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Coupled Noisy Spiking Neurons as Velocity-Controlled
Oscillators in a Model of Grid Cell Spatial Firing

Eric A. Zilli and Michael E. Hasselmo
Center for Memory and Brain, Department of Psychology, and Program in Neuroscience, Boston University, Boston, Massachusetts 02215

One of the two primary classes of models of grid cell spatial firing uses interference between oscillators at dynamically modulated
frequencies. Generally, these models are presented in terms of idealized oscillators (modeled as sinusoids), which differ from biological
oscillators in multiple important ways. Here we show that two more realistic, noisy neural models (Izhikevich’s simple model and a
biophysical model of an entorhinal cortex stellate cell) can be successfully used as oscillators in a model of this type. When additive noise
is included in the models such that uncoupled or sparsely coupled cells show realistic interspike interval variance, both synaptic and
gap-junction coupling can synchronize networks of cells to produce comparatively less variable network-level oscillations. We show that
the frequency of these oscillatory networks can be controlled sufficiently well to produce stable grid cell spatial firing on the order of at
least 2–5 min, despite the high noise level. Our results suggest that the basic principles of oscillatory interference models work with more
realistic models of noisy neurons. Nevertheless, a number of simplifications were still made and future work should examine increasingly
realistic models.

Introduction
Following the initial discovery and characterization of grid cells
in rat entorhinal cortex (Fyhn et al., 2004; Hafting et al., 2005;
Sargolini et al., 2006), a number of models of the spatial firing
properties of these cells were offered. Generally, the mechanisms
of the models fall into two categories: continuous attractors
(Fuhs and Touretzky, 2006; McNaughton et al., 2006; Guanella et
al., 2007; Burak and Fiete, 2009) and oscillatory interference
(O’Keefe and Burgess, 2005; Blair et al., 2007, 2008; Burgess et al.,
2007, 2008; Hasselmo et al., 2007; Hasselmo, 2008) (but see
Gaussier et al., 2007; Kropff and Treves, 2008).

Oscillatory interference models were first used to explain hip-
pocampal place cell phase precession (O’Keefe and Recce, 1993;
Lengyel et al., 2003; Huhn et al., 2005) by combining two oscilla-
tors to produce an interference pattern of activity in the spiking of
a neuron. Grid cell models simply add one or more additional
oscillators to produce a two-dimensional (2D) interference pat-
tern. One oscillator maintains an arbitrary baseline frequency
and the remaining, active oscillators are driven to various fre-
quencies above or below the baseline frequency. The specific fre-
quencies used at each time are based on the animal’s velocity in
different directions through a simple transformation that results in
the phase difference between an active oscillator and the baseline
oscillator encoding one-dimensional (1D) positional information.
Active oscillators maintaining 1D positional information along di-

rections 60° apart produce a regular hexagonal interference pattern
in space.

One prominent criticism of these models (Giocomo and
Hasselmo, 2008; Hasselmo, 2008; Welinder et al., 2008; Burak
and Fiete, 2009; Zilli et al., 2009) is that they are presented in
terms of abstract, perfect oscillators, whereas oscillators in the
brain are noisy and have more complicated dynamics. Zilli et al.
(2009) showed that experimentally measured variability in the
examined biological oscillators was large enough that an oscilla-
tory interference model’s spatial firing would be expected to re-
main stable for a few seconds at best. This strongly supported the
noise criticism, but there are at least two ways for these models to
overcome this problem. One possibility is that sensory cues can
frequently or even constantly reset the grid network (Redish and
Touretzky, 1997; Redish, 1999; Burgess et al., 2007; Samu et al.,
2009). A second possibility, as suggested by Zilli et al. (2009), is
that these individually noisy oscillators may be coupled in vivo,
and through synchronization the network’s oscillations may be
less variable (Manor et al., 1997; Needleman et al., 2001; Ly and
Ermentrout, 2010; Tabareau et al., 2010).

To test the latter solution, we use numerical simulations of
two different neural models and verify that coupled, noisy neural
oscillators can be used successfully in the oscillatory interference
framework. We close with discussion of our assumptions as well
as implications and directions for future study.

Materials and Methods
Computational methods. Simulations were performed in MATLAB
7.0.0.19920 (R14). MATLAB source code to reproduce all figures and to
support many claims labeled preliminary simulations or unpublished
observations is available on ModelDB. Equations of the models were
solved using the forward Euler method with a time step of dt � 0.1 ms
(simple model) or dt � 0.01 ms (biophysical model). Of these two mod-
els, only one was used to model the velocity-controlled oscillators
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(VCOs) in any particular simulation. Preliminary simulations showed
these step sizes were sufficiently small. As our simulations often com-
prised hundreds of cells (15,000 in the largest simulation) and were
up to 320 s long, it was important for processing time that the step size
not be too small. The grid cell itself was modeled as a leaky integrate-
and-fire (LIF), resonate-and-fire, or simple model neuron, and it was
simulated alongside either the simple model or the biophysical model
VCOs, using the same size time step the oscillator model used.

Spike times were determined by comparing the voltage variable with a
fixed value (thresholds of 1 for the LIF model, 1 for the resonate-and-fire
model, �spike for the biophysical model, and a peak value vpeak for the
simple model). For all models, a spike was recorded on the time step
where the voltage crossed the threshold from below (and for the LIF,
resonate-and-fire, and simple models, the voltage was then immediately
set to the reset voltage, as specified below).

To provide two-dimensional trajectories as input for our simulations,
we used experimentally collected rat trajectory data from Hafting et al.
(2005) (available for download at http://www.ntnu.no/cbm/moser/
gridcell). The trajectory data are a set of coordinates, xexp(t) and yexp(t),
sampled at resolution dtexp � 0.02 s (note that some trajectory files seem
to contain multiple, concatenated trajectories separated by a discontinu-
ity). The difference between adjacent position samples was used as the
velocity input to the simulation. Simulations were performed at a finer
temporal resolution than dtexp, so the velocity signals were linearly inter-
polated, producing velocity signals vx(t) and vy(t).

To adjust the smoothness of the trajectory, vx(t) and vy(t) were bidi-
rectionally (in time) low-pass filtered with a third-order Butterworth
filter at 0.4 Hz (an arbitrary value controlling the smoothness of the
trajectory). Most of our 2D simulations used the filtered velocity input, as
the unfiltered velocity results were often poorer in comparison. Which of
the two cases is more realistic is unclear, as the experimental trajectory
recording likely contains high-frequency jitter from the video tracking
system and the vestibular and proprioceptive systems of the animal
themselves may also act to low-pass filter their acceleration or velocity
signals to prevent small movements of the head from being path inte-
grated. From the trajectory, we can calculate two spatial functions that
are of frequent interest: speed, s(t) � ��vx(t)dt] 2 � [vy(t)dt] 2; and di-
rection �(t) � atan[vy(t)/vx(t)], where atan is the four quadrant arctan-
gent. Filtering decreases the velocity of the trajectory. For example, in
320 s of trajectory prepared in this manner, the mean (peak) instanta-

neous speed is 22 cm/s (89 cm/s) in the unfil-
tered trajectory compared with 17 cm/s (49
cm/s) in the filtered trajectory.

Our simulations required knowing the fre-
quency response, F( I), of the oscillator cell or
network to current injections. In most cases,
F( I) was calculated numerically using input
magnitudes at fixed intervals to produce a res-
olution of �0.02 Hz over ranges of at least 4 Hz
and other values were linearly interpolated. For
the n � 5000 case, a resolution of �0.15 Hz was
used. A range of 4 Hz was needed because we
used � � 2 Hz/(m/s) (see below) and allowed
for a maximum instantaneous velocity of 1
m/s, thus requiring 2 Hz above and below the
baseline frequency. When the networks com-
prised noisy neurons, the measured F( I) curve
became noisy, which imposed a maximum
level of accuracy (Fig. 1 A, black line, uncou-
pled noisy cell).

We also simulated abstract VCOs �i and
grid cells using a common form of the oscilla-
tory interference model (Eq. 1). The abstract
model was simulated using the forward Euler
method using the same time resolution as our
network model (which depended on the neural
model in use). Each abstract VCO’s state was
characterized by its phase �i evolving at a time-
varying frequency, fi(t) � �b � �s(t)cos[�i �
�(t)], which was a function of speed, s(t); body

direction �(t); and each VCO’s preferred direction �i.
A quantitative measure of the phase of the network oscillators was

desired, but translating the state of a neuron into the corresponding
phase is not a trivial task and translating the state of a network of coupled
neurons into a population phase is harder still. Generally, each point in
the neuron’s state space can be identified with an asymptotic phase
(Izhikevich, 2007), but finding the phase of an arbitrary point is compu-
tationally intensive. Instead of identifying phases in this manner, we
simulated an abstract VCO �i alongside each network VCO Vi. The
frequency of �i was set on each time step to fi(t), as given above. In
theory, if Vi is also at frequency fi(t) at time t and if Vi and �i are at phase
0 at time 0, then �i and Vi will always be at the same phase at any time and
we can use the phase of �i as a measure of the phase of Vi. In reality, Vi’s
frequency will not be perfectly controllable, so the difference in phase
between �i and Vi is a measure of the phase error Vi has accumulated. We
recorded this error (the difference in phases) each time any cell in Vi

emitted a spike.
Inaccuracies in F( I) can be particularly noticeable in the phase differ-

ences between baseline oscillators because these both maintain a constant
frequency, which should be identical. If a network oscillator’s frequency
is slightly different from the abstract VCO’s frequency due to F( I) inter-
polation, the phase difference will show an apparent linear drifting error
that does not actually affect the network model. We avoided this cosmetic
problem by specifically selecting the baseline frequency as one of the
points of the measured F( I) curve so that no interpolation was needed.
This ensured the abstract and network oscillators were truly operating at
identical frequencies at baseline.

Model description. Our model is summarized in Tables S1–S7 (param-
eters in Table 1) following the good model description practices sug-
gested by Nordlie et al. (2009). The architecture of the model is
summarized in Figure 2.

Our network oscillatory interference model is composed of a single cell
G (the grid cell itself), which receives input from one or more (generally
three) oscillatory networks Vi, 0 � i � nVCO, which are identical apart
from their inputs. V0 will often be called the baseline network oscillator.

Cells within each network Vi are recurrently coupled all-to-all (no
self-connections) by identical synapses or gap junctions of strength g
(except in one simulation where the connectivity probability is p �
0.01 and all Vi use the same connectivity matrix for reasons of com-

A B C

Figure 1. Firing frequency versus input current for individual and networks of simple model cells. A, The firing frequency
of an individual cell without noise (light gray) is very similar to the response of an individual noisy cell (black), but even
more similar to a network of 250 noisy, gap-junction-coupled neurons (dark gray). For clarity, an inset with an expanded
y-axis is shown. B, A network of 250 noisy, synaptically coupled neurons fires at much lower frequencies than any of the
cells in A for the same input magnitude. The entire F( I) curve also moves downward as the synaptic coupling strength g is
increased ( g � 192, light gray; g � 256, dark gray; g � 384, black) (compare with supplemental Fig. S4 A, available at
www.jneurosci.org as supplemental material). C, Since the firing rate, f, is directly related to velocity, v, v � ( f � �b)/�,
the inverse of the F( I) curve (shown for the synaptically coupled network) describes the input an oscillator network requires
to encode different velocities along its preferred direction. General parameters: 15 s simulations and see Table 1. Single
unit: n � 1, w � 1.2, � � 0, or � � 100. Gap-junction coupling: n � 250, w � 0.0048, � � 100. Synaptic coupling: n �
250, w � 0.0048, � � 100, �b � 6.4405 Hz.
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putational efficiency). The cells in each Vi are the only cells that
receive external input or noise. All cells in each Vi also project onto G
with identical synapses of strength wi. When synapses from all net-
works have the same strength (i.e., wi � wj for all i, j), the weight is
simply referred to as w for conciseness. Importantly, the networks Vi

are not coupled to each other, to prevent them from synchronizing
with each other (a problem for single-cell oscillatory interference
models) (Remme et al., 2009).

G is generally modeled as a leaky integrate-and-fire neuron character-
ized by its membrane time constant �. The threshold of the cell is 1, and
after a spike its voltage is reset to 0. We also considered a modification
where oscillator V0 is assumed to have a privileged connection onto G
such that inputs from any other oscillator Vi, i � 0, have no effect unless
they occur in a tgate second window after any spike from a cell in V0. Thus,
a gate that allows inputs from the other Vi networks to reach G’s soma is
opened only briefly after the baseline oscillator fires (Ang et al., 2005;
Jarsky et al., 2005).

Alternatively, we sometimes modeled G as a resonate-and-fire neuron
(Izhikevich, 2001). The model is the simplest model of resonance: the
subthreshold dynamics are a two-dimensional linear time-invariant sys-
tem with a pair of complex conjugate eigenvalues, cres � �res �	 1 with
negative decay rate (cres 	 0) and with resonant frequency �res. The
model can be interpreted as a linearization of a resonant biophysical
model (Izhikevich, 2001). The 2D state of the neuron can be written as a
single complex number. The real part of the neuron’s state is thresholded as
a spiking mechanism. When the real part of the state crosses from 	1 to 
1,
a spike is emitted and the state of the neuron is reset to �	 1. Note that in
the original model (Izhikevich, 2001), the imaginary part of the state would
be thresholded, which prevents large inputs from immediately causing the
cell to fire (but this was desired here).

Finally, for the simulation using inhibitory synapses onto G, we mod-
eled G as a simple model (Izhikevich, 2003, 2007) neuron that receives a
current injection to fire continuously. The dynamics of the simple model
describe a neuron’s action potential upstroke and its subthreshold and
postspike behavior. The action potential downstroke is modeled explic-
itly by resetting the membrane potential to a specified value when it
reaches a peak value (the peak of an action potential, not a firing thresh-
old). After each spike, the recovery variable is incremented by a fixed
amount. This increment represents the build-up of slow currents during
the action potential. Our implementation of this model was based on the
MATLAB code given in Izhikevich (2007).

Networks Vi are usually modeled as sets of identical simple model
neurons with an extra additive voltage noise term. Since discontinuities
(like the action potential downstroke) can affect synchronization prop-
erties (Teramae and Tanaka, 2004) and other approximations made in
the simple model may affect our results, we repeated some of the simu-
lations with a biophysical model.

The biophysical model of an entorhinal cortical layer II stellate cell
uses parameters from Acker et al. (2003) but with an additive noise term
(instead of their stochastic persistent sodium channel model) and delta-
current synapses (instead of their AMPA synapse model). This model of
entorhinal cortex layer II stellate cells contains standard spiking sodium
and potassium channels as well as a noninactivating persistent sodium
current and a two-component (fast and slow) H current (Fransén et al.,
2004) thought to play a large role in the stellate cell subthreshold dynam-
ics (Magistretti and Alonso, 1999, 2002; Dickson et al., 2000). We de-
creased the conductance densities in the model (by increasing Cm) to
slow the firing frequencies such that the model could fire at 5 Hz, as
needed to match biological noise levels as described below.

All cells in network Vi receive the same scalar input signal IVel,i(t) as a
current injection (each network has its own input signal). The magnitude
of the input at any time is calculated in terms of the desired population
frequency of Vi. Given a desired frequency fi, defined above, and the
frequency response of the network to a given input, F(IVel,i), the input to
all cells in network Vi is IVel,i(t) � F �1( fi).

The primary output measure of the model is the firing of cell G. When
a single network V0 drives G (using G as an indirect measure of the
behavior of V0), the mean 
 and SD � of the interspike intervals (ISIs) of
G are measured. In case G fires a burst of spikes in response to sustained
inputs, ISIs 	50 ms long are collapsed into one long ISI, which represents
the interval between first spikes of each burst (e.g., consecutive ISIs of
length 100, 7, and 90 ms become a pair of ISIs of 100 and 97 ms). This
easily allows synchronous population activity in the VCO to be mea-
sured. Henceforth, when the mean or variance of the periods of a VCO

Table 1. Default parameters

Name
Default value
(if not specified) Description

n 1 Number of cells per oscillator network
P 1 Connectivity probability in oscillator networks
� 0 Standard deviation of voltage noise term
g 0.1, 256 Vi internal gap junction or synaptic conductance, respectively
� 4.5 ms Time constant of cell G
wi 0.04 Synaptic weight from neurons in Vi onto G
tgate 0.04 s Duration of baseline gating effect on G
cres �0.01 1/s Decay rate in resonate-and-fire model
�res 7 Hz Resonant frequency in resonate-and-fire model
� 3 Abstract grid cell model threshold
�b 7 Hz Baseline oscillator frequency
� 2 Hz/(m/s) Term giving grid field spacing by relating velocities to

oscillator frequencies
C 100 Capacitance-like term in simple model
vr �60 Resting potential in simple model
vt �40 Spiking threshold in simple model
vpeak 35 Action potential peak in simple model
a 0.03 Recovery variable rate in simple model
b 2 v– u coupling in simple model
c �50 Post-spike membrane potential in simple model
d 100 Recovery variable increment during an action potential in

simple model
k 0.7 Voltage variable rate in simple model
�GABA 15 ms Inhibitory synapse exponential decay time constant
nVCO 0 Number of active oscillators in network simulation (not

counting baseline)
Cm 5 
F/cm 2 Membrane capacitance in biophysical model
gNa 52 mS/cm 2 Sodium current conductance
gNaP 0.5 mS/cm 2 Persistent sodium current conductance
gK 11 mS/cm 2 Potassium current conductance
gH 1.5 mS/cm 2 H current conductance
gL 0.5 mS/cm 2 Leak current conductance
ENa 55 mV Sodium ion reversal potential
EK �90 mV Potassium ion reversal potential
EH �20 mV H current net reversal potential
EL �65 mV Leakage reversal potential
�spike 20 mV Threshold for biophysical model spike detection

Figure 2. Architecture of the model. The input to the model is a set of nVCO � 1 velocity
signals, Veli. These signals go to respective networks Vi that are all-to-all internally coupled over
connections Ci, which may be either synapses or gap junctions. The grid cell G receives input over
synapses Ci,G from all cells in all Vi.
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zzare referred to, we mean the corresponding
statistic of the spikes emitted by G. We can use
these statistics to evaluate how well oscillators
will perform in the oscillatory interference
model. Zilli et al. (2009) derived an expression
for the estimated stability of a grid pattern as a
function of the mean and variance of the peri-
ods of a noisy oscillator. Using the approxima-
tion that noise results in oscillator period
durations independently drawn from a normal
distribution with mean 
 and SD � (in sec-
onds), the estimated stability time formula t �
5
 3/(4��) 2 gives the number of seconds until
a grid cell is no longer likely encoding the cor-
rect spatial location. This is derived by noting
that the difference in lengths of periods of two
identical but noisy oscillators at the same fre-
quency has twice the variance 2� 2 of the length
of a period of either oscillator, and the differ-
ence in lengths of n consecutive (independent)
periods has the variance 2n� 2. The variance is
converted from units of seconds 2 to radians 2

(2n� 2(2�) 2/
 2 radians 2) and the estimated
stability time is the amount of time for the vari-
ance to hit a threshold of 2.5 radians 2 (for fur-
ther details, see Zilli et al., 2009).

When two or more networks Vi drive G, the
inputs to Vi represent a spatial trajectory, and a
primary measure is the set of spatial positions
where G emits spikes. The spatial autocorrela-
tion of the firing positions was calculated nu-
merically in MATLAB by binning the spike
positions using the hist3 function, then calcu-
lating the autocorrelation by taking the two-
dimensional convolution of the histogram
with itself (using the conv2 function with the
same option). A final measure commonly used
is the phase difference between a network os-
cillator Vi and the corresponding abstract, ide-
alized oscillator �i, as described above.

The parameters of the model are summa-
rized in Table 1, where default values are given
(where a simulation uses a different value, it is
given in the text or figure caption). The param-
eters of the simple model neurons (C, vr, vt,
vpeak, a, b, c, d, k) correspond to a resonant
regular spiking neuron (e.g., a cortical pyrami-
dal cell), as given in Izhikevich (2007) (the
original model had b 	 0, which we negated to
get a resonant model). The biophysical model
parameters were taken from Acker et al.
(2003), with Cm increased as shorthand for
proportionally decreasing all ionic conduc-
tances. The noise level � was selected to phe-
nomenologically match experimental data
(supplemental material). As the noise � in-
creases, the number of cells n may need to in-
crease and coupling strength g may need to
change to maintain synchronization. The base-
line frequency �b was set to a frequency near
the middle of the measured F( I) curve at a cur-
rent value where the exact frequency is known.
For the LIF model, the time constant � and
synaptic strength w (and tbase when used) were
adjusted to ensure all VCOs fired at nearly the
same time, which is need in order for G to fire,
and there was a range of � and w that produced
similar results (possibly changing the size of the
fields themselves, up to the point of firing oc-

Figure 3. Two-dimensional grid cell with oscillators comprising single, noise-free simple model neurons. A, The network
receives velocity input corresponding to a smooth two-dimensional trajectory (gray) and a leaky integrator postsynaptic
cell generates spikes (black) as output. B, The autocorrelogram of the spatial firing in A shows the clear hexagonal pattern
characteristic of grid cells. C, D, A simulation of the abstract model produces essentially identical results to A and B apart
from spatial displacement and difference in field size. E, F, Phase differences between simple model and abstract model of
the two active velocity-controlled oscillators show a linear drift over time, and the fluctuations correspond to the velocities
along the preferred directions of the respective VCOs. E, Black line, For comparison, the horizontal component of velocity
that is encoded by VCO 1. G, The baseline oscillators accumulate no phase error in this noiseless simulation. Parameters:
320 s simulation, nVCO � 2 (active VCO preferred directions of 0 and 2�/3 radians), n � 1, � � 40 ms, w0 � 0.8, w1 �
0.14, �b � 7.8989 Hz; Table 1.

Figure 4. Noisy simple model neurons, when uncoupled, are unfit as oscillators. A, C, The network receives velocity input
corresponding to a smooth two-dimensional trajectory (gray), and the locations where the simulated grid cell spikes over
the entire 320 s (A) and first 80 s (C) are indicated with black dots. B, D, The autocorrelogram of the spatial firing shows no
clear regularity, even early in the simulation. E–G, Phase differences between corresponding oscillators show that realis-
tically noisy neurons lose their correct phases very quickly compared with behavioral timescales. Parameters: 320 s
simulation, nVCO �2 [active VCO preferred directions of 0 and 2�/3 radians], n�1,��100,��40 ms, w0 �0.8, w1 �0.14,�b �
7.8989 Hz; Table 1.
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curring at all or no locations). For the resonate-
and-fire model, the decay rate cres was selected
similarly, and the resonant frequency was
�res � �b. Note that when cres 		 0, the cell is
essentially nonresonant, so we kept cres � 0 to
focus on the case where resonance may play a
large role. The velocity-to-frequency slope �
controls grid spacing as well as the range of
frequencies of the F( I) curve that must be cal-
culated. We used � � 2 Hz/(m/s), the mean
value of � for theta frequency oscillations in
entorhinal cortex layer II stellate cells (Jeewajee
et al., 2008).

Initial suggestions linked grid cells to the
membrane resonance of entorhinal cortex
layer II stellate cells (Giocomo et al., 2007).
Both our biophysical and simple model param-
eterizations are also resonant; however, as no
current evidence specifically implicates ento-
rhinal cortex layer II stellate cells (or resonance
in general) in the generation of the grid pat-
tern, preliminary simulations of many of these
results were also tested with the networks Vi

comprising simple model neurons parameter-
ized as integrators instead of resonators (set-
ting b � �2) and all tested results were
reproducible with that model. Generally, both
types of neurons are found in all regions. Res-
onant cells in the medial temporal lobe also
include, for instance, CA1 pyramidals (Leung
and Yu, 1998; Hu et al., 2002, 2009) and inter-
neurons (Chapman and Lacaille, 1999), cells in
lateral and basolateral amygdala (Pape et
al.,1998), and 
80% of layer II parasubicular
neurons (including principal stellate and pyra-
midal neurons in addition to interneurons)
(Glasgow and Chapman, 2007). Cells reported
to be nonresonant (integrators) include non-
stellate cells in entorhinal cortex layer II
(Alonso and Klink, 1993; Haas and White,
2002; Erchova et al., 2004) and pyramidal
cells in entorhinal cortex layer III (Erchova et
al., 2004). However, conclusions regarding
resonance drawn from in vitro experiments
may not always correspond to in vivo behav-
ior (Fernandez and White, 2008; Prescott et
al., 2008).

Results
Oscillatory interference
Our oscillatory interference model was
composed of one baseline oscillator V0,
which maintained a constant frequency
and a number of active oscillators Vi, i �
1, which changed their phase relative to
the baseline oscillator to encode posi-
tional information. The simulated ani-
mal’s body velocity input changed the
oscillators’ frequencies slightly above or
below the baseline frequency such that the
set of locations where any single active os-
cillator was in phase with the baseline os-
cillator formed a set of parallel bands in
the environment (though these bands do
not appear as spiking in this model).

The function of the model is easily
demonstrated using the abstract version

Figure 5. ISI histograms for cells in three conditions. A, ISIs of an uncoupled, noisy simple model neuron are much more
variable than when multiple cells are coupled (as in B and C). B, ISIs of one noisy neuron from a network of 250 gap-
junction-coupled neurons. C, ISIs of one noisy neuron from a network of 250 synaptically coupled neurons. D, ISIs of a LIF
cell driven by the cell in A. The histograms are identical, showing that the postsynaptic cell directly inherits the variability
of the cell driving it. E, ISIs of an LIF cell receiving input from all 250 gap-junction-coupled neurons. The variability of
individual gap-junction-coupled neurons is very similar to the variability of the postsynaptic cell. F, ISIs of an LIF cell
receiving input from all 250 synaptically coupled neurons. The individual cells (C) are noticeably more variable than the
postsynaptic cell (and see Fig. 8 for a more extreme case). Parameters: 60 s simulations, n � 1 (w � 1.2) or n � 250 (w �
0.0048), � � 100; Table 1.

Figure 6. Two-dimensional grid cell with network oscillators made of noisy, synaptically coupled simple model neurons. A, The
network receives velocity input corresponding to a smooth two-dimensional trajectory (gray) and a gated, leaky integrator
postsynaptic cell generates spikes (black). B, The autocorrelogram of the spatial firing in A shows hexagonal periodicity. Parame-
ters: tgate � 0.001 s, � � 5 ms, w � 0.0016. C, D, The spatial firing and spatial autocorrelogram of the same network but with a
resonant postsynaptic cell. Parameters: cres � �0.01, �res � �b, w0 � 0.0024, w1 � w2 � 0.002. E–G, Phase differences
between network and abstract models of the two active velocity-controlled oscillators. The average of the phase differences
remains relatively constant, although individual cells are firing over a much wider range of phases compared with when the cells
are instead gap-junction-coupled. General parameters: 280 s simulation. nVCO � 2 [active VCO preferred directions of 0 and 2�/3
radians], n � 250, � � 100, �b � 7.2543 Hz; Table 1.
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(Burgess et al., 2007), where the VCO phases evolve according to

d�i/dt � 2��b � 2��s(t)cos[�i � �(t)],(i � 1) (1)

and

d�0/dt  2��b. (2)

We define fi(t) � �b � �s(t)cos[�i � �(t)], the desired frequency
of oscillator i at time t, as a function of velocity at time t (s and �)
and preferred direction �i. Notice in Equations 1 and 2 that the
phase difference �i � �0 changes at frequency �s(t)cos[�i �
�(t)] Hz. If the animal moves in direction �i at s(t) � 1 m/s and
if � � 1 Hz/(m/s), the phase difference will oscillate at frequency
�s(t) � 1 Hz. If the phase difference is initially 0, the phase dif-
ference will return to zero each 1 m the animal walks (like a digit
in an odometer rolling over). If the animal were to move at s(t) �
2 m/s then the phase difference would oscillate at �s(t) � 2 Hz
and so the phase difference will still return to zero each 1 m the
animal walks. In fact, this is true for any 1D trajectory s(t). If � �
2 Hz/(m/s), then the phase difference will return to zero each
1/2 m (generally each 1/� m), so � acts to set the distance in
space over which the phase difference repeats.

The abstract grid cell is then said to fire if �1�i�nVCO(cos�0 �
cos�i) exceeds a threshold �. Each term in the sum represents the
readout via an interference mechanism of the respective phase
differences, and the model fires when all of these phase differ-
ences are near 0. When the directions �i are separated by 60°

increments (and are not all colinear), the
phase differences all equal 0 at positions
that are hexagonally arrayed.

Three neighboring fields form an equi-
lateral triangle where the distance from
the base of the triangle to the opposite ver-
tex is 1/� m. By trigonometry, the distance
between neighboring fields is then � �
2/(3�) m. This model is thoroughly de-
scribed in a number of previous publica-
tions (Burgess et al., 2007; Giocomo et al.,
2007; Burgess, 2008; Hasselmo, 2008) and
further details can be found there.

Single cell oscillators
In Figure 3, noiseless simple model neu-
rons are used as single-cell VCOs (Bur-
gess, 2008). For computational efficiency,
this manuscript focuses on the case of two
active VCOs at angles 0° and 120°, al-
though preliminary simulations suggest
our model is successful when nVCO � 4
(three active VCOs at angles 0°, 120°, and
240°). On each time step of the simula-
tion, the instantaneous velocity inputed
along the directions 0° and 120° set the
frequency of the active oscillators (via the
F( I) curve) (Fig. 1A) so that the phase dif-
ference changed to represent the distance
traveled during that time step. At the posi-
tions where the oscillators were all in phase,
the postsynaptic cell G was receiving maxi-
mal input.

In Figure 3, input from the baseline os-
cillator neuron V0 is made particularly
strong and the inputs from the two active
oscillators V1 and V2 are scaled so that a

single input is subthreshold and both inputs must occur shortly
after the baseline input to push G over threshold. If all synaptic
weights were equal, G would produce either tiny or asterisk-
shaped fields (Burgess, 2008, his Figs. 7 and 8) with lines extend-
ing along directions where subsets of VCOs are in phase. Burgess
(2008) used a multiplicative baseline sinusoid to solve this prob-
lem, and our comparatively stronger baseline input is an alterna-
tive solution. With the strong baseline, the firing fields of the
grids become triangular in shape, as seen in Figure 3, A and B.

Despite the unusual shape, the hexagonal spatial pattern com-
pares well to the output of the abstract version of the model
shown in Figure 3, C and D. The phase error between respective
neural and abstract oscillators, a quantitative measure of perfor-
mance, is plotted in Figure 3, E–G. The near-flatness of the lines
shows that the neural model here is performing almost perfectly.
The slight fluctuations in phase errors of a VCO are closely re-
lated to its velocity input, as shown by the superimposed velocity
signal in Figure 3E. These fluctuations are much larger when the
input is an unsmoothed spatial trajectory (supplemental Fig. S1,
available at www.jneurosci.org as supplemental material).

The similarity of the phase difference error to the velocity
input suggests a relationship between changes in the input and
changes in the phase error. In fact, it is a general property of
neurons that changes in input produce transient, history-
dependent changes in the F( I) relation (supplemental text and
supplemental Figs. S2, S3), which we refer to as adaptation. For

A

B

C

Figure 7. Combining the activity of multiple synaptically coupled oscillators. A, Voltage traces of single neurons from V0 (black),
V1 (light gray), and V2 (dark gray) in the first 4 s of the trajectory shown in Figure 6. B, The neurons in A project onto an
integrate-and-fire neuron where cells in V0 do not produce activity, but instead open a gate allowing cells in V1 and V2 to produce
depolarization and sometimes spikes (black). Parameters: tgate � 0.001 s, �� 5 ms, w � 0.0016. C, The neurons in A project onto
a resonate-and-fire neuron with resonant frequency equal to the baseline frequency. Parameters: cres � �0.01, �res �
�b, w0 � 0.0024, w1 � w2 � 0.002. General parameters: nVCO � 2 (active VCO preferred directions of 0 and 2�/3
radians), n � 250, � � 100, �b � 7.2543 Hz; Table 1.
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example, changing I to a level at which the
neuron should fire at 7 Hz actually results
in a brief period of slightly higher or lower
frequency, which will introduce a small
phase error. This error can be minimized
by reducing � to reduce the range of VCO
frequencies. However, decreasing � will
also increase the relative impact of noise-
related VCO frequency fluctuations. Ad-
ditionally, the grid spacing � � 2/(3�)
is a function only of �, as shown above, so
the spacing cannot be held constant as � is
varied, meaning these opposing pressures
on � directly correspond to pressures on
grid spacing.

On the single cell level, however, the
effects of noise are far greater than the ef-
fects of adaptation. A simulation using
single, noisy cells as oscillators (Fig. 4)
completely failed to produce the grid pat-
tern. The intrinsic noise level used in this
and subsequent simulations was selected
(see supplemental material) so that an un-
coupled simulated cell had the same ISI
mean and variance as the persistent spik-
ing cell with the median estimated stabil-
ity time from Zilli et al. (2009). An
example ISI histogram of a simple model
cell with this noise level is shown in Figure
5A. From the phase errors in Figure 4,
E–G, it is clear that the oscillators lose
their correct phase relative to the baseline
almost immediately. This result was ex-
pected on the basis of previous noisy sim-
ulations (Burgess et al., 2007; Giocomo
and Hasselmo, 2008) and is consistent
with the estimated time scale for the level
of noise used (Zilli et al., 2009).

Network oscillators
Because coupling can reduce the period
variance of noisy oscillators as a network
(Needleman et al., 2001) and individually
(Ly and Ermentrout, 2010), we investi-
gated whether networks of coupled, noisy oscillators could play
the role of VCOs. For both synaptic and gap-junction coupling,
we found that n � 250 all-to-all connected, noisy, simple model
cells (coupling strengths g � 256 and g � 0.1, respectively) pro-
duced synchronized populations with acceptably low period
variance of the network as a whole and the individual units (for
the effects of varying important parameters, see supplemental
material and supplemental Fig. S4, available at www.jneurosci.
org as supplemental material). We can measure the F( I) curves of
these networks (Fig. 1), then drive the network to fire at any
desired frequency, just as with the single cell VCOs.

Three synaptically coupled networks, one acting as a baseline
oscillator, together produce the simulation output shown in Fig-
ure 6. A voltage trace of one neuron from each Vi is shown in
Figure 7, along with the activity of the gated LIF cell simulated in
Figure 6, A and B, and a resonate-and-fire cell shown in Figure 6,
C and D. Both types of postsynaptic cell produced reasonable
hexagonally arrayed firing. The blurring directed along the pre-
ferred direction of V2 is consistent with the phase errors in V1

(Fig. 6E) but not V0 and V2 (Fig. 6F,G) as expected from previous
analysis (Zilli et al., 2009). This simulation using synaptically
coupled cells is similar to that of Hasselmo (2008), where the
persistent spiking input was assumed to come in population
bursts, shown here in Figure 7. Here the bursts are caused by
strong synaptic coupling, as the neural model does not burst
when uncoupled (supplemental Fig. S5, available at www.
jneurosci.org as supplemental material) or when less tightly syn-
chronized (Fig. 8A).

Instead of using synaptic connections, successful performance
also occurs if the cells in the VCOs are coupled through gap
junctions. Supplemental Figure S6 (available at www.jneurosci.
org as supplemental material) shows the same simulation but
with gap-junction coupling instead of synaptic coupling, and a
voltage trace of one cell from each Vi and G are plotted in supple-
mental Figure S7 (available at www.jneurosci.org as supplemen-
tal material). Achieving large fields proved difficult with the
resonate-and-fire model with a low damping constant, but was
successful with the gated, integrate-and-fire cell. When gap-

Figure 8. A large network oscillator with a low connection probability can produce low-variance network oscillations while
individual cells remain highly variable. A, Voltage trace over a short period of time of one of 5000 cells in a network where there is
a 1% probability that any cell X connects to any other cell Y. The firing is irregular and the effects of noise are clear. B, Activity of
postsynaptic integrate-and-fire cell receiving input from all 5000 oscillator cells including the one in A. The inputs to the postsyn-
aptic cell are fairly spread out in time during each period so the cell fires in a burst. Comparing A to B, it can be seen that an
individual cell will change its time of firing relative to the rest of the population on a cycle-by-cycle basis. C, A histogram of the ISIs
of the postsynaptic cell from B shows that the period between bursts is highly consistent (period SD, 0.0008 s) despite the irregular
inputs. This allows the oscillator to be used successfully in full spatial grid simulations (Fig. 11). D–H, ISI histograms for five cells in
the network oscillators show the same mean ISI as the postsynaptic cell but much larger variability. The median period SD over all
5000 cells was 0.015 s, �20 times that of the postsynaptic cell in B and approximately half of the period SD of the uncoupled cells.
Parameters: 10 s simulations, I � 95.8, n � 5000 cells, w � 0.0006, 1% connectivity; Table 1.
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junction coupled, the cells did not burst and the smaller range of
spiking phases (compared with synaptically coupled cells) may
have a role in the increased difficulty we found in achieving larger
fields.

The lack of excitatory recurrent connections in entorhinal
cortex layer II (Dhillon and Jones, 2000; Couey and Witter, 2010)
suggests that the oscillators may be inhibitory interneurons (if the
oscillators are located there). To test this theory, we modeled the
Vi neurons as gap-junction-coupled inhibitory neurons and G as
a simple model neuron driven to fire at the baseline frequency.
The inhibition from Vi onto G is modeled as an exponentially
decaying input. As shown in Figure 9, when the VCOs are out of
phase, G is tonically inhibited, but when the VCOs are in phase
(in a grid field) there is a long enough window between the in-
hibitory inputs that the cell can fire, and it produces the charac-
teristic field spacing as a result.

Though the simple model is an excellent approximation of the
subthreshold dynamics of biophysical models, it is worth verify-
ing our results with a relatively more realistic model. In Figure 10,
we show the results of a simulation where the VCO networks are
now composed of noisy biophysical neurons (with currents INa,
IK, INaP, IH fast, and IH slow). The output of this simulation is at least
as good as the previous simulations.

In physiological experiments, it is usu-
ally only feasible to record from very few
cells at any time, so it is worth considering
how the ISI statistics of individual cells in
a synchronized VCO network relate to the
ISI statistics of the network itself in these
simulations. In Figure 5, ISI histograms
are shown for an uncoupled cell com-
pared with cells from coupled networks
and the variability-reducing effect of
synchronization is particularly clear (Fig.
8). The simulated histogram in Figure 5A
is comparable to the experimental sub-
threshold oscillation period histograms
in Giocomo and Hasselmo’s (2008) sup-
plemental Figure S5A (available at www.
jneurosci.org as supplemental material).
For synchronized gap-junction-coupled
neurons, Figure 5, B and E, individual
neurons had essentially identical statistics
to the network as a whole. When neurons
were synaptically connected, individual
neurons also tended to have similar peri-
ods to the network as a whole, but individ-
ual cells had a higher variability (larger ISI
SD) (Fig. 5C,F). However, if the level of
connectivity in the network is much
lower, the network as a whole can produce
low-variance oscillations even though the
individual cells in the network show con-
siderable ISI variance (Fig. 8). These
sparsely coupled oscillators can still be
used successfully in the model (Fig. 11).
Thus, the observation of irregular firing in
vivo does not rule out highly regular
population-level oscillations.

However, coupling is not helpful
against all forms of noise. With as little as
5% of the total noise variance correlated
across all cells in one network, prelimi-

nary simulations of a network of 250 gap-junction-coupled sim-
ple model neurons showed an order of magnitude decrease in
stability times compared with the case of each cell receiving the
same total level of fully independent noise. In fact, a network of
2500 gap-junction-coupled simple model neurons with 5% of the
total noise variance correlated (and 95% independent) has ap-
proximately the same variability as a single cell with a noise vari-
ance at only 5% of � 2, the value matched to the experimental
data, clearly demonstrating the inability of coupling to correct
this type of noise. We used independent noise sources in our
simulations to avoid this problem, although realistically there is
likely to be some unknown degree of correlation. This problem is
an important point for future work, as it could potentially be a
fundamental flaw with this approach.

Overall, our simulations suggest that a variety of realistic
mechanisms can implement an oscillatory interference model,
despite large amounts of independent noise in individual
oscillators.

Discussion
We demonstrated that neural oscillators with realistic levels of
noise can be coupled to produce network oscillations with less
variability than the individual, uncoupled oscillators and that the

Figure 9. Inhibitory noisy simple model neurons as oscillators. A, The network receives velocity input corresponding to a
smooth two-dimensional trajectory (gray) and a spontaneously spiking simple model postsynaptic cell generates spikes (black). B,
The autocorrelogram of the spatial firing in A demonstrates clear hexagonal periodicity. C, Voltage traces of single cells from
gap-junction-coupled networks V0 (light gray), V1 (dark gray), and V2 (black). D, The cells in each Vi project with inhibitory synapses
onto a simple model cell firing at �b. When the Vi are out of phase, the cell is tonically inhibited, but when the Vi move into phase,
there is enough time for the cell to fire between volleys of inhibition. Parameters: 320 s simulation, nVCO � 2 (active VCO preferred
directions of 0 and 2�/3 radians), n � 250, � � 100, �b � 8.9735 Hz, w0 � �3.2, w1 � w2 � �0.76; Table 1.
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individual oscillators in a network may or may not show this
reduction in variance. We then showed that the frequency of such
an oscillatory network can be controlled to an acceptable but not
perfect level of accuracy. Finally, multiple such oscillatory net-
works can be combined to produce grid cells with spatial firing
that is relatively stable on behavioral timescales. In particular, the
oscillator networks may be either gap-junction or synaptically
coupled and both excitatory and inhibitory oscillator neurons
can be used. We also showed that stable two-dimensional grids
can be generated using biophysical model neurons, suggesting a
wide range of neural models might successfully play the role of
the oscillators in this model.

Previous oscillatory interference models that divided the os-
cillators among multiple cells (Burgess et al., 2007; Burgess, 2008;
Hasselmo, 2008) assumed the postsynaptic cell G integrated its
inputs, despite G often being identified with a resonant cell type:
entorhinal cortex layer II stellate cells (Alonso and Klink, 1993;
Giocomo et al., 2007). The distinction between resonators and
integrators is a fundamental one that relates to the dynamics of
the excitability of the neuron and affects the behavior of the cell in
many ways (Izhikevich, 2007). Our present results suggest the
oscillatory interference models might also work when the inter-
ference occurs in a resonant cell, supporting that previously un-
tested assumption. It is interesting that the spiking of the
resonate-and-fire cell in our simulations often occurred on
alternate cycles (Fig. 7C, supplemental Fig. S5D; but see sup-
plemental Fig. S7C, available at www.jneurosci.org as supple-
mental material), similarly to reports in ventrally located grid
cells (Deshmukh et al., 2009).

We have made no explicit claims about the anatomical loca-
tion or cell type of the oscillator networks or the grid cell proper.
In principle, both parts of the model could be anywhere upstream
of entorhinal cortex layer II (ECII), where the strongest grid sig-
nal to date has been found. In ECII, there is a dorsoventral gra-
dient of grid field spacing and it is worth considering how this
may relate to the model. In the present model, the intrinsic prop-
erties of the grid cell G do not affect the spacing of the grid fields.
Instead, the spacing depends on the velocity-to-frequency trans-
formation performed by both the velocity inputs and the oscilla-
tor networks. One possibility is that there are separate velocity
signals for each VCO spatial scale. Alternatively, a single output
signal might go to all VCO networks and a difference in spacing
would come from changes in the F( I) slope (shallower ventral)
over the range of velocity signal levels. One way to decrease the
slope (increase spacing) consistent with the dorsoventral gradi-
ent along ECII (Hafting et al., 2005) is to increase the synaptic
coupling in the network (Fig. 1B), which is consistent with in-
creased temporal summation of EPSPs in ventral stellate cells
(Garden et al., 2008). Another successful way to change the F( I)
slope is to proportionally scale down all the conductance densi-
ties in the model (e.g., increase Cm), though other ways of chang-
ing the slope are known (Mehaffey et al., 2005; Fernandez and
White, 2010).

Simplifications made in this work sidestepped many remain-
ing issues in creating completely realistic oscillatory interference
models. Cell-to-cell variations of membrane and synaptic con-
ductances can be very high (Goaillard et al., 2009), and increasing
oscillator heterogeneity decreases synchrony (Winfree, 1967;
Cumin and Unsworth, 2007; Galán et al., 2007). Similarly, the
inputs to individual VCO neurons themselves may be nonuni-
form, which can also interfere with synchronization (Golomb
and Rinzel, 1993; Tsodyks et al., 1993; Wang and Buzsáki, 1996;
White et al., 1998). Individual cells may receive inputs from dif-

Figure 11. Sparsely coupled simple model neuron networks as oscillators. A, The spatial
trajectory (gray) provides the input to three oscillator networks of n � 5000 neurons with
a 1% connectivity probability. Though the individual cells in the networks are highly
variable (Fig. 8), the network-level variability is low so the integrate-and-fire postsynap-
tic cell spikes (black) in a stable grid pattern during the 240 s. Parameters: � � 12 ms,
w0 � 0.00019, w1 � w2 � 0.00018. B, Spatial autocorrelogram of the spiking in A. C, The
resonate-and-fire postsynaptic cell is also able to combine its inputs to produce a stable
grid. Parameters: cres � �0.01, wres � �b, w � 0.001. D, Spatial autocorrelogram of the
spiking in C. E–G, The highly variable individual oscillators spike over most phases, but the
average phase of the network shows very little phase drift compared with the abstract
model. Every 25th phase difference is plotted due to the large number of spikes. Param-
eters: 240 s simulation. nVCO � 2 [active VCO preferred directions of 0 and 2�/3 radians],
n � 5000, p � 0.01, g � 256, � � 100, �b � 8.7942 Hz; Table 1.

Figure 10. Noisy biophysical neuron networks (synaptically coupled) produce usable veloc-
ity controlled oscillators. A, The grid cell is modeled as a gated, leaky integrate-and-fire cell and
its spiking (black) is shown along a 2D trajectory (gray). B, The autocorrelogram of the spatial
firing in A confirms the clear hexagonal periodicity. C–E, The phase differences for all oscillators
remain fairly steady during the simulation, demonstrating that the biophysical model is capable
of implementing the oscillatory interference mechanism. Parameters: 240 s simulation. nVCO �
2 (active VCO preferred directions of 0 and 2�/3 radians), n � 250, g � 80, �� 3.44, tgate �
0.040 s, � � 50 ms, w � 0.0024, �b � 8.9519 Hz; Table 1.
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ferent numbers of velocity-coding cells with different firing rates
and with different synaptic strengths, and the result of these non-
uniformities on synchrony and the frequency response of the
network is difficult to predict. In contrast, homeostatic mecha-
nisms might cause each cell to adjust its membrane properties to
produce the same F( I) curve as other cells, despite dissimilar
profiles of membrane conductances.

Another relevant issue is that correlated noise can synchronize
oscillators (stochastic synchrony), particularly when their fre-
quencies are similar (Teramae and Tanaka, 2004; Galán et al.,
2007; Nakao et al., 2007; Marella and Ermentrout, 2008; Ly and
Ermentrout, 2009). Noise in the body velocity signal might apply
pressure toward synchronization of the VCO networks with each
other and away from the correct phase differences (in addition to
the spatial phase errors that will arise from the velocity noise
itself). Further, correlated noise to neurons within networks Vi

cannot be corrected through coupling, so even a small amount
may have a noticeable effect on the stability of the system.

An as yet unanswered question about the grid network in
animals is how many distinct spatial scales are represented (but
see Barry et al., 2007). In single-cell oscillatory interference mod-
els, each grid cell can have a unique spatial scale. Continuous
attractor models, however, require networks of grid cells that
have identical spatial scales. With the present model, arguments
of parsimony (using as few cells as possible) suggest that because
large networks are needed to provide stable oscillations, there will
likely be fewer VCOs than grid cells. Many grid cells would then
share the same VCOs and so would be of the same spatial scale.

Our simulations provide a number of novel predictions that
might be tested experimentally. First, we predict that an oscilla-
tor’s input should come from cells with activity that is the inverse
of the VCO’s F( I) curve, with a velocity relation like that shown in
Figure 1C. Second, when an animal makes a sudden reversal of
direction (e.g., on a linear track), the firing rate adaptation may
be detectable as slight changes in grid position in proportion to
the animal’s speed and angle of motion compared with the grid
cell orientation. Also, if VCOs are shared among grid cells, drifts
in the spatial firing of individual cells may be partially correlated
(in proportion to the number of VCOs shared and along the
directions of the shared inputs). This is in contrast to a continu-
ous attractor network where drift among all neighboring cells
would be highly correlated (Burak and Fiete, 2009) or other os-
cillatory interference models where the drift of each cell is inde-
pendent (Zilli et al.,2009). Finally, this model may be directly
tested through the use of single-cell intracellular in vivo record-
ing, which is increasingly feasible (Harvey et al., 2009; Lee et al.,
2009). Our model predicts that synaptic potentials recorded in
the cell generating the grid pattern should resemble the postsyn-
aptic traces we have shown in Figure 7 and supplemental Figures
S5 and S7. Specifically, each grid cell should always be receiving at
least three strong rhythmic inputs that change their phase relative
to each other according to the animal’s spatial position. Of all the
model predictions, this is the most important as it offers a direct,
falsifiable test of this model.

We have provided a successful biophysical simulation of an
oscillatory interference grid cell model and demonstrated its ro-
bustness against realistic levels of noise. This provides a proof of
concept that suggests biological systems can implement the oscil-
latory interference model despite the high levels of intrinsic neu-
ronal noise, but only through experimental tests designed to
distinguish between models will the true mechanism underlying
the grid pattern be discovered.
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Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in an
interneuronal network model. J Neurosci 16:6402– 6413.

Welinder PE, Burak Y, Fiete IR (2008) Grid cells: the position code, neural
network models of activity, and the problem of learning. Hippocampus
18:1283–1300.

White JA, Chow CC, Ritt J, Soto-Treviño C, Kopell N (1998) Synchroniza-
tion and oscillatory dynamics in heterogeneous, mutually inhibited neu-
rons. J Comput Neurosci 5:5–16.

Winfree AT (1967) Biological rhythms and the behavior of populations of
coupled oscillators. J Theor Biol 16:15– 42.

Zilli EA, Yoshida M, Tahvildari B, Giocomo LM, Hasselmo ME (2009) Eval-
uation of the oscillatory interference model of grid cell firing through
analysis and measured period variance of some biological oscillators.
PLoS Comput Biol 5:e1000573.

13860 • J. Neurosci., October 13, 2010 • 30(41):13850 –13860 Zilli and Hasselmo • Noisy Grid Cell Oscillators


