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Abstract

In a recent study, Manns et al. (2007) showed that CA1 population spiking activity differs in mean phase
between conditions of exposure to stimuli of varying levels of familiarity. Here, we provide an analysis
of a computational model of the hippocampus from Hasselmo et al. (2002) to examine how an animal’s
history of exposures to stimuli affects CA1 population activity. We show how the model can reproduce
the major findings from the study by Manns et al. Specifically, we show that differences in direction
and magnitude of the mean phase of population activity between two stimuli in the model depend on
the order of presentation of the stimuli and the duration of exposure during each presentation. The
analyses also reveal that the model’s learning rule results in stability and normalization of synaptic
weights and show how dysfunction of neuromodulatory systems might lead to epileptic or amnestic
type conditions.
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Introduction

During many behaviors, a strong oscillatory component of the hippocampal EEG appears
in the 3 to 10 Hz range and is referred to as theta rhythm (Buzsaki 2002). Over the course
of each cycle of the theta rhythm, experimental data shows that some physiological variables
wax and wane in strength, including amplitude of synaptic inputs from CA3 and entorhinal
cortex layer III (ECIII) into CA1 (Brankack et al. 1993) and inducibility of plasticity (Pavlides
et al. 1988; Hölscher et al. 1997; Hyman et al. 2003). Specifically, Brankack et al. (1993)
showed that inputs from CA3 and ECIII to CA1 are strongest at different phases of the
cycle, ECIII being strongest on the downslope of theta as recorded at the hippocampal
fissure, and CA3 input being strongest on the upslope. Hyman et al. (2003) showed that
LTP is most easily induced at the peak of fissure theta, while stimulation at the trough
results in LTD or depotentiation. Analyses of a hippocampal model taking these variations
into account (Hasselmo et al. 2002; Judge and Hasselmo 2004) showed that the phases
reported in the physiological experiments correspond to optimal performance for specific
memory performance measures.
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In those models, CA3 input to CA1 was interpreted as reflecting learned associations to
sensory stimuli, while ECIII input was thought to reflect the processed sensory input about
the stimuli currently present in the environment. Based on this interpretation, experiments
were recently performed (Manns et al. 2007) to test the model’s predictions regarding the
activity of CA1 in response to stimuli of varying degrees of familiarity. Since CA3 and
ECIII inputs occur at different phases, familiar versus novel stimuli would be predicted to
be associated with different mean phases of CA1 spiking activity. Manns et al. tested rats in
two different tasks. In their novel object task, unit activity from CA1 was recorded while rats
sampled novel versus familiar objects in an environment. Manns et al. also tested rats in a
delayed non-match to odor task, comparing neuronal activity when sampling a trial-repeated
odor with activity when sampling a trial-novel odor. The data showed that the magnitude of
the difference in mean phases between two conditions varied across animals from as little as
12.3 to as much as 91.7 degrees difference. Further, some animals in that study exhibited a
clockwise shift in mean phases between conditions, while others exhibited a counterclockwise
shift (i.e., some differences were positive and some negative). Because the model of Hasselmo
et al. (2002) made no predictions regarding spiking activity, we analyze that model in more
detail to better understand the way the phases of synaptic input and history of stimulus
presentations interact to alter the mean phase of CA1 population spiking activity.

Equations describing the model

The model analyzed here is based on that of Hasselmo et al. (2002). As shown in the following
equations, the model comprises three regions of medial temporal cortex including entorhinal
cortex layer III and hippocampal regions CA3 and CA1. Activity in region CA1 results from
the sum of inputs from CA3 and ECIII, modulated by sinusoids that vary over the course
of each theta rhythm. Plasticity is modulated similarly, alternating between phases of LTD
(when CA3 input is strongest) and LTP (when ECIII input is strongest). More complete
details can be found in Hasselmo et al. (2002).

Brankack et al. (1993) demonstrated that the synaptic input from CA3 and ECIII to CA1
are not constant over a theta cycle but rather each input has a range of phases in which it
is strongest. Therefore, in the model the strengths of synaptic input to CA1 vary over the
course of each theta cycle in the form of sinusoids that are shifted in the positive y direction
and scaled to range from 0 to 1. The sinusoids have phase offsets, �CA3 and �ECIII, such
that the peaks of the sinusoids match the phases of strongest input reported in Brankack et
al. (1993) from current-source density analysis (CSD) (Table I in that paper, ϕCA3 = 276◦,
ϕECIII = 129◦). To translate those peak phases to sine offsets in the model, we subtract 90◦

from them (because the peak of a sine function is at 90◦) so the peaks of the modulatory
functions match the CSD data: �CA3 = 186◦, �ECIII = 39◦. Specifically, the functions are:

�CA3(t) = 1

2
+ 1

2
sin(t + �CA3) (1)

�ECIII(t) = 1

2
+ 1

2
sin(t + �ECIII) (2)

Except for the Schaffer collaterals, which are represented by a matrix W, all synaptic
connections in the network are taken to be identity matrices. During a theta cycle, activity
patterns in CA3 and ECIII, aCA3(t)and aECIII(t), respectively, remain constant. Input to
region CA1 is modeled as a continuous function given by the sum of modulated CA3 and
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ECIII activity:

aCA1(t) = �CA3(t)WaCA3(t) + �ECIII(t)aECIII(t) (3)

In the simplest case, one can imagine that W in this equation increases proportional to
duration of exposure to a given stimulus. Then one can extract the appropriate values for
substitution into Equation 6 below (as done in Equations 8 and 9) and this is sufficient to
reproduce the basic results from Manns et al. (2007) regarding the magnitude and direction of
CA1 mean spiking phase differences. However, we will later be interested in details regarding
the time course of modification of these synapses and so will use the following learning rule
from Hasselmo et al. (2002).

The magnitude and direction of plasticity are also modulated by a sinusoid, but this sinu-
soid varies from −1 (LTD) at the peak of fissure theta to 1 (LTP) at the trough of fissure
theta, in agreement with electrophysiological data reported in CA1 in Hyman et al. (2003)
and Hölscher et al. (1997) and in dentate gyrus by Pavlides et al. (1988):

�LTP(t) = sin(t) (4)

The learning rule used in the model is a variation of a standard Hebb-type rule in which a
synaptic weight changes only when both pre- and postsynaptic cells are firing, but with the
direction of plasticity controlled by �LTP(t):

W(T + 1) = W(T) +
∫

�LTP(t)aCA1(t)aCA3(t)Tdt (5)

To simplify the following analyses, the actual strengths of synapses do not immediately
change but are delayed until the end of each theta cycle indicated by the modification time
step T. In the following numerical simulations, the changes in synaptic weights are further
multiplied by the length of the time step in each theta cycle (in radians) so that the values
match those obtained by numerically evaluating the integral in Equation 5.

The present work does not take into account the effects of inhibitory interneuron firing
on CA1 spiking activity, but unpublished analyses and numerical simulations indicate that
the main result of such inhibition is to decrease the range of mean CA1 spiking phases.
Notably, in this model inhibition does not affect learning, as plasticity has been shown to
occur even when cell bodies are hyperpolarized, as long as there is depolarization in the
dendrites (Golding et al. 2002; Lisman & Spruston 2005).

Representations of stimuli

For simplicity we will restrict our consideration to the case where two stimuli are presented.
Each of the two stimuli will be represented in ECIII by the activity of a set of cells. Some of
those active cells will be unique for each stimulus, but we will also allow for the case where
some number of cells is shared between the two. If we set the number of unique cells to be
the same for each stimulus, we can describe the general case as [s,u] ≡ [number of shared
cells, number of unique cells], resulting in a total of s + 2u cells for the two stimuli. We
can describe the representations of the stimuli in CA3 in the same form, allowing the two
regions to have different representations. Thus for CA3 we can write [sC,uC] and for ECIII,
[sE,uE]. To specifically refer to the unique cells associated with odor A we can write uCA
or uEA, so, when odor A is present, the activity of the shared cells and the unique cells for
that odor will be set to 1 and the others to 0. Because the matrix from ECIII to CA1 is an
identity matrix, we can also identify cells in CA1 according to the ECIII cell from which the
CA1 cell in question receives its input (e.g., cells receiving input from sE, from uEA, etc.).
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The matrix representing the Schaffer collaterals, then, has rows for each CA1 cell labeled by
the type of EC input it receives and columns for each CA3 cell labeled similarly, as shown
below. ⎡

⎢⎣
sC, sE uCA, sE uCB, sE

sC, uEA uCA, uEA uCB, uEA

sC, uEB uCA, uEB uCB, uEB

⎤
⎥⎦ ≡

⎡
⎢⎣

Wss Wuas Wubs

Wsua Wuaua Wubua

Wsub Wuaub Wubub

⎤
⎥⎦

sC, uC, sE, and uE will be used throughout the paper to refer to both the number of such
cells and the populations of cells themselves. Context should make clear which meaning is
intended. We will also consider sets of synapses between these cells, calling them, e.g., Wss
for the synapses from sC cells to CA1 cells receiving input from sE cells. Where unique
cells are used, the letter u will be followed by a letter representing the stimulus to which
the unique cells correspond, but, unless specifically noted, Wuu will refer to connections
between unique cells for the same stimulus in both CA3 and ECIII.

Afferent contributions to CA1 activity

In the model, CA1 activity is produced only by CA3 and ECIII input; the mean phase of
CA1 activity is a function of the phases at which the inputs are strongest and the magnitudes
of those peak inputs. We assume that the phases of those inputs are always the same (with
the values given above, from the CSD data), but the magnitude of the inputs will change
with learning, as we will show below. With those phases fixed, we can describe CA1 activity
in terms of the magnitude of CA3 and ECIII inputs as {magnitude of CA3, magnitude of
ECIII}.

If only CA3 or only ECIII input were present ({1,0} or {0,1}, respectively), the mean
phase of CA1 spiking would be identical to the phase at which the single input is strongest.
If both inputs were present with equal magnitudes, {1,1}, the mean phase of CA1 activity
would be the circular mean of the phases of maximum input of both CA3 and ECIII. We
will see, however, that the magnitude of the two inputs can change, so we need a general
formula for computing the mean phase of CA1 spiking activity. Intuitively, the mean phase
will be closer to the phase of the input with the larger magnitude. As derived in Appendix A,
inputs of magnitude a and b, with peaks at phases�A and�B, respectively, produce a mean
phase of:

�̄ = tan−1 a sin
(

π
2 − �A

) + b sin
(

π
2 − �B

)
a cos

(
π
2 − �A

) + b cos
(

π
2 − �B

) (6)

To find the difference in mean phases of CA1 spiking for two conditions, �̄m = tan−1 m
and �̄n = tan−1 n, where m and n are the fractions for each condition in the equation above,
we can simplify the computation by using a difference of inverse tangents formula:

�̄m − �̄n = tan−1

(
m − n

1 + mn

)
(7)

Delayed non-match to sample task

We simulate the response of region CA1 in a simplified version of a delayed non-match
to sample (DNMS) task that consists solely of stimulus presentations, no attempt is made
here to simulate behavior or decision making. We will first examine a three-presentation
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task comprising an exposure to odor A for one theta cycle, then a subsequent exposure to
odors A and B in rapid succession, as real animals do not sample the odors simultaneously.
In this task, synaptic weights will only be updated after the initial exposure, but not after
presentation of the second two test odors. A second analysis will consider an arbitrary series
of stimuli presented one at a time for one theta cycle each with the synaptic weights updating
at the end of each cycle. Lastly, we will consider numerical simulations of this model and
compare them to the results from the following analyses.

Analysis 1—Magnitude of spiking phase differences

We first consider how the magnitude of differences in CA1 spiking phases is related to
memory of stimuli. This analysis is meant to represent a single trial of a DNMS task in which
the rat is presented with a single odor in a sample phase, then, after a delay, is presented
with the same odor and a different odor. We will restrict the weights of synapses and the
activity levels of cells to be only 0 or 1, and will let sC = uC = sE = uE = 1, so that there
is one cell shared between the two odors and one unique cell for each odor. After the first
presentation of odor A, the synapses will be updated so that each of sC and uCA links to
CA1 cells receiving both sE and uEA as shown in Figure 1, top. When odor A and odor B are
presented subsequently, CA1 will have the same total magnitude of ECIII input for either
odor (sE + uEA = 2 for odor A and sE + uEB = 2 for odor B), though the specific cells
activated will be different. The total magnitude of CA3 input, however, will differ between
the two cases. When odor A is presented (the match condition), CA1 cells receiving input

Figure 1. Example of different magnitudes of CA3-driven CA1 activity in a single DNMS trial. Top: During the
sample phase, odor A is presented which activates the shared unit and the unique A unit in both CA3 and CA1
through ECIII. LTP links each active CA3 unit to the active CA1 units. Middle: Activity in the test phase of the
task at a point where CA3 input to CA1 is strong and ECIII input is weak. Thus, postsynaptic activity (in gray) is
due to CA3 input at this phase. When odor A is presented, the shared and unique A units in CA1 each receive two
synaptic inputs. Bottom: When odor B is presented, only the connections from the shared CA3 unit are activated
and each CA1 cell receives only a single input.
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from sE and uEA will each receive input from both sC and uCA cells, so the total number
of inputs CA1 receives is 4. When odor B is presented (non-match), on the other hand,
CA1 cells receiving input from sE and uEA will only receive one input each from sC, while
uCB will cause no activity because it has not been linked to any CA1 cells, for a total of 2
inputs. These cases are shown in the middle and bottom of Figure 1. Using the notation
from earlier of {magnitude of CA3, magnitude of ECIII}, we can write CA1 activity for the
match condition as {4,2}, while CA1 for the non-match condition will be {2,2}. Using the
formula for determining the mean phase given two amplitudes from earlier in the paper,
we can compute the mean phase of CA1 population activity for the match and non-match
conditions

�̄match = tan−1 4 sin
(

π
2 − �CA3

) + 2 sin
(

π
2 − �ECIII

)
4 cos

(
π
2 − �CA3

) + 2 cos
(

π
2 − �ECIII

) = −71◦ (8)

�̄non - match = tan−1 2 sin(π
2 − �CA3) + 2 sin

(
π
2 − �ECIII

)
2 cos

(
π
2 − �CA3

) + 2 cos
(

π
2 − �ECIII

) = −23◦ (9)

The full range of values produced by mean phase equations of this sort is −96 to 51◦.
More generally, in this version of the task, CA1 activity in the match condition will be {(sC

+ uC) ∗ (sE + uE),(sE + uE)}, while that for the non-match condition will be {sC ∗ (sE
+ uE),(sE + uE)}. The only difference between these two is the presence of uC in the CA3
magnitude of the match condition. Thus, a higher uC, i.e., a decreased amount of overlap in
CA3 representations, causes an increase in the phase difference between the two conditions.

This suggests that one explanation for the difference in CA1 mean phase reported in
Manns et al. (2007) is that learning occurring during the sample phase increases the CA3
component for the match stimulus, resulting in a phase difference qualitatively similar to that
computed above.

Similarly, if the magnitude of the CA3 input for a stimulus reflects the duration of exposure
to it, then from this example it can be seen that, given two stimuli, the difference of population
spiking phase in CA1 between the two could be either positive or negative, depending on
which has been experienced more. While this fact alone is sufficient to demonstrate the means
by which the results of Manns et al. (2007) could occur, the following analyses consider in
greater detail the effects of specific stimulus presentation histories on synaptic weights and
thereby on population response in CA1. This closer consideration also leads to interesting
results on normalization and stability of the present learning rule.

Analysis 2—Direction of phase differences

As stated earlier, experimental data show that, in addition to having varying magnitudes
in phase differences, the direction of the difference can also vary between animals, thus
we continue the analysis to understand how factors influencing the strength of input can
influence phase shift directions. While the previous analysis was restricted to a single trial
of a DNMS task, actual experiments using that task present multiple trials and often reuse
odors over the course of the task. Further, it is likely that synapses in an animal’s brain can
take on intermediate weights between 0 and 1, so we proceed with a more detailed analysis
of the model under these conditions. We begin by substituting the activity equation for CA1
from above into the learning rule, so that we can better understand how synaptic weights
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change over the course of stimulus exposures. The substitution yields:

W(T + 1) = W(T) +
∫

�LTP(t)[�CA3(t)W(T)aCA3(t)

+�ECIII(t)aECIII(t)]aCA3(t)T dt (10)

We can rewrite this difference equation and solve it explicitly if we restrict the network
to have only a single CA3 cell (either shared or unique). By doing so we can consider the
weight of, e.g., a synapse from an sC to a CA1 cell receiving input from sE and can avoid the
complication of, e.g., a uC also causing postsynaptic activity that is dependent on a different
synaptic weight.

Since the integrals in this equation are with respect to time within a theta cycle, t, while
the weights themselves change with respect to whole theta cycles, T, we can pull W out of
the first integral and rewrite the equation as:

W(T + 1) = W(T) + W(T)
∫

�LTP(t)�CA3(t)aCA3(t)2dt

+
∫

�LTP(t)�ECIII(t)aCA3(t)aECIII(t)dt (11)

Since we’re now dealing with only a single synapse, aCA3(t) and aECIII(t) should be inter-
preted as referring only to the particular pre- and post-synaptic cells for that synapse. The
integrals are effectively constants, so we can substitute:

X =
∫

�LTP(t)�CA3(t)aCA3(t)2dt (12)

Y =
∫

�LTP(t)�ECIII(t)aECIII(t)aCA3(t)dt (13)

and write W(T + 1) as a simpler equation:

W(T + 1) = W(T) + W(T)X + Y (14)

For the specific phases shown in the CSD analysis of Brankack et al. (1993), X will be
negative or zero and Y will be positive or zero, depending on the activity of the cells. If the
presynaptic cell, aCA3, is not firing, both X and Y will be zero and no weight change will
occur. If the presynaptic cell fires, but the postsynaptic cell does not, X will be negative and
Y will be zero, so LTD will occur. If both pre- and postsynaptic cells fire, X will be negative
and Y will be positive, and, as shown below, the weight will increase toward an asymptotic
value.

As described in Appendix B, it is reasonable to treat this difference equation as a differ-
ential equation for this analysis. The asymptotic synaptic value is then given by solving this
differential equation to obtain:

W(T) = −Y

X
(1 − eTX) + W(0)eX (15)

The behavior of this function depends on the signs of X and Y (but also see Appendix
B). If X > 0, the function grows exponentially toward infinity (positive infinity when Y > 0
and negative infinity when Y < 0). If X < 0, the function grows to an asymptote of −Y/X,
and thus toward a positive value when Y > 0 and toward a negative value when Y<0. As
discussed later, we do not allow a change in sign of synaptic strength. The signs of these
integrals depend on the difference in phases between �LTP(t) and �CA3(t) for X and �LTP(t)



284 E. A. Zilli & M. E. Hasselmo

and �ECIII(t) for Y. Specifically, X > 0 when −π
2 < �CA3 − �LTP < π

2 , and, likewise, Y >

0 when −π
2 < �ECIII − �LTP < π

2 . For the phases found experimentally in Brankack et al.
(1993), the synapses will grow to an asymptote of −Y/X, a positive value. This suggests that
one function of the distinct oscillatory input phases in relation to oscillatory changes in the
induction of plasticity might be to bound the maximum values of synapses, thereby avoiding
stability issues that can arise when synaptic weights can grow without an upper limit. Note
that, biologically, synaptic weights are bounded by the physiology of the synapses, but, as we
will show later, this asymptote actually applies to the sum of all weights of active synapses onto
a cell, and thus it can prevent all synapses from saturating at their maximum values, which
has been shown to cause instabilities and memory deficits in neural networks (Hasselmo
1994).

We can now consider the effects of a series of stimulus presentations on a synapse in the
model. The simplest case is that of a Wss synapse. In this case, the pre- and postsynaptic
cells will be active on every presentation. If the weight starts with value 0, the strength of the
synapse after T single-cycle presentations will simply be:

Wss(T) = −Y

X
(1 − eTX) (16)

For a synapse from a uCA to a CA1 cell receiving input from sE or uEA, the presynaptic
cell will only fire on trials in which the stimulus it represents is present, but on any trial it
does fire, the postsynaptic cell will also be firing. Thus, at any point, if the stimulus has been
seen for k theta cycles, the weight will be:

Wuaua(k) = Wuas(k) = −Y

X
(1 − ekX) (17)

In this single synapse network, a presynaptic unique cell for one stimulus will never fire
on the same trial as a postsynaptic unique cell for a different stimulus, so those weights will
always be 0. This leaves the final case of a synapse from an sC to a CA1 cell receiving input
from a uEA cell. Here the presynaptic cell will fire on every trial, but the postsynaptic cell
will only fire on trials in which a particular stimulus, A, is presented. The weight of this
synapse after T theta cycles will thus reflect a series of weight increments when stimulus A is
presented and weight decrements on other trials (the decrements are caused by the CA3 cell
driving CA1 activity during the phases where �LTP is negative). We will represent the series
of theta cycles as a string, E, where the ith digit, Ei, is 1 when odor A was present on that
cycle and 0 when odor A was not present. Because no weight change will occur before the
first presentation, we take E1 = 1. After n theta cycles with history E, we will have a weight
of:

Wsu(n, E) = −Y

X

[
n∑

i=1

Eie
(n−i)X(1 − eX)

]
(18)

Because this equation allows synapses to decrease in strength under appropriate conditions,
it is worth considering whether it has a lower bound in addition to its upper asymptote at
−Y/X. Indeed, as is clear from the equation dW/dT = WX + Y, since X < 0 and Y > 0, the
function can only decrease when W is nonzero, so starting from a zero or positive value, W
will never become negative and will simply approach zero as a lower bound. This, however,
is only the case for this single synapse network. In a network with multiple synapses, as will
be shown below, W here is effectively the sum of active synapses onto a postsynaptic cell,
and so the network constrains the sum to be between 0 and −Y/X. Without an imposed
lower bound at 0, some synapses can decrease toward a bounded, negative value. Because it
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is not thought to be biologically plausible to have a synapse change from being excitatory to
inhibitory in most conditions, we restrict synapses to be greater than or equal to zero for the
rest of the paper.

Now that we have expressions for all of the values in the weight matrix, we can consider
CA1 population mean phases in response to two different stimuli, A and B, given the history
of trials up to that point.

As before, we will assume the numbers of unique cells for the two stimuli are the same. The
contribution of ECIII to CA1 population activity will again be the same when exposed to A
or B, and so it is the difference in CA3 contributions from the weight matrix that will cause
differences in the mean phase of CA1 population activity. If we assume here that plasticity
is delayed until after both A and B have been presented (so that we may compare the CA1
response to each without the first presentation affecting the second), the contribution from
the shared CA3 units will be the same and any difference in CA1 activity, D, will come from
the two columns in the weight matrix corresponding to the unique CA3 cells. We can write
this as:

D = uC(Wuaua + Wuas − Wubub − Wubs) (19)

As shown above, Wuaua=Wuas and Wubub = Wubs, so we can simplify that to:

D = 2uC(Wuaua − Wubub) (20)

Then by substituting in the solutions to these synaptic weights, equation (17), and simpli-
fying, we find that the difference in CA3 contributions is:

D = −uC2Y

X
(ejX − ekX) (21)

where j is the number of times A has been presented up to that point and k is the number
of presentations of B. Thus, on any particular trial, the phase difference between the spiking
activity to A and B can be positive or negative, depending on which stimulus has been
experienced more often. Importantly, this is affected by the total duration of the exposure
and not simply the number of times a stimulus has been presented. In the Manns et al.
(2007) experiment, the duration of odor sampling was not controlled, so even if two rats
had identical orders of odor presentation, individual differences in sampling duration could
cause differences in phase of CA1 responses.

The actual mean phase computation, however, depends on the specific values of the CA3
contributions, not their difference. The total CA3 contribution for stimulus A is given by:

D = sC(Wss + Wsua + Wsub) + uC(Wuaua + Wuas) (22)

into which Equations 16 to 18 can be similarly substituted, and likewise for stimulus B. As
the number of presentations gets larger, both ekX and ejX approach 0, because X < 0, and
the phase difference disappears.

Phase differences and performance measure

In Hasselmo et al. (2002), a memory performance measure was used to determine the
optimal phase offsets for the oscillatory variables in the model. Here we compute an analogous
performance measure for the DNMS task to compare sets of parameters that produce both
a large phase offset and a high value of the performance measure. We present a sample phase
in which odor A is presented for a single theta cycle, then odor B is presented for a single
cycle. We then turn off plasticity and present a test phase of odor A followed by odor B and
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Figure 2. Performance measures and mean phase differences in CA1 spiking activity for two parameter sets. Each
point represents network response after a single presentation of each of two odors. The x axes correspond to
phases of maximal ECIII input varying from −90 to 270 degrees. The y axes show phases of maximal CA3 input
varying from 0 to 360 degrees. A and B demonstrate parameters uC = 0, sC = 1, uE = 1, sE = 0. In A, nonzero
performance (positive values in white, negative values in black) is limited to a small region of parameter space
centered at �ECIII = 0 and �CA3 = 180. B shows that, for these parameters, the phase difference is always zero
(zero phase difference in medium gray shade). In C and D, uC = 100, sC = 1, uE = 1, sE = 1. C shows that, in this
case, �CA3 is less important for nonzero performance because there is strong activity from unique CA3 synapses.
With uCA3 > 0, D shows that mean spiking phase differences appear in response to the two odors.

compare the phase difference of CA1 response between the two. Additionally, a behavioral
performance measure equivalent to that presented in Hasselmo et al. (2002) is computed:

M = (aECIII(B) − aECIII(A)) ·
∫ 2π

0
W ∗ �CA3(t)aCA3(B)dt (23)

where aECIII(A) and aECIII(B) are the ECIII activity patterns corresponding to odors A and
B, respectively, and likewise for aCA3(B). This measure is maximized when the retrieved
activity for odor B is most similar to the ECIII activity for that odor and least similar to
the ECIII activity for odor A. The performance measure and phase difference from the test
phase are repeated for all phases of �CA3 and �ECIII from 0 to 2π , with �LTP = 0 as above.
The results are shown in Figure 2. Figure 2A shows the performance measure and Figure 2B
shows the phase difference for uC = 0, sC = 1, uE = 1, sE = 0, which corresponds to the
hippocampal network presented in Hasselmo et al. (2002). Figure 2A is identical to Figure 4
in that paper, showing this performance measure is equivalent to the one used therein. The
maximal performance occurs when ECIII input is in phase with LTP and CA3 input is
antiphase with it. However, Figure 2B shows that, for the conditions of Figure 2A, there is
no phase difference between the responses to the two test odors. This occurs because the
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CA3 patterns are identical for both test odors (since there are no stimulus-unique neurons)
and thus the CA1 activity driven by CA3 is the same. On the other hand, Figure 2C and
D show the case of uC = 100 (to emphasize phase differences), sC = 1, uE = 1, sE = 1.
In Figure 2C, nonzero performance is still restricted to the range of phases where ECIII
input is in phase with LTP, but the phase of CA3 input is less important. When �LTP = π ,
CA3 input undergoes LTD and performance is as in Hasselmo et al. (2002). For other CA3
phases, as long as the learning rate is �1, CA3-driven cells in CA1 will have less activity
than ECIII driven cells (because the CA3 to CA1 weights will have only increased a small
amount in the sample trials) so less interference will occur and retrieval during the test trial
will more closely resemble B than A. If the learning rate is 1 this will not occur and the
nonzero performance will be restricted to the same CA3 phases as in Figure 2A. Notice that
Figure 2D shows a wide range of spiking phase differences for synaptic phase values that
result in high performance. This demonstrates that spiking phase differences are unrelated
to high performance values for this particular performance measure; it is possible that other
memory performance measures might have nonzero performance only when spiking phase
differences occur.

Numerical simulations

Comparison of the evolution of synaptic weights in a full network simulation with the results
of the analysis above reveals further complexities. In the full network, the change in strength
of synapses from sC cells to CA1 cells receiving input from sE cells depends on both those
strengths and on the strength of synapses from uCs to the same CA1 cells, because both
cause activity in the postsynaptic cell (and likewise for synapses onto uE-receiving CA1
cells). Specifically:

dWss

dT
= X(Wss ∗ sC + Wus ∗ uC) + Y (24)

dWus

dT
= X(Wss ∗ sC + Wus ∗ uC) + Y (25)

One need not solve these equations to see that if Wss ∗ sC + Wus ∗ uC = −Y/X, then the
change in weights will equal 0 (note that this is not matrix multiplication; we are multiplying
the value of a single synapse by the number of cells in the respective populations). Hence,
when the sum of synapses from active presynaptic cells onto a postsynaptic cell equals −Y/X,
the weights will stop growing. When there is only a single synapse, the synapse can grow to
−Y/X and it reduces to the case in the previous analysis. Note that if the sum of the weights
of active synapses is less than −Y/X, the weights will all increment by the same amount, Y
+ X(Wss ∗ sC + Wus ∗ uC). Also, if the sum of the weights exceeds −Y/X, then, because
X is negative here, the negative term will exceed the positive term, Y, and the synapses will
all weaken by the same amount in the direction of −Y/X. This means that this learning rule
implements a thresholded, subtractive normalization of active synapses. The normalization
is subtractive because the amount of decrement of a synapse is the same for all synapses,
regardless of their relative strengths.

To determine the actual weights that Wss and Wus grow to, we must consider what happens
before normalization occurs, when the sum of the active synapses is less than −Y/X. If we
consider a series of alternating presentations of stimuli A and B, we will see that, early on,
Wss is incremented every presentation, but Wuas and Wubs are alternately incremented,
and so, at any time, Wss will be roughly twice the value of either Wuas or Wubs. This will
continue to be the case until the sum of active synapses on a trial equals or exceeds the
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Figure 3. Evolution of synaptic weights onto CA1 cells during alternating presentation of two stimuli. Top: Synapses
onto stimulus-unique CA1 cells. The solid line represents a synapse from a shared CA3 cell to a unique CA1 cell.
Initially, the weight grows on trials when the CA1-coded stimulus is presented and decreases on trials when it is
not presented. Eventually, however, the subtractive normalization described after Equation 27 in the text begins to
weaken the synapse and it is driven to 0. The dotted line represents the weight of a synapse from a unique CA3
cell to a unique CA1 cell. Since the cells are unique to a particular stimulus and the two stimuli are alternately
presented, the weights only change on every other trial. Because shared to unique synapses eventually have weight
0, the automatic normalization of active synapses allows unique to unique synapses to have higher values before
their sum reaches the upper bound. Bottom: synapses onto shared CA1 cells. The solid line represents the weight
of a synapse from a unique CA3 cell to a shared CA1 cell. The dotted line represents a connection from a shared
CA3 cell to a shared CA1 cell. As described in the text, the shared to shared synapses attain a value twice as large
as those of shared to unique synapses because they are incremented on every trial, as opposed to every other trial
for shared to unique synapses. (Note: Figures 3–5 have uC = sC = 3, uE = sE = 1.)

threshold of −Y/X. At this point, we will have sC Wss synapses and 2 ∗ uC Wus synapses
in which the sum of the sC Wss synapses and one set of uC Wus synapses equal −Y/X, and
therefore the value of a single Wss will roughly equal (−Y/X)∗(2/(2sC + uC)) and that of a
Wus will roughly equal (−Y/X)∗(1/(2sC + uC)). Figure 3, top shows the evolution of Wsu
and Wsu toward their asymptotes, while Figure 3, bottom shows the time course of changes
in Wus and Wss.
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Figure 4. Long-term behavior of synapses does not depend on order of stimulus presentations. Stimulus A was
presented 100 times and then stimulus B was introduced, alternating with stimulus A. Top: The values reached by
synapses onto unique CA1 cells are identical to those in the top of Figure 3. Bottom: Shared synapses also reach
values identical to those shown in the bottom of Figure 3.

These values are not dependent on A and B having been alternately presented. If we
consider a large number of repeated presentations of A such that the synapses reach their
asymptote and then begin alternately presenting B, we will see that the same values are
reached. After the last presentation of A, before B is introduced, Wss and Wuas will have
the same value, (−Y/X)/(sC + uC), as Wuas will have increased at the same rate as Wss,
while Wubs will be 0 because B has not yet been presented. When B is first presented, only
the Wss synapses will be active, and since their sum will be less than −Y/X, both Wss and
Wubs synapses will increase in value. When A is next presented, Wss will have been increased
and the sum of the synapses will exceed −Y/X so all synapses will be depotentiated by the
same amount, but Wss will be larger than Wuas. Further presentations of B will increase
Wss and Wubs toward their asymptotes, while subsequent presentations of A will continue
decreasing Wss and Wuas, until Wss is again twice the value of Wuas and Wubs, as above.
This case is shown in Figure 4.
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While Wss and Wus behave similarly to the simplified analysis presented earlier, as does
Wuu as will be shown, Wsu behaves rather differently. Before the sum of active Wuu and Wsu
synapses reach −Y/X, they will grow as initially described. When the threshold is reached,
however, Wsu begins to decrease to 0 while Wuu approaches an asymptote of (−Y/X)/uC. By
again considering alternating presentations of A and B and focusing on Wsua, we can see why
this happens. Since synaptic weights only change when the presynaptic cell is active, Wuu will
only change when A is presented. Wsua, on the other hand, will increase when A is presented,
but will decrease on presentations of B. When the sum of the synapses reach −Y/X, each
presentation of B will weaken Wsua, and each presentation of A will strengthen both, but the
difference between Wuu and Wsua will continue to increase until Wsua is 0 and Wuu has
taken up all of the available synaptic weight. This reasoning also applies to cases in which there
are more than two stimuli being presented. If there are a total of n stimuli in use, Wss and
Wus will roughly equal (−Y/X)∗(n/(nsC + uC)) and (−Y/X)∗(1/(nsC + uC)), respectively.

This long-term behavior results in an interesting function being performed by the learning
rule if we consider a different sort of input to the network. In the network, eventually all
synapses will be 0 except those for which the CA3 cell is always active when the ECIII-driven
CA1 cell is active. Said another way, a synapse from a CA3 cell to a particular CA1 cell will
only be nonzero if the firing of that CA3 cell is fully predictive of the CA1 cell firing. Because
the theta rhythm has been recorded in many cortical structures aside from the hippocampus
(reviewed in Kahana et al. 2001) and because this learning rule is tied to physiological
variables modulated by theta, this function may occur in other brain regions. For instance, it
may be useful for learning which qualities of an object correlate with a sweet taste in order to
identify ripe fruits. It does, however, have an application in the hippocampus as well. In any
network that is continually forming new associations, there must be a mechanism by which
older memories can be cleared away when they are no longer needed. In the short term,
this learning rule continues to strengthen all synapses involved in experienced stimuli, but
as shown in Figure 3, top and Figure 5, the long term behavior drives many synapses back
to zero. In this way this rule might aid in recycling synapses that have been frequently used

Figure 5. Lack of perfect correlation eventually drives synapses to zero. The simulation is as in Figures 3 and 4,
but here the shared CA3 cell was randomly active on only half the presentations of stimulus B. As before, shared to
unique synapses Wsua and Wsub approach zero, but now the shared to shared synapses Wss do as well, since the
shared presynaptic cell doesn’t always predict firing of the shared postsynaptic cell.
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(and, therefore, would be thought to represent memories that would have been consolidated
in neocortex by that time).

Discussion

Motivated by recent experimental findings reported in Manns et al. (2007), we have shown
that the computational model described in Hasselmo et al. (2002) can explain those findings.
Specifically, we have demonstrated that the model explains CA1 spiking activity in terms of
contributions from sensory input and memory. The memory contribution, and thus the
mean phase of CA1 spiking, is dependent on the total duration of exposure to a stimulus
and so the difference in mean spiking phase between two stimuli can be positive or negative,
depending on the duration of exposure to the two and on the order in which they have been
presented.

In the numerical simulations, as in analysis 2, after a sufficient number of presentations
of two stimuli, the phase difference in the response to the two will become 0. While many
theories stress that the hippocampus is focused on memory for specific episodes and less
so on familiarity (Norman & O’Reilly 2003), this model demonstrates the ability to pro-
duce familiarity signals for relatively novel stimuli or contexts (where a familiarity signal is
simply defined as an aspect of neural activity that correlates with the amount of exposure
to a particular stimulus). Though this signal disappears after a relatively small number of
presentations, that may be a sufficient amount of time for adjacent cortical structures to
form representations of the stimuli and take over the familiarity function. Such a change in
response to a novel object was shown in Manns et al. (2007) where, in the novel object task,
the mean phase of CA1 activity slowly shifted over nine seconds of exploring a novel object.
Further, one efferent of CA1 is perirhinal cortex where Hölscher et al. (2003) showed that,
over the course of 10 days, the response of cells to initially novel stimuli slowly became more
and more similar to the response to very familiar stimuli, an analogous result to the present
one, albeit on a longer timescale.

We have shown that the learning rule first proposed in Hasselmo et al. (2002) can auto-
matically produce upper-bounded synaptic weights and provides subtractive normalization
of active synapses. Notably, while many approaches to normalizing synaptic weights re-
quire information from all synapses, and are thus non-local, this rule normalizes only active
synapses based on the total dendritic activity of the postsynaptic cell, and so normalization
here is based only on locally available values (other local rules include, e.g., Oja 1982; Song
et al. 2000).

Another difference between this learning rule and other common rules is the separation in
time of LTP and LTD such that, with the phases used here, LTP is based on a correlation of
pre- and postsynaptic activity (a traditional Hebb rule), while LTD is presynaptically gated
and depends on the current strength of the active synapses onto the postsynaptic cell. The
rule could be written as:

dW

dT
= pre ∗ post − pre ∗ W = pre ∗ (post − W)

In this form, the rule appears identical to the Instar of Grossberg (1976), or presynaptically-
gated, learning rule. The rule presented here is, however, derived entirely from physiological
data (LTD/LTP: Hyman et al. 2003, CSD: Brankack et al. 1993) as opposed to a deriva-
tion from first principles, as in Grossberg (1976). Further, because the two terms in the
learning rule take place at different times, the postsynaptic activity is not the result of ac-
tivity spreading over the synapses, as would be expected in the Instar and other traditional,
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presynaptically-gated rules, but arrives via a separate set of synapses. As a result, while the
Instar rule modifies all synapses onto a postsynaptic cell toward the value of the activity of
its presynaptic cells, thereby adjusting the synapses so that they are effectively a snapshot of
the presynaptic activity, this rule only modifies synapses from active presynaptic cells and
adjusts them so that presynaptic cells that are always coactive with the target cell approach
a positive bound, while presynaptic cells that are not consistently coactive come to have a
strength of zero.

The present learning rule also begs comparison with the oscillating learning algorithm
described in Norman et al. (2005). Their algorithm consisted of a learning cycle of fixed
network input during which network inhibition first decreases, allowing activation of sub-
threshold units that are similar to the retrieval cue which undergo LTD to reduce similarity,
then inhibition increases, identifying retrieved units that become inactive and thus undergo
LTP to increase the internal consistency of the retrieved representation. While lacking a
completely biological basis, they demonstrated that this algorithm is a very powerful means
of maintaining old memories in the face of new, interfering memories. Despite a similarity
in that both rules alternate between LTD and LTP when updating synaptic weights, the
two rules perform rather different functions. The oscillating learning algorithm attempts to
maintain a complete representation of the memory patterns being stored, while the learn-
ing rule analyzed in the present paper produces two stages of function. Initially, the present
learning rule updates synaptic weights to reflect the number of times a given stimulus has
been experienced, then later, when the weights reach their asymptotes, it maintains nonzero
weights only between pairs of cells that are always coactive. This long-term behavior is par-
ticularly suited for tasks such as reversal learning or DNMS in which old associations must
be unlearned. The two rules are thus both useful, but under distinct circumstances.

This analysis also offers an explanation for the variability in mean phase magnitude and
direction reported in Manns et al. (2007) by showing that these two measures are dependent
on the animal’s history of experienced stimuli. As discussed below Equation 21, the direction
of the mean spiking phase difference between two stimuli depends on the total duration of
exposure to the two in the model. There are, however, other sources of variability that
these analyses didn’t consider. One of the assumptions made above is that the number of
unique cells for different stimuli are the same (i.e., uEA = uEB). In reality, it is likely that
different stimuli will have representations of different sizes and that these representations
will change over time (e.g., repetition suppression or enhancement shown in Suzuki et al.
1997 and modeled in Sohal & Hasselmo 2002; Bogacz & Brown 2003). It is also possible
that the phases of maximal synaptic input themselves vary between animals. The analysis
above showed that there is a fairly wide range of input phases for which network performance
is stable and if, for example, the two inputs were just less than 180◦ apart the mean phase
would be in one direction, whereas if the inputs were a bit more than 180◦ apart, the mean
phase of CA1 spiking would be in the other direction, while ECIII input alone would have
the same phase, thus the difference could be clockwise or counterclockwise. These influences
will further affect the mean phase of CA1 population activity.

Although the present analysis has not emphasized the utility of this learning rule and the
resulting differences in the mean phase of CA1 population activity on behavior, it is note-
worthy that the analyses showed that, given two input patterns to CA1, a greater difference
in mean phase response occurs when the two patterns have a lesser amount of overlap.
O’Reilly et al. (1994) suggested in a thorough analysis that the anatomy of the hippocam-
pus is conducive to performing either pattern separation or completion, dependent on the
similarity of an input pattern to patterns stored in the network. Then it might be the case
that, given an array of objects, by making the pattern of novel objects as distinct as possible
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from familiar objects, a greater phase difference can result which could act as a signal of
novelty.

An interesting feature of this learning rule that this analysis has shown is that the asymptotic
synaptic values depend on X and Y, which themselves are reflections of the phases of maximal
input to CA1 from CA3 and ECIII, as well as the phase of strongest induction of LTP.
The behavior of the network will change depending on those phases. As stated earlier, the
bounding behavior of the rule only occurs when X is negative, which is when the phase of
maximal LTP induction is more than 90 degrees away from the phase of maximal CA3 input.
If those two phases are less than 90 degrees away from each other, X becomes positive and
synapses will grow exponentially toward infinity. This happens because maximal CA3 input
will occur during a period of LTP in those conditions and the synapses will grow in strength
in proportion to their current strength, causing successively larger increments on each theta
cycle.

In some neurological disorders, e.g., Alzheimer’s disease, neuromodulatory systems (which
may underlie the phasic modulations of these physiological variables) become disrupted,
which might result in pathological phase relationships which could cause all synapses to
saturate at their maximum values (see Hasselmo 1994), potentially causing epileptiform
synchronous activity across large populations of cells, or causing an amnesic-like inability
to encode or retrieve memories. While the peak phase of induction of plasticity may be
difficult to measure in humans, intracranial EEG recordings have been done in preparation
for surgery on humans and might allow performance of a CSD analysis across the laminae of
the hippocampus in healthy and impaired patients, which could show alterations in the phases
of sinks in stratum radiatum and stratum lacunosum-moleculare in CA1. Consistent with
this suggestion that normal theta rhythm produces dynamics that are conducive to stability, a
number of studies (e.g., Miller et al. 1994; Ferencz et al. 1998) have shown that theta rhythm
has seizure-resistant effects in rats. Further, Burchfiel et al. (1979) showed that the kindling
model of epilepsy in rats is associated with hippocampal supersensitivity to acetylcholine
and Wasterlain et al. (1985) showed that cholinergic agonists in the rat amygdala can induce
kindling, suggesting that the protective effects are due to aspects of the theta rhythm beyond
simply the release of acetylcholine in the hippocampus.

We have shown that the phase of maximal CA1 population activity reflects the familiarity
of a stimulus in the sense that stimuli that have been presented more often produce mean
population spiking phases later in the cycle. The question remains as to how, if used as a
familiarity signal, this phase change is read out and used to guide behavior. One possibility
is that regions receiving output from CA1 may have cells that are sensitive to differences in
spike train timing (e.g., the tempotron model of Gutig et al. 2006), converting the temporal
code into a population code reflecting the level of familiarity. Alternately, afferent regions of
CA1 may be driven by oscillatory inputs of different frequencies or phases. Jensen (2004)
showed that an arrangement such as this can produce selective transmission of information
at particular phases of oscillations.
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Appendix A

The circular mean phase of two positive-shifted sinusoids, �A(t) = a
2 + a

2 sin(t + �A) and
�B(t) = b

2 + b
2 sin(t + �B), is given by

�̄ = tan−1 a sin
(

π
2 − �A

) + b sin
(

π
2 − �B

)
a cos

(
π
2 − �A

) + b cos
(

π
2 − �B

)
Proof. We consider a number of vectors from the origin each with angle0 ≤ �X < 2π and
magnitudes �A(�X) and �B(�X). The angle of the resultant vector when all of these vec-
tors are summed will be the mean phase of the sum of the two positive-shifted sinusoids.
Each vector can be written as a sum of two components: one in the direction of the peak
of the sinusoid and one in a direction perpendicular to the peak. Because the sinusoids are
symmetric about their peaks, the perpendicular component of any vector will be cancelled
out by a vector an equal angle in the other direction from the peak. Then the sum of all
the vectors from a particular positive-shifted sinusoid will be a vector in the same direc-
tion as the peak. To find the magnitude of that vector, we ignore the phase offset in the
sinusoid and, for simplicity, rewrite the sinusoid as a cosine so its peak will be at an angle
of 0. For a vector at angle �X, the component of that vector in the direction of the new
peak will be cos �X times the magnitude of the vector. Thus, we can multiply this positive-
shifted cosine by a cosine to find the component of each vector in the direction of angle
0, RX = cos �X( a

2 + a
2 cos �X), where RX is the magnitude of �A(�X) in the direction of

angle 0, and likewise for �B. Integrating this equation for each of the two sinusoids over
the interval [0, 2π) will yield the magnitude of the vector in the direction of the sinusoid’s
maximum:

R =
∫ 2π

0
cos �

(
a

2
+ a

2
cos �

)
d� = a

2

∫ 2π
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2

∫ 2π
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2
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]
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4
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0
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cos � sin � + �
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2

Since the peak of �A(t) is at t = π
2 − �A and likewise for B, we have the magnitude and

peak angle of both sinusoids. In polar coordinates these vectors are ( aπ
2 , π

2 −�A) and ( bπ
2 , π

2 −
�B). To sum them, we will convert to rectangular coordinates, sum the components, then
convert back to polar coordinates and will have the mean phase. Converting to rectangular
coordinates:(
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Summing the two vectors:(
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Finally, the angle of this vector in polar coordinates is:
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Appendix B

Because the update of synaptic weights in this model occurs at discrete time points, the
learning rule is a difference equation:

W(T + 1) = W(T) + XW(T) + Y, W(0) = 0

Solving this recurrence relation yields:

W1(T) = Y
T−1∑
i=0

(
T

i

)
XT−i−1

The behavior of W is not clear from this equation, so we wish to find a simpler equation
that is equivalent to this one. Euler’s forward method for solving differential equations is a
method by which a differential equation is solved as if it were a difference equation. The
amount of error introduced over h time steps in this method is known to be O(h2) and thus
we can solve the difference equation as a differential equation with a known error bound, the
solution being:

W2(T) = −Y

X
(1 − eTX) + W(0)eX

Although the amount of error introduced is potentially large, we can show that, for proper
values of X, both solutions have the same asymptote (and thus the error goes to 0) and that
the behavior of the solutions is sufficiently similar for the purposes of the analysis in the text.

The original difference equation has six possible asymptotic behaviors:

1. If Y = 0 then W will always be 0.
2. If X > 0 then W will grow to infinity (positive infinity if Y > 0 and negative infinity if

Y < 0).
3. If X = 0 then W(T) = T∗Y.
4. If −2 < X < 0 then W will grow to −Y/X.
5. If X = −2 then W(1) = Y, W(2) = Y −2 ∗ Y + Y = 0, W(3) = 0 + −2 ∗ 0 + Y = Y,

etc, and so W alternates between 0 and Y.
6. If X < −2 then W will grow to infinity (positive infinity if Y < 0 and negative infinity

if Y > 0).

The differential solution has four asymptotic behaviors:

1. If Y = 0 then W will always be 0.
2. If X > 0 then W will grow to infinity (positive infinity if Y > 0 and negative infinity if

Y < 0).
3. If X = 0 then W(T) will be undefined.
4. If X < 0 then W will grow to −Y/X.

Thus if we restrict 0 < |X| < 2, the two solutions have the same asymptotic behavior. For
the sine offsets used in this paper, X can only be 0 when the presynaptic cell for the synapse
in question is inactive, but the analysis where this is used specifically takes that case into
account by altering the differential solution, and thus this is not a problem. To ensure that
the absolute value of X is less than 2, one must simply set a learning rate α to an appropriately
low value, as when the learning rule is written to include a learning rate:

W(T + 1) = W(T) + α(XW(T) + Y) = W(T) + αXW(T) + αY

and so the effective value of X can be scaled appropriately.



CA1 theta phase analysis 297

To check that the functions behave similarly, we note that the only time the actual value of
a synapse is used in the analysis is in equation (21). That result depends only on the fact that,
for the phases used in this paper, W(a) > W(b) if a > b and W(a) and W(b) are less than W’s
asymptote, or, more simply, W(a + 1) > W(a). Since here we have Y > 0, If −2 < X < −1
then −Y/X will be less than Y and since W(1) = Y, the evolution of W will be a damped
oscillation around −Y/X, contradicting our assumption that W(a) and W(b) will necessarily
be less than −Y/X, so we will restrict further consideration to the case −1 < X < 0. When
we rewrite the difference equation as:

W(a + 1) − W(a) = XW(a) + Y

Since Y > 0, if W(a+1)−W(a) > 0 then it must be that XW(a) < Y, but since we require
that W(a) < −Y

X here, clearly that holds and we have W(a + 1) > W(a).
For the differential solution, we similarly require that W2(a + 1) > W2(a). We start with:

W2(a + 1) − W2(a) = −Y

X
(1 − eX(a+1)) − −Y

X
(1 − eaX)

= −Y

X
(1 − eX(a+1) − 1 + eaX)

= −Y

X
(eaX − eX(a+1))

= −Y

X
(eaX − eaXeX)

= −Y

X
(eaX(1 − eX))

Because X < 0, 0 < eX < 1 and so (1 − eX) > 0. Also, since X < 0, −Y/X is positive and
thus the whole expression is positive, so W2(a + 1) > W2(a).


