past observation of test which does not 
easily provide the desired information regarding the car’s location. 
If the car observation has been learned as a static associate of the 
test observation, then car can be used as a CASRM retrieval cue 
when the agent is observing test. The particular parking lot observed 
on a particular trial occurs one step after the car observation, so 
after j = 1 retrieval step the agent will retrieve an observation of a 
parking lot. That is, f

O
(car, 1) is the set of the possible parking lots 

in the task (specifi cally, the set of observations that can follow a 
car observation). Suppose there are two such observations: Itchy lot 
and Scratchy lot and that the respective test states are test

IL
 and test

SL
. 

r
S
(Itchy lot, test), the set of test-delimited, reachable-from-Itchy lot 

states, includes the Itchy lot state, the test
IL

 state, and any states in 
between, but not the test

SL
 state [and vice versa for r

S
(Scratchy lot, 

test)]. Thus the parking lot retrieved corresponds to the agent’s 
hidden sensory state. This result shows that using SAM to provide 
a retrieval cue for CASRM can be a successful strategy for effi ciently 
solving the Where Did I Park? task. This success is true by virtue of 
the defi nition of the task. If the task were changed so that the agent’s 
car could randomly move to a different parking lot without the 
agent observing it, then both test

IL
 and test

SL
 would be in both sets 

r
S
(Itchy lot, test) and r

S
(Scratchy lot, test) and the retrieved memory 

would not be informative.

GAMM CUE FOR CASRM RETRIEVAL
The policy-state for an agent with both GAMM and CASRM com-
bines the forms given earlier into (o

t
, o

t−x+j
, j, o

t−i
, i) and if the GAMM 

observation o
t−i

 were being used as a CASRM cue, we would have 
x ≤ i. That is, the retrieved memory can begin no earlier than the 
time at which the cue was gated into GAMM. The analysis proceeds 
exactly as above, except that the set of possible cues is restricted 
to b

O
(o

t
, i) (the possible values of o

t−o
). Using a cue from GAMM 

drastically restricts the range of memories that can be retrieved, 
because CASRM retrieves the most recent sequence beginning with 
the cue, which will have appeared in the recent history of the agent 
for it to be maintained in GAMM.

A task where this strategy can be useful is immediate serial recall 
task (Baddeley, 1986), in which a subject is presented with a sequen-
tial list of items and then immediately asked to recall them in order. 
Clearly maintaining the fi rst item of the list in GAMM during 
the list presentation provides a cue for CASRM to retrieve the list 
directly. Of course, other strategies such as maintaining the whole 
list in GAMM would also be successful in this task. The primary 
advantage of using CASRM to retrieve the list is the greater capacity 
of CASRM. An agent will have a limited number of GAMMs and so 
must decide which information to store at the time it is presented, 
whereas CASRM allows a list to be retrieved repeatedly to fi nd the 
relevant information at a particular time.

CASRM CUE FOR CASRM RETRIEVAL
The policy-state for an agent with a CASRM is of the form given 
earlier: (o

t
, o

t−x
, o

t−x+j
, j). If the cue o

t−x
 is itself an observation retrieved 

in CASRM, then it must be j′ steps after some earlier cue o
t−y

, so 
o

t−x
 = o

t−y+j′. In the simplest case, the initial cue is o
t
 so the possible 

subsequent cues are f
O
(o

t
, j′). In the same way that using SAM to 

provide a CASRM retrieval cue expands the set of possible cues, 
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using a retrieved observation from CASRM itself can also pro-
vide a greater range of retrieval cues. And as in the case of a cue 
from GAMM, this subsequent cue o

t−x
 can occur no earlier in time 

than the retrieved observation o
t−y+j′ which became the new cue, 

which is to say x ≤ y + j′. If the cue observation was the most recent 
appearance of that observation, x = y + j′, then there is no effect 
and retrieval can proceed as usual. Essentially, using a retrieved 
observation as a cue allows retrieval to “skip ahead,” as the follow-
ing example demonstrates.

Consider this strategy in the Where Did I Park? task. If the 
agent were to cue CASRM retrieval with the test observation, the 
retrieved memory would begin at the most recent test observa-
tion, which would be followed by the car observation, the driving 
home observation, and so forth through the whole night, eventu-
ally retrieving the most recent car observation and subsequently 
the desired parking lot observation. Notice that car, which is a 
useful cue in this situation, occurs after a single step of advanc-
ing retrieval. By then cuing CASRM retrieval with car, retrieval 
jumps ahead to the most recent car observation, after which one 
more step of advancing retrieval will retrieve the desired parking 
lot observation. This shows that using CASRM to provide a cue 
for CASRM is another successful strategy for solving the Where 
Did I Park? task.

SUMMARY
In all of these cases of varying the retrieval cue for CASRM, there 
has been the potential for disambiguation beyond that provided by 
using only the current observation as a retrieval cue. So, although 
the restriction on the CASRM to only use presently available cues 
may seem overly limited, in reality other mechanisms available to 
an agent can make up for the limitation.

Having now examined the effect on CASRM of using cues 
from different memory systems, we next proceed to examining 
the maintenance of observations from different memory systems 
in a GAMM.

GAMM FOR EARLIER MEMORIES
This section considers three ways in which an observation to be 
maintained in GAMM might come about. These correspond to the 
following types of action sequences: (1) Maintaining an observation 
from GAMM: “GAMM action, i′ motor actions, GAMM action, i 
motor actions,” (2) Maintaining an observation from SAM: “k SAM 
actions, GAMM action, i motor actions,” and (3) Maintaining an 
observation retrieved with CASRM: “CASRM cue with sensory 
observation, j CASRM advance retrieval actions, GAMM action, 
i motor actions.”

For simplicity it is assumed (unless otherwise specifi ed) that a 
GAMM has a single target so that, if the GAMM contains o from i 
steps ago, it is clear which system originally contained o.

Consider the case of maintaining in GAMM an observation 
retrieved with CASRM. Intuitively the idea of this memory strategy 
is that, since CASRM can disambiguate a set of states, holding the 
retrieved observation in GAMM should let the agent carry that 
disambiguation information forward in time. For instance, sup-
pose that through CASRM the agent knows it was at state s

a
 and 

not state s
b
 i steps ago (but s

a
 and s

b
 are observed as identical). Also 

suppose that s
a
 leads to s

y
 and s

b
 to s

z
, both after i steps (and s

y
 s

z
 are 

observed as identical). Then, combined, the agent can behave as if 
it knows it is currently at s

y
 and not s

z
.

For a more concrete example, consider the following interpreta-
tion of the AMDP in Figure 2 in terms of packaging. An agent is 
presented with a closed box that is colored blue or red. It opens the 
box and places inside it a white ball drawn from either a magenta or 
a yellow drawer. Possibly much later in time (indicated by the red 
arrows), the box is closed and wrapped in cyan paper. A green light 
indicates that the packaging is completed and that the agent should 
press one of four buttons, depending on the color of the drawer and 
box. At this point in time, the current sensory input does not inform 
as to the color of the drawer or box. The observation from two 
steps in the past identifi es the box color, partially disambiguating 
the green, and so is useful to maintain in GAMM. The observation 
of the drawer color, however, is potentially too old to have been 
maintained in GAMM. Nevertheless, CASRM at the recent observa-
tion of the box color can retrieve the memory of the color of the 
drawer. In fact, holding both the cue (box color) and the retrieved 
observation (drawer color) in GAMM can disambiguate the green 
states. For example, if one step of CASRM retrieval cued by blue 
retrieves magenta, the agent must be at B

2
 and, through GAMM, 

can carry that information forward to know it is at G
1
. Note that, 

properly, all the green states in Figure 2 should be connected to all 
of the left-most states to represent a case where the box color and 
drawer color are selected randomly. However, the analyses below 
only examines states during a single “trial” so these connections 
have no effect on the particular calculations carried out here.

The essence of these analyses is the same regardless of the 
original source of the observation in GAMM. When the obser-
vation was fi rst placed in GAMM, the agent was at a particular 
policy-state which was reachable from a subset of hidden states 
in the AMDP. The agent then took i motor actions and arrives 

FIGURE 2 | Task used as an example of the use of holding earlier 

disambiguation (such as from content-addressable, sequential retrieval 

memory, CASRM) in gated, active maintenance memory. A behavioral 
interpretation as an agent wrapping packages is given in the text. The name of 
the each state is given as a letter and number within each colored circle and 
the color of the circle identifi es the corresponding observation (with letters 
corresponding to colors as in B for blue or M for magenta). The red dashed 
arrows indicate places where additional states may be interposed without 
qualitatively affecting the results when CASRM is used (as long as no red or 
blue states are placed there).
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at a new policy-state. It is this policy-state and the hidden states 
from which it is reachable that are of interest.

ARCHITECTURES WITH TWO GAMMs
First, consider an architecture with a single GAMM. The set X of 
all states from which policy-state (o, p, i + i′) is reachable is a sub-
set of the set of states that can be observed as o. Now consider an 
architecture with a second GAMM that can maintain the contents 
of both the sensory observation and the fi rst GAMM. This agent 
could start at policy-state (o′, p, i′,…) (where the ellipses indicate 
irrelevant information), use its second GAMM action to move to 
policy-state (o′, p, i′, (o′, p, i′), 0), then take i motor actions and 
end up at (o, p, i + i′, (o′, p, i′), i). This policy-state is possibly more 
informative than the fi rst because the set Y of states from which this 
policy-state is reachable is a subset of the set X (see Appendix B, 
Theorem B1). (Recall that since the agent’s policy is a function of 
its policy-state, a smaller set of hidden sensory states from which 
a policy-state is reachable results in less uncertainty about its state 
and a policy that may better refl ect the true dynamics of the sen-
sory AMDP).

But why is this the case? Since this architecture combined the 
observations of two mechanisms into the target for a single GAMM, 
it is worth considering which of the two (sensory observation or 
GAMM contents) are responsible for the increase in information.

If the second GAMM maintained only the sensory informa-
tion, then the agent would end up in policy-state (o, p, i + i′, o′, i) 
[instead of (o, p, i + i′) if the agent had a single GAMM]. By the 
same logic as the case above, the policy-state with two GAMMs is 
potentially more informative than that with a single GAMM (see 
Appendix B, Theorem B2).

If the second GAMM maintained only the fi rst GAMM’s infor-
mation, the agent could start at policy-state (o′, p, i′,…), use its 
second GAMM action to move to policy-state (o′, p, i′, (p, i′), 0), 
then take i motor actions and end up at (o, p, i + i′, (p, i′), i). In this 
case where one GAMM maintains the contents of another, the 
architecture with one GAMM [ending at policy-state (o, p, i + i′)] 
is equally informative as that with two GAMMs [ending at policy-
state (o, p, i + i′, (p, i′), i)]. From any state s from which (o, p, i + i′) 
is reachable, (o, p, i + i′, (p, i′), i) is also reachable, because the 
content of the second GAMM is redundant.

The primary purpose of these three cases is to show that the case 
of one GAMM maintaining the information from another GAMM 
is not useful, but that using two GAMMs to maintain information 
from two different times is useful.

GAMM FOR SAM
The form of the argument for the case where one GAMM maintains 
the content of a second also shows that using GAMM to maintain 
a static associate of an observation is at best equally informative 
(and at worst, less informative) than using a GAMM to maintain 
the original observation (at least for the specifi c characterization 
of informative used here, which relates policy-states to hidden sen-
sory states). To show this, consider an agent with only a GAMM 
at policy-state (o, p, i) [where p is some observation in b

O
(o, i)] 

and let X be the set of hidden states from which this policy-state 
is reachable. Similarly, for an agent with a GAMM and an SAM at 
policy-state (o, m, i,…) [where m is some observation reachable 

through k SAM actions from some p in b
O
(o, i)], let Y be the set 

of hidden states from which this is reachable. The only relevant 
difference here is that p is the actual sensory observation from 
i steps in the past while m is a static associate of the actual sensory 
observation from i steps in the past. Here X ⊆ Y, which is to say that 
maintaining a static associate has possibly decreased the amount of 
information available (see Appendix B, Theorem B3).

Consider as an example a delayed matching task where a white 
oval sample stimulus is displayed and followed, a short time later, 
by another white oval (which, in a matching task, the agent should 
respond to). If the agent maintains in GAMM the white oval itself, 
it will be able to respond correctly. If the agent, on the other hand, 
maintained some other observation that is associated with a white 
oval, e.g., an egg or Kevin Bacon (who is associated with many 
observations, Fass et al., 1996), then the agent has less informa-
tion about the sample stimulus and may not be able to respond 
correctly.

GAMM FOR CASRM
We consider two cases of using GAMM to maintain the contents of 
CASRM, differing only in whether or not GAMM maintains only 
the retrieved observation and number of steps retrieval is advanced 
or if it also maintains the retrieval cue.

First, we will compare an architecture with a single GAMM 
to one with a GAMM that can maintain the retrieved CASRM 
observation and number of steps retrieval has been advanced. In 
the former case, the agent’s policy-state can be written as (o, p, i). 
For the latter case, the agent’s policy-state may be of the form (o, p, 
i, q, j). In this case suppose the agent is initially at policy-state (o,…, 
q, j), having advanced its CASRM retrieval j steps to retrieve q. 
Now if the agent uses its GAMM action to maintain q and j, it will 
be at policy-state (o, (q, j), 0, q, j), and i motor actions will take it 
to (o, q, j), i, −, −1) (where the hyphen and negative one are used 
to indicate that CASRM is not currently retrieving any memory). 
Comparison of the two architectures shows that their policy-states 
are independently informative, which is to say that the set of hidden 
states reachable from (o, p, i) is neither necessarily a superset nor 
a subset of the set of hidden states reachable from (o, (q, j), i, −, 
−1). Thus neither is strictly more informative than the other (see 
Appendix B, Theorem B4).

This is not the case, however, if GAMM includes the retrieval 
cue in addition to the retrieved observation and number of steps 
retrieval is advanced. This is apparent from the form of the policy-
state that results. Taking actions exactly as above will result in the 
agent being at policy-state (o, (p, q, j), i, −, −1) versus (o, q, i), where 
the information of the latter is clearly contained within the former. 
In this case GAMM of CASRM is more informative than GAMM 
alone (see Appendix B, Theorem B5).

An example of the use of this strategy was given in the packaging 
example in the beginning of this section and in Figure 2.

SUMMARY
In contrast to the results from the previous section which discussed 
means by which CASRM retrieval cues could come about, there are 
cases where GAMM alone is equally informative as a more com-
plicated architecture. These cases include GAMM maintaining the 
contents of another GAMM or a SAM (see middle row in Table 1). 
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On the other hand, using a GAMM to maintain the contents of 
CASRM can be more informative than using GAMM alone.

This concludes the analyses of interactions of the three memory 
systems considered here. We close with discussion on the results 
and our approach.

DISCUSSION
We have extended earlier analyses from Zilli and Hasselmo (2008b) 
which dealt with separate memory systems by now analyzing a 
variety of combinations of memory systems. We fi rst considered 
alternative cues for CASRM. This allows for the analysis of CASRM 
in a much larger range of tasks by loosening a major restriction of 
the earlier analysis.

We next considered the case of GAMM for memory observa-
tions that were produced at an earlier point in time. We showed 
that GAMM for another GAMM’s observation or static associations 
linked to some observation provides no improvement in informa-
tion regarding the agent’s hidden sensory state over GAMM for the 
original observation. For GAMMs this occurs because the informa-
tion is redundant and for static associations this arises because static 
associations themselves provide no additional information. On the 
other hand, GAMM for CASRM can provide increased information 
(particularly when both the retrieval cue and the retrieved memory 
are held in GAMM). These results are summarized in Table 1.

These results provide insight both into the way that memory 
systems can be used in solving tasks and into the way the struc-
ture of tasks relate to the way particular memory systems work. 
By understanding the memory systems themselves and interactions 
between them in quantitative terms, we can hope to develop under-
standing of memory on a deeper level than that provided by, for 
instance, hierarchies of memory systems defi ned in often informal 
terms (Eichenbaum and Cohen, 2001; Schacter and Tulving, 1994; 
Squire, 2004; Squire and Zola-Morgan, 1991).

Additionally, the results inform as to useful memory archi-
tectures, which is information useful for both theoretical models 
and understanding the memory systems in animals. Increasing the 
complexity of a memory architecture in theoretical work will slow 
learning by virtue of the greater number of actions and expanded 
state space, so identifying redundant systems or interactions may 
help guide the design of models. Similarly, natural selection will 
likely have favored simple systems with the most fl exible behavior, 
so a normative understanding of interactions between memory 
systems can aid in the understanding of memory mechanisms in 
animals.

Already this work can tentatively identify relationships between 
the considered mechanisms. Our analysis takes as a baseline level of 
disambiguation that provided only by an observation. Learning and 
behaving in an AMDP describing a task can be described in the RL 
framework in which action selection depends only on the current 
observation, and hence stimulus-response associations forms the 
base of any disambiguation hierarchy we might describe. We have 
seen that static associations provide no additional disambiguation 
of any states on their own, and so this system would be on the 
same level as stimulus-response associations. GAMM appears to 
provide the next level of disambiguation, as on its own it can reduce 
uncertainty about observations (by restricting the possible hidden 
states the agent may be at by virtue of the agent’s recent history) 
and has further use when used to hold previously retrieved CASRM 
observations. Finally, CASRM is the most powerful, providing the 
potential for additional disambiguation of observations using any 
of the memory systems here analyzed as a retrieval cue.

The present work has certainly not considered every possible 
mechanism involved in animal behavior. Other reasonable mecha-
nisms that could be considered in the future include mechanisms 
for context, detecting identity-independent matching, dynamic 
associations, selective attention, familiarity or recognition, spatial 
memory, temporally extended motor patterns, etc. The analysis of 
these mechanisms and their potential use in behavioral simulations 
are a promising direction for future research.

We have provided a framework for analyzing the use and util-
ity of biologically inspired memory mechanisms. These methods 
allow formal arguments about the capabilities and limitations of the 
mechanisms and may be useful both in understanding the brains 
and behavior of animals as well as in designing artifi cial systems 
with desired learning and memory abilities.

APPENDIX
APPENDIX A
Here we provide quantitative defi nitions for the functions f

S
, b

S
, 

and r
S
 in terms of POMDPs.

Recall that a POMDP is formally a tuple <S, O, A, P, R>. The 
functions f, b, and r depend only on the way the states are connected 
and the observations that can correspond to those states. Thus it 
is convenient to extract from the tuple a simpler representation of 
the information needed.

First, we fi nd the matrix N of the connectivity of the state space. 
N is an | S |-by-| S | square matrix (one row and column for each 
state). N

i,j
, the entry at row i and column j in N, is 1 if, for any 

Table 1 | Disambiguation from combined memory mechanisms. A plus sign indicates that the corresponding systems can provide information regarding 

the current hidden sensory state. A minus sign in the fi rst column indicates that no additional information is provided beyond that given by the current 

observation. A minus sign in the fi nal three columns indicates that no information is provided beyond that provided using the row memory mechanism on the 

current observation. The fi rst column summarizes the results from Zilli and Hasselmo (2008b); the fi nal three columns are the results from the present 

manuscript.

 …sensory observation  …static associations …GAMM …CASRM

Static associations of… − − − −
GAMM for… + − − +
CASRM cued by… + + + +
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action a and observation o in A, P(s
i
, a, s

j
, o) is nonzero; otherwise 

N
i,j
 = 0. Thus N is the adjacency matrix of the state space. Notice 

that the state space graph is directed, so the adjacency matrix is not 
necessarily symmetric.

The other piece of information needed is the set of observations 
that correspond to each state. We write this as a map A : S → P(O) 
where P(O) is the set of all subsets of O. For each state s in S, A(s) 
is defi ned as the set {o ∈ O|P(s′, a, s, o) > 0, ∃s′ ∈ S, a ∈ A}. To 
slightly abuse notation, we can defi ne the inverse of this function 
as A−1 : O → P(S), taking an observation and producing the set of 
states that can be observed as that observation.

The function f
S
(s

a
, i) gives the set of states found i steps for-

ward from state s
a
. (Technically, the POMDP itself should also be a 

parameter to the function, but it is left implicit in this discussion for 
conciseness). These states are given by the nonzero entries in row a 
of the matrix Ni. Similarly, if X is a set of states which correspond to 
rows a, b, …in N, then f

S
(X, i) would be the set of states reachable in 

exactly i steps from any state in X. These would correspond to the 
states with nonzero entries in any of rows a, b, …in Ni. By analogy 
we can “overload” this function so that the fi rst parameter is an 
observation instead of a state: f

S
(o, i), which is simply shorthand 

for f
S
(A−1(o), i). And with these we can defi ne analogous functions 

to fi nd observations i steps forward from a state or observation: 
f
O
(s, i) = A(f

S
(s, i)) and f

O
(o, i) = A(f

S
(o, i)).

The function b
S
(s

a
, i) gives the set of states found i steps back-

ward from state s
a
. This is calculated as f

S
(s

a
, i) except the transpose 

of N is used: (NT)i. Analogous functions to the f functions can 
also be defi ned: b

S
(o, i) = A(b

S
(A−1(o), i)), b

O
(s, i) = A(b

S
(s, i)), and 

b
O
(o, i) = A(b

S
(o, i)).

Finally, we used a function r
S
(X, o) giving the o-delimited, 

reachable states from states in the set X, which corresponds to a 
forward tree expanding out of each state in X and stopping each 
branch when a state observed as o is reached. This entails fi nding, 
for each state in X, each state entered when walking along every 
possible path out of x and stopping only when a state that can 
be observed as o is reached. This set of reachable states can be 
found using a three step process. First, the connectivity matrix N 
can be adjusted so that the agent cannot exit states that can be 
observed as o. That is, we create a new matrix N

abs(o)
 in which rows 

corresponding to states A−1(o) are made absorbing (to borrow a 
term from Markov chain theory). If row r is made absorbing, all 
entries in the row are set to 0, except column r which is set equal 
to 1. If every row were made absorbing, the result would be the 
identity matrix.

In this way, row r of N i
abs o( ) will always have only a single nonzero 

entry in column r, which means that the only state ever reach-
able from that state is the state itself. Some other row r′ not made 
absorbing will contain states reachable in i steps will also be affected 
if a state made absorbing is reachable from r′ in i or fewer steps. 
Thus this effectively provides the o-delimited aspect for a particular 
number of steps. To fi nd all of the o-delimited, reachable states, we 
might sum N o

i
abs( ) for all values of i Ni

i
o

i: ∑ =
∞

0 α abs( ) (where 0 < α < 1 
prevents entries from going to infi nity). But this does not match the 
defi nition of o-delimited, reachable states, because that defi nition 
applied the o-delimit only after the fi rst step (in this defi nition, 
starting at a row corresponding to a state observed as o would stay 
in that state forever).

This is avoided by simply left-multiplying this sum by the non-
absorbing N, which essentially takes one step in the graph before 
considering the absorbing aspect. This, however, introduces yet 
another problem, because a state should be o-delimited, reachable 
from itself, but N may not allow a state to be reachable from itself. 
This is solved by adding the identity matrix I to the product.

In sum this gives the matrix I N Ni
i

o
i+ ∑ =

∞⎛
⎝⎜

⎞
⎠⎟0 α abs( ) . Row r in this 

matrix gives the o-delimited, reachable states from row r. To fi nd 
the reachable states from a set of states a, b,…, rows correspond-
ing to a, b,…can be added. The nonzero entries in the resulting 
vector correspond exactly (by construction) to the o-delimited, 
reachable states from X.

APPENDIX B
The following theorems concern comparisons between pairs of 
architectures and focus on the relationship between the set of states 
from which a equivalent policy-states in the two architectures are 
reachable. When the set of states arising from one architecture 
are fully contained within the set of states from another, we say 
the architecture with the smaller set of states is more informative, 
because there is less uncertainty as to the actual state. However, it 
is important to keep in mind that this does not directly mean that 
the more informative architecture is always better. There can be 
situations where a particular memory strategy’s information actu-
ally increases the mean absolute deviation between the expected 
reward from the environment and the agent’s own expectation of 
that reward.

Consider four indistinguishable states from which an animal 
can perform a lever press. Let the lever press produce a reward 
of 0.5 in two of those states, 0 in one of those states, and 2 in one 
of those states. Suppose the agent is known to be in one of three 
states: one where a reward of 0.5 will result or one of the two states 
where a reward of 0 or 1 will result. If the agent knows it is in one of 
those three states, the expected reward will be 0.833 and the mean 
absolute deviation will be 0.778 (the expectation of the absolute 
value of the difference between the expected reward and the actual 
rewards). If the agent does not know it is in one of those three states, 
its expected reward will be 0.75, but the mean absolute deviation 
will be 0.75. Thus it has less information and has a lower expected 
reward, but its expected reward is closer to the reward it is actually 
expected to receive from those three states (and so its action value 
will be closer on average to the optimal action values).

Theorem B1. An architecture X with two GAMMs in which one 
GAMM targets the sensory input and the other targets both the sen-
sory input and the contents of the fi rst GAMM has more informa-
tive policy-states than an architecture Y with only a GAMM that 
targets the sensory input. Specifi cally, for architecture X let X be 
the set of states from which policy-state (o, p, i + i) is reachable and 
for architecture Y let Y be the set of states from which policy-state 
(o, p, i + i′, (o′, p, i′), i) is reachable. Then Y ⊆ X.
Proof. x ∈ X means A(x) = o and p ∈ b

O
(x, i + i′). y ∈ Y means 

A(y) = o (y can be observed as o) and p ∈ b
O
(y, i + i′) [(o′, p, i′) 

is a valid policy-state] and for some z in A−1(o′), z is in b
S
(y, i) 

[y is reachable from a state from which (o′, p, i′) is reachable]. 
All y must be in X but there may be some x where no such z is in 
b

S
(x, i), so Y ⊆ X.
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Theorem B2. An architecture X with two GAMMs in which both 
GAMMs target the sensory input has more informative policy-
states than an architecture Y with only a GAMM that targets 
the sensory input. Specifi cally, for architecture X let X be the set 
of states from which policy-state (o, p, i + i) is reachable and for 
architecture Y let Y be the set of states from which policy-state (o, 
p, i + i′, o′, i) is reachable. Then Y ⊆ X.
Proof. Let X be the set of states from which (o, p, i + i′) is reachable 
and Y the set of states from which (o, p, i + i′, o′, i) is reachable. 
x ∈ X means A(x) = o and p ∈ b

O
(x, i + i′). y ∈ Y means A(y) = o, 

p ∈ b
O
(y, i + i′) and o′ ∈ b

O
(y, i), and for some z in A−1(o′), z is in 

b
S
(y, i) [y is reachable from a state from which (o′, p, i′) is reach-

able]. All y must be in X, but there may be some x where no such 
z is in b

S
(x, i), so Y ⊆ X.

Theorem B3. An architecture X with a GAMM and a SAM in 
which GAMMs target the SAM and the SAM targets the sensory 
observation has equally or less informative policy-states than an 
architecture Y with only a GAMM that targets the sensory input. 
Specifi cally, for architecture X let X be the set of states from which 
policy-state (o, p, i) is reachable and for architecture Y let Y be 
the set of states from which policy-state (o, m, i,…) is reachable. 
Then X ⊆ Y.
Proof. Let X be the set of states from which (o, p, i) is reachable 
and Y the set of states from which (o, m, i,…) is reachable. Because 
an observation may be considered a zero-step static associate of 
itself, all x from X must also be in Y. However, consider some 
state s where A(s) = o but p is not in b

O
(s, i). If there is some static 

associate m of some other p′ ≠ p in b
O
(s, i) then s is in Y but not 

X. Thus X ⊆ Y.

Theorem B4. An architecture X with a GAMM and a CASRM 
in which the GAMM targets the CASRM (maintaining only the 
retrieved observation and number of steps retrieval is advanced) 
and the CASRM targets the sensory observation has differently 
informative policy-states than an architecture Y with only a GAMM 
that targets the sensory input. Specifi cally, for architecture X let X 
be the set of states from which policy-state (o, p, i) is reachable and 
for architecture Y let Y be the set of states from which policy-state 

(o, (q, j), i, −, −1) is reachable. Then it is not necessarily true that 
either X ⊆ Y or Y ⊆ X.
Proof. Let X be the set of states from which (o, p, i) is reachable and 
Y the set of states from which (o, (q, j), i,…) is reachable, where 
(q, j) is CASRM information. X is the set of states s where A(s) = o 
and p is in b

O
(s, i). Y is the set of states s where A(s) = o and there 

is some state s′ where A(s′) = q, s′ is in f
S
(o, j), and s is in r

S
(s′, o). 

We show that there may be some x not in Y and some y not in X. 
To see this, notice that both X and Y are subsets of A−1(o), but oth-
erwise have independent constraints on membership. For instance, 
y does not constrain the set b

O
(y, i), so it may not contain p and y 

may not be in X. Similarly, x is not constrained by defi nition to be 
in Y. (The packaging example in the main text, Figure 2, is also an 
demonstration of the claim).

Theorem B5. An architecture X with a GAMM and a CASRM in 
which GAMMs target the CASRM and the CASRM targets the 
sensory observation has more informative policy-states than an 
architecture Y with only a GAMM that targets the sensory input. 
Specifi cally, for architecture X let X be the set of states from which 
policy-state (o, p, i) is reachable and for architecture Y let Y be the 
set of states from which policy-state (o, (p, q, j), i, −, −1) is reach-
able. Then Y ⊆ X.
Proof. Let X be the set of states from which (o, p, i) is reachable and 
Y the set of states from which (o, (p, q, j), i,…) is reachable, where 
(p, q, j) is CASRM information (p the cue and q the retrieved obser-
vation). X is the set of states s where A(s) = o and p is in b

O
(s, i). Y is 

the set of states s where A(s) = o, p is in b
O
(s, i) and there is some state 

s′ where A(s′) = q, s′ is in f
S
(o, j), and s is in r

S
(s′, o). We show that 

Y ⊆ X, i.e., there may be some x not in Y. To see this, notice simply 
that Y is defi ned as X with additional constraints on its membership 
and so all y are in X but not necessarily is a given x in Y.
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