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Abstract

Behavioral data shows that humans and animals have the capacity to learn rules of

associations applied to specific examples, and generalize these rules to a broad vari-

ety of contexts. This article focuses on neural circuit mechanisms to perform a

context-dependent association task that requires linking sensory stimuli to behavioral

responses and generalizing to multiple other symmetrical contexts. The model uses

neural gating units that regulate the pattern of physiological connectivity within the

circuit. These neural gating units can be used in a learning framework that performs

low-rank matrix factorization analogous to recommender systems, allowing generali-

zation with high accuracy to a wide range of additional symmetrical contexts. The

neural gating units are trained with a biologically inspired framework involving traces

of Hebbian modification that are updated based on the correct behavioral output of

the network. This modeling demonstrates potential neural mechanisms for learning

context-dependent association rules and for the change in selectivity of neurophysio-

logical responses in the hippocampus. The proposed computational model is evalu-

ated using simulations of the learning process and the application of the model to

new stimuli. Further, human subject behavioral experiments were performed and the

results validate the key observation of a low-rank synaptic matrix structure linking

stimuli to responses.
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1 | INTRODUCTION

Behavioral data from a range of cognitive tasks indicate that humans

and animals can learn rules based on specific examples and generalize

these rules to a broader range of different contexts (Aminoff,

Gronau, & Bar, 2006; Badre & Frank, 2012; Bar, Aminoff, & Ishai,

2007; Bhandari & Badre, 2018; Carpenter, Just, & Shell, 1990; Chat-

ham, Frank, & Badre, 2014; Eliasmith et al., 2012; Hummel & Holyoak,

1997; Miller & Cohen, 2001; Rasmussen & Eliasmith, 2011; Raudies &

Hasselmo, 2017; Santoro, Hill, Barrett, Morcos, & Lillicrap, 2018;

Wallis, Anderson, & Miller, 2001). This learning of context-dependent

rules is consistent with the interaction of general roles and specific

fillers in symbolic processing, in which a rule learned with specific

instances of stimuli and contexts can be generalized to apply to previ-

ously unseen combinations of stimuli and contexts (Badre & Frank,

2012; Chatham et al., 2014; Hasselmo & Stern, 2018; Hummel &

Holyoak, 1997). This process enables agents to generalize well from

previous experiences and interpret previously unseen sensory input

according to a learned context-dependent set of rules. For example,

humans learn that a red light means to stop when driving, and can

generalize this rule to multiple locations, but they also learn more

complex, location-dependent rules such as the fact that one can
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turn right after stopping at a red light, except in certain cities and

countries.

Experimental data from the rodent hippocampus addresses poten-

tial neurophysiological changes associated with context-dependent

learning and generalization. Data shows that neural responses increase

in selectivity dependent upon context in a behavioral task that provides

reward for different stimulus items in different contexts (Komorowski

et al., 2013; Komorowski, Manns, & Eichenbaum, 2009). In this task,

the rat is in one of two visually distinct environments, which define the

context for the rat. Each of the two environments has two stimulus

pots, with distinct features such as filling material. The stimulus pots

can appear in different locations, but only one contains reward depen-

dent upon context. Neurophysiological recordings show that hippocam-

pal neurons develop specificity toward specific pairings of a stimulus

item in a specific context during learning (Komorowski et al., 2009). In

addition, data from the hippocampus show the replay of memory repre-

sentations during sharp-wave ripple events during quiet waking and

sleep that can occur in forward or backward order (Carr, Jadhav, &

Frank, 2011; Diba & Buzsáki, 2007; Karlsson & Frank, 2009; Lee &

Wilson, 2002). These replay events provide an opportunity for the

development of rule representations for generalization. In this light, our

work can be seen as modeling the effect of hippocampal circuit mecha-

nisms involving repeated interleaved reactivation of learning examples

in different sequential orders referred to here as primal (stimulus

followed by context) and dual (context followed by stimulus). This inter-

leaved reactivation could generate the context-item selectivity seen

experimentally in this task, which could then generalize to the selectiv-

ity for different contexts. The replay could alter context-item selectivity

by updating gating mechanisms in the hippocampus in which entorhinal

input to region CA1 gates the influence of synaptic input from region

CA3 to region CA1 as shown in previous models (Hasselmo &

Eichenbaum, 2005; Katz, Kath, Spruston, & Hasselmo, 2007).

Understanding how humans learn to make flexible decisions has

motivated considerable research on biologically plausible neural circuit

models in the brain (Badre & Frank, 2012; Badre, Kayser, & D'Esposito,

2010; Bhandari & Badre, 2018; Chang, Johnson, Whiteman, & Stern,

2019; Chang, Ren, Whiteman, & Stern, 2017; Chatham et al., 2014;

Eliasmith et al., 2012; Hasselmo, 2005; Hasselmo & Stern, 2018; Mel-

rose, Poulin, & Stern, 2007; O'Reilly, 1998; O'Reilly, Hazy, & Herd,

2016; Zhu, Paschalidis, & Hasselmo, 2018). This work includes models

of cognitive function in cortical circuits based on theoretical frame-

works such as the Semantic Pointer architecture (Eliasmith et al., 2012)

and the LEABRA cognitive architecture (O'Reilly, 1998; O'Reilly et al.,

2016). In particular, many models include mechanisms for gating the

spread of neural activity between regions to recruit different neural cir-

cuits for flexible application of different context-dependent rules

(Badre et al., 2010; Badre & Frank, 2012; Bhandari & Badre, 2018;

Chang et al., 2017, 2019; Chatham et al., 2014; Eliasmith et al., 2012;

Hasselmo, 2005; Hasselmo & Stern, 2018; Miller & Cohen, 2001;

O'Reilly, 1998; O'Reilly et al., 2016; Zhu et al., 2018). On a circuit level,

this could involve the role of gating neurons that regulate the response

of other neurons to synaptic input due to the nonlinear interaction of

adjacent synapses on the dendritic tree (Mel, 1993; Poirazi, Brannon, &

Mel, 2003), or circuit-level multiplicative interactions (Nezis & Van

Rossum, 2011; Sherfey, Ardid, Hass, Hasselmo, & Kopell, 2018) that

can be mediated by populations of neurons (Eliasmith & Anderson,

2004), or oscillatory dynamics of cortical circuits (Buschman, Denovellis,

Diogo, Bullock, & Miller, 2012; Lundqvist et al. 2018,b; Sherfey

et al., 2018).

In this article, we present two different levels of analysis for

mechanisms of learning a context-dependent association task and

generalizations to additional instances of stimuli-context pairs that

were not previously seen. We will describe a mechanism of matrix

factorization that is used to learn and generalize with accuracy of

100% for this task. We will also describe a neurally plausible learning

rule that can achieve the same performance on a symmetrical version

of the task.

Our computational model significantly outperforms earlier models

because it has the ability, through low-rank matrix factorization, to

discover the proper amount of internal memory needed for the task

and use additional available memory for redundancy. We analyze

results from human subject behavioral experiments that validate the

key observation of a low-rank synaptic connection structure linking

stimuli to behavioral responses.

2 | METHODS

2.1 | Task overview

We model a behavioral task that requires learning of rules guiding the

association of specific sets of stimuli with the behavioral responses

under different location contexts (Chang et al., 2017, 2019; Has-

selmo & Stern, 2018). This task represents a generalization from the

context-dependent learning task used in the rodent hippocampus

(Komorowski et al., 2009), which had only two spatial contexts com-

pared to the four used in the more recent task and modeled here. The

association rule is summarized in Figure 1. There are four location

contexts 1, 2, 3, and 4, represented by different quadrants on a com-

puter monitor screen. Under different contexts, four stimuli, A, B, C,

and D are associated with two responses X and Y in different ways.

We will use the term “response” for X and Y because they can be seen

as behavioral response to an input consisting of a stimulus-context

pair, for example, A2. As we will see later in the Experimental Results,

X and Y are represented by a second stimulus and human participants

are asked to associate the first stimulus (A–D) with the second (X,Y) in

different contexts (1–4). Contexts 1 and 4 share the same association

rule while Contexts 2 and 3 share a different association rule, as

shown in Figure 1. We aim at investigating how a neural circuit model

can be constructed to learn these rules for association using inter-

leaved reactivation of the examples, consistent with the replay phe-

nomenon described for the hippocampus (Carr et al., 2011; Diba &

Buzsáki, 2007; Karlsson & Frank, 2009; Lee & Wilson, 2002). These

replay phenomena can provide the interleaved dynamics for learning

involving bidirectional reactivations of stimulus representations

followed by context (primal) or context followed by stimulus (dual)
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that prove most effective for learning as described in Section 2.3.

Also, we consider the ability of the neural circuit model to generalize

to other instances of the task that were not previously encountered.

In this generalization test, we hide some stimuli in the task during

training (corresponding to the underlined stimulus-context pairs in

Figure 1). We train a neural circuit with all the stimulus-context pairs

without ever presenting the hidden ones during training, and then test

its accuracy on all stimulus-context pairs.

In addition to the context association task defined earlier, we also

consider a larger context association task with 16 different contexts,

shown in Figure 2.

On a notational remark, all vectors are assumed to be column vec-

tors and denoted by bold lowercase letters; for economy of space, we

will write x = (x1, …, xn) for x ∈ Rn. Matrices will be denoted by bold

uppercase letters.

2.2 | Response matrix factorization

We first define the response matrix of the task, whose columns corre-

spond to stimuli and rows to contexts. The elements of the matrix rep-

resent the likelihood of the response being Y for the corresponding

stimulus-context pair. The likelihood starts with a value between 0 and

1 and can change in a graded manner during learning. The correct

response matrix for the task of Figure 1 is shown below:

A B C D

R=

1

2

3

4

0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

2
6666664

3
7777775
:

ð1Þ

Notice that R can be factorized as the product of two low-rank

matrices M = (Mi, j) ∈ R2 × 4 and G = (Gi, j) ∈ R2 × 4:

t1t2

R=

1

2

3

4

0 1

1 0

1 0

0 1

2
6666664

3
7777775
�

A B CD

t1

t2

1 1 0 0

0 0 1 1

2
4

3
5 =G>M,

ð2Þ

where superscript > denotes transpose and t1 and t2 can be inter-

preted as two types of association (as in the task).

Let us encode each of the four stimuli A, B, C, and D, by a vec-

tor s equal to one of the four unit vectors in R4, respectively

(e.g., B is encoded by (0, 1, 0, 0)). This vector represents activity

across a population of neurons representing the input stimuli, but

the model uses only simple connectionist threshold units and does

not include the intrinsic dynamics of real neurons. Similarly, each

of the contexts 1, 2, 3, and 4, are encoded by one vector c equal to

one of the four unit vectors in R4, respectively. Then, the correct

response can be computed from R as c>Rs = (Gc)>Ms and is 1 for Y

and 0 for X.

To find the low-rank factorization of R, one can refer to the col-

laborative filter algorithm in recommender systems (Murphy, 2012).

As we will see, the low-rank property of the solution leads to a more

explainable solution and better generalization ability. To provide some

intuition through an example, the recommender system can start with

a general matrix mapping a set of movies to a set of individual viewer

preferences, and then factorize this general matrix into two separate

low-rank matrices. One of these low-rank matrices maps individual

viewers to preferred movie categories, while the other low-rank

matrix allows mapping of individual movies to movie categories and

can thus provide a prediction of viewer preferences. In our applica-

tion, the low-rank matrix factorization allows each context to be asso-

ciated with a specific set of weights representing a rule which then

allows each stimulus to be mapped to a response. Similar to the pre-

diction of viewer preferences based on mapping movies to previously

learned movie categories, the correct response to a stimulus can be

F IGURE 1 The association rules for the context association task
with four spatial location contexts indicated by the numbers 1, 2, 3, or
4. Different stimuli indicated by A, B, C, or D can be presented in each

context. The correct association is indicated by arrows. For example,
stimulus B in Location 1 is associated with response X, but stimulus B
in Location 2 is associated with response Y. The underlined stimulus-
context pairs are hidden during training. The task is described in more
detail in another article in this special issue (Chang et al., 2019)

F IGURE 2 A different variant of the task testing the capacity for
broader generalization of the context association task to 16 contexts.
Different context-dependent rules are shown in the white and shaded
boxes on the right. These rules are applied to a larger number of
16 different contexts on the left, with the (white or shaded)
background indicating the rule for each context
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learned by mapping the context of that stimulus to a specific context

rule, and then the mapping can be generalized to other stimuli from

that same context. In the work presented here, matrix factorization

similar to the recommender system factorization is obtained by inter-

leaved training of different orders of presentation, proposed to result

from replay of neural representations in the hippocampus as

described next.

2.3 | Model and learning

We next develop a neural circuit model inspired by the factorization of

the response matrix R. The model employs two neural circuit models

working together. The interaction of these circuits could occur during

learning when stimuli are present, but would be further enhanced by

the forward and backward replay of neural representations during quiet

waking and sleep (Carr et al., 2011; Diba & Buzsáki, 2007; Karlsson &

Frank, 2009; Lee & Wilson, 2002). We denote the weight matrices of

the two circuits by M and G (cf. Equation (2)). Circuit M processes the

stimulus s and circuit G the context c.

2.3.1 | Primal circuit

We first consider a neural circuit which first processes the neural rep-

resentation of the stimulus and then the neural representation of the

context. This could be considered as one direction of replay of exam-

ples of the component stimulus and context events in the hippocam-

pus. The computation (Gc)>Ms we referred to earlier is organized as

follows. First, Ms is performed as:

(a)

(b)

F IGURE 3 The neural circuit
models under the two different update

rules. Dark cells indicate activation.
(a) Neural circuit model with the
stimulus input first followed by context
(primal order). For example, consider
input B3. Stimulus B activates the first
(top) cell of the B column in the left
network M, which selectively gates the
synaptic connectivity in network G to
activate one set of synapses (Group
1 = Row 1) that mediate the influence
of context on associations. Then, the
input of Context 3 in the right network
G has been gated by Group 1, so that
Context 3 activates the first (top) cell of
the third column in the right circuit and
generates the output response r = 1,
that is, Y. (b) Neural circuit model with
the context input first followed by
stimulus input (dual order). In the dual
order, the context is presented first and
processed by network G. This selects
an appropriate group that gates the
processing of the stimulus by
network M
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mi =
X4

j=1

Mijsj + μσi , i=1,…,p, ð3Þ

where mi represents the activation of a postsynaptic neuron, p is

the number of hidden neurons, and σi represents environmental

noise assumed uniform in [0, 1], with noise gain 0 < μ< 1. This popu-

lation of hidden neurons essentially represents the different ele-

ments of the generalized rule. Then, the neuron k = argmaximi with

the highest activation becomes the selected neuron. The activity of

this neuron acts as a gate for the circuit corresponding to G to pro-

cess the context c as r̂ =
P4

j=1Gkjcj , where r̂ denotes the activation of

a postsynaptic neuron. The activation level r̂ indicates the probability

of selecting response Y. Specifically, action X is selected if r̂ <0:5, and

action Y otherwise. A diagram of this kind of stimulus-first forward

propagation rule, to which we refer as the primal circuit, is shown in

Figure 3a.

A Hebbian learning rule is applied to the neural circuit model for

obtaining the best weight matrices M and G after observing some

training examples. The Hebbian learning rule is applied after each indi-

vidual instance, which includes sequential presentation of a stimulus

input s, a context input c and the correct response r. The update of

the weights in M and G is performed as follows. Suppose the gating

neuron k is activated after applying Equation (3). Let is = argmaxj = 1, …,

4sj be the index of the input stimulus and ic = argmaxj = 1, …, 4cj the

input context index. If the final response is correct, then the following

learning rule is applied, analogous to Hebbian Long-Term Potentia-

tion (LTP):

Mk,is =Mk,is + α, Gk,ic =Gk,ic + α, ð4Þ

where α ∈ (0, 1) is a learning rate. Otherwise, we perform an update

analogous to Long-Term Depression (LTD):

Mk,is =Mk,is −α, Gk,ic =Gk,ic −α: ð5Þ

Finally, we project the elements of M and G onto [0, 1], that is,

any element larger than 1 is set to 1 and any element smaller than 0 is

set to 0; the matrix elements with value greater than 0 and smaller

than 1 are not modified.

The above algorithm can be viewed as a process of either LTD or

LTP modulated by the error signal, based on whether the output

response r on a given trial is correct or not. These effects could corre-

spond to neuromodulation of the mechanisms of LTD or LTP (Adams,

Winterer, & Müller, 2004; Blitzer, Gil, & Landau, 1990; Bröcher,

Artola, & Singer, 1992; Hasselmo, Schnell, & Barkai, 1995). We can

establish the following convergence guarantee for the learning

process.

Theorem 1 The neural circuit model converges to an optimal state

under the primal-only update if each input (stimulus-context pair)

is sampled uniformly, noise is independent across time, and all

examples are provided during training.

The proof to the above theorem is almost the same as the proof to

Theorem 12 in our previous work (Zhu, Paschalidis, & Hasselmo,

2019); hence, we omit the proof.

2.3.2 | Dual circuit and primal-dual learning

Next we consider a symmetrical way of computing the response. This

could be considered to arise from an alternate order of replay of events

in the hippocampus, with context input occurring before stimulus input.

Specifically, the response can be written as r = (Gc)>Ms = (Ms)>(Gc),

which suggests the following circuit we call dual. In the dual circuit, we

will use ~G and ~M to denote the weight matrices. The context is

processed first to determine activation levels of gating units, by com-

puting ~Gc. The update is:

~gi =
X4

j=1

~Gijcj + μσi, ð6Þ

where ~gi represents the activation level of a gating neuron. The gating

neuron l = argmaxi~gi with the highest activation potential becomes the

selected neuron, gating the neural circuit corresponding to ~M , which

gates the stimulus input and produces the response r̂ =
P4

j=1
~Mljsj ,

interpreted as the probability of selecting Y (see the diagram in

Figure 3b).

To simultaneously learn the elements of G, M in the primal cir-

cuit and ~G, ~M in the dual circuit (all initialized with elements in [0, 1]),

we can use Hebbian updates analogous to Equations (4) and (5).

In the following, we combine the primal and dual circuit computations

in what we call a Hebbian primal-dual learning. Each stimulus-context

pair (s, c), with corresponding indices is, ic (defined earlier) and

correct response r, is first processed by the primal circuit

(cf. Equation (3)). Using k as the index of the activated gating neuron,

we update:

Gk,ic =Gk,ic + αsgn r−Gk,icð Þ, ð7Þ

where sgn(x) is the sign of x. The input is also processed using the dual

circuit (cf. Equation (6)) which activates gating neuron l. We update:

~Ml,is = ~Ml,is + αsgn r− ~Ml,is

� �
: ð8Þ

In both Equations (7) and (8), the argument of the sgn function is

r− r̂, the difference between the correct and predicted response. After

each primal-dual (Equations (7)–(8)) update, we project the elements

in ~M and G onto [0, 1]. The algorithm keeps performing one primal

and one dual update for each input presented. After K inputs

processed, the primal and dual weights are synchronized:

M= ~M, ~G=G: ð9Þ

We call K the synchronization period of the update.
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The following result (shown in Data S1) provides a guarantee of

convergence.

Theorem 2 The neural circuit model converges to an optimal state

under the primal-dual update with K = 1 if each stimulus-context

pair is sampled uniformly, noise is independent across time, and all

examples are provided during training.

3 | RESULTS

3.1 | Simulation results

We use simulations to evaluate the performance of the proposed models.

In a first simple example we consider the behavioral task shown in

Figure 1, and set the number of the gating neurons to p = 2 and the syn-

chronization period K = 1. The accuracy of the neural circuit models, mea-

sured by the number of stimulus-context pairs correctly processed in

testing, is shown in Figure 4 as a function of the number of learning itera-

tions. The accuracy increases during the training process and converges

to 16 accurately identified pairings.

We next investigate the capacity of the neural circuits to generalize

to stimulus-context pairs not seen during training. For both tasks shown

in Figures 1 and 2, we fix the learning rate to α = 0.2, the noise gain to

μ = 0.99, and vary the number of hidden neurons p. The neural circuit

models are initialized with the value 0.5 in all elements of the two matri-

cesM and G, and are trained until convergence. For each instance m, we

perform 1,000 trials and report the average accuracy (normalized to 1) of

the model for all the stimulus-context pairs, including the hidden ones

(which were not used for training). For the behavioral task shown in

Figure 1, the underlined inputs are hidden during training. For this task,

the generalization results are shown in Figure 5a. In light of Thm. 2, which

requires that all inputs are used during training, it is interesting that

primal-dual learning yields 100% accuracy. Apparently, even though it is

possible for the neural circuit to converge to a non-optimal state, the

corresponding probability is very low as quantified by the simulation

results in Figure 5a (square symbols) that show no instances of non-

optimal states. On the other hand, primal-only learning does not lead to

good generalization except when there are only two gating units (the

minimum required for the task).

Figure 3 shows how the network generates a correct response

for a previously seen stimulus-context pair B3 (stimulus B, Context 3).

The network also generalizes to hidden stimulus-context pairs, such

as A1, which is underlined in Figure 1. A1 is not seen during learning,

but the presentation of other stimuli have already created the connec-

tivity shown in Figure 3. For example, in the primal model, learning of

A2, A3, and A4 results in stimulus A activating Group 1, and learning

of B1 results in Group 1 gating stimulus 1 to generate output X (r = 0,

white). In the dual model, learning of B1, C1, and D1 results in Con-

text 1 leading to Group 1, and learning of A4 results in gating by

Group 1 to include A going to X (r = 0, white). Thus, when A1 is pres-

ented for the first time after learning, in the primal model, input of

stimulus A activates the gating unit for Group 1, and this gating of

row one of connectivity ensures that input of Context 1 results in out-

put X (r = 0, white). Thus, the gating process allows stimuli and con-

text input to gate activity that allows generalization for correct

responses to stimulus-context pairs not seen during learning.

To better understand why increasing the number of hidden neu-

rons does not impact performance for primal-dual learning, we run

the algorithm for p = 6 and K = 1. The algorithm converges to the fol-

lowing matrices:

M=

1 1 0 0

1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1

0 0 1 1

2
666666664

3
777777775
, G=

0 1 1 0

0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 1

1 0 0 1

2
666666664

3
777777775
, ð10Þ

where Rows 1, 2, and 4 are identical and correspond to Group

1 (cf. Figure 3a) and Rows 3, 5, and 6 correspond to Group 2. It is evi-

dent that primal-dual learning enforces a low-rank property and sim-

ply replicates the appropriate entries when the number of hidden

neurons exceeds the minimum necessary.

We separately tested broader generalization in a different variant

of the task with a larger number of different contexts as shown in

Figure 2, which has 16 contexts rather than the four contexts shown in

the task in Figure 1. For testing this broader generalization, there were

two stages of training, one stage to learn the association rules and the

second stage to determine which rule should be applied to each con-

text. During the initial stage of training to learn the rules, only examples

in Contexts 1–4 are provided during training. As with the smaller task

of Figure 1, one context-stimulus pair for Contexts 1–4 is hidden during

training. After the neural circuit converges on the four contexts, we

implemented a second stage of training in which we randomly choose

one context-stimulus example from each of Contexts 5–16 and present

them 10 times repeatedly so that the model can learn from them. We

then evaluate the generalization performance using all inputs from the

16 contexts. Thus, in this different variant of the task, the network has

been trained on less than 1/3 of the inputs across the 16 contexts. The

result is shown in Figure 5b. Again, primal-dual learning exhibits a very

high generalization ability, whereas primal-only learning merely remem-

bers what was previously learned.

To explore the convergence properties of the two types of Hebbian

learning rules with respect to the hyperparameters, we trained our neuralF IGURE 4 Accuracy of a primal-dual neural circuit
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circuit models with different hyperparameters. Under each hyper-

parameter, we run the simulation for 1,000 trials and report the average

convergence time of the model. The convergence time is defined as the

number of learning iterations before the neural circuit reaches the state

that produces all correct actions on all training input pairs.

We considered the task of Figure 1 and first evaluated the effect

of the learning rate α. We fixed the noise level to μ = 0.99 and the num-

ber of hidden neurons to p = 2. We also varied the synchronization

period K (abbreviated as SP in Figure 6a) in the primal-dual learning.

The results are shown in Figures 6a,b. For both types of learning, there

is an optimal learning rate (not too small and not too large) minimizing

convergence time. The convergence time also increases with K. Finally,

we observed that primal-dual training requires a much smaller amount

of time to converge compared with primal-only training.

Then, we explored the dependence on the noise gain μ. We set

α = 0.2 and p = 2 during training. Figures 7a,b depict average conver-

gence time as a function of noise gain. When the noise gain is high, the

neural circuit models can be easily misled by noise and oscillate near the

optimal states. But when the noise level is low, it is possible for a neural

circuit to too strongly trust what it has learned and become “stuck” in a

local minimum. (Notice that convergence time can increase as μ

approaches zero for both learning modes.) Again a huge difference in the

convergence times is shown for primal-dual versus primal-only training.

Finally, we evaluate the convergence speed with respect to the

number of hidden neurons. We set α = 0.2 and μ = 0.99 during train-

ing. The results are shown in Figure 8a,b. When the number of hidden

neurons increases, the model complexity increases. Therefore, it takes

more time for the neural circuits to converge.

3.2 | Experimental results

Based on our analysis and simulation results, we hypothesize that

humans who do well in the context-association tasks are able to learn a

low-rank synaptic matrix structure relevant to storing information in

the human cortex that could thereby help achieve better generalization

to a wider range of contexts. In this section, we present an analysis of

behavioral data from human subjects performing the task of Figure 1;

testing the hypothesis of low-rank response matrix structure.

3.2.1 | Participants

The experiments involved collection of behavioral data from the work

in (Chang et al., 2017, 2019). There were 70 valid healthy young par-

ticipants in the experiments. These participants were recruited from

(a) (b) F IGURE 5 Comparison of
generalization accuracy (normalized to 1).
(a) The primal-dual model (top, square
symbols) shows perfect generalization
accuracy for the context-association task
with four contexts as shown in Figure 1.
(b) The primal-dual model (top, square
symbols) shows perfect accuracy for the
task variant testing broader generalization

to 16 contexts as shown in Figure 2

(a) (b) F IGURE 6 Average convergence
time as a function of learning rate for
primal-dual training (a) and primal-only
training (b)
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Boston University and received monetary compensation for their par-

ticipation. All experimental procedures were approved by the Boston

University Institutional Review Board. All participants were cogni-

tively intact, provided written informed consent, and at the conclusion

of the experiment were debriefed.

3.2.2 | Task procedure

For the human participants, the task stimuli were realistic visual

objects selected from a public database (Brady, Konkle, Alvarez, &

Oliva, 2008). Among the visual objects, five of them are used as the

first (cue) stimuli (A, B, C, D, E) and three of them are used as the sec-

ond stimuli (X, Y, Z) such that the association of the two stimuli guides

the response of the participant. The association rule for cue stimuli A,

B, C, and D, in four contexts, and second stimuli X and Y that guide

responses, was as in Figure 3. Stimulus E was always associated with

second stimulus Z (the “easy rule”).

During the task, cue and associate stimulus in one of four quad-

rants on a screen were sequentially presented to the participants. The

four quadrants of the screen represent the four contexts. Each input

was presented on the screen for 1,500 ms and another 1,500 ms was

given for participants to determine if the presented stimulus was

associated with the presented second stimulus (“match” or “no

match”). After the participant's response, the correct response was

provided for 1,000 ms. Finally, there was a 500 ms interval between

repeated trials.

3.2.3 | Training condition

Two types of training sequences were used for the human subjects.

The first one was a context-spaced training condition. In this condition,

one cue (e.g., A) was presented with corresponding second stimulus

(X or Y) in all spatial quadrants (1, 2, 3, 4) before a new cue (e.g., B) and

its permutations of quadrants and second stimuli were presented. The

order of cue objects was randomly generated for each block, and trials

within each chunk were randomly generated as well. The four simple

rule trials were randomly distributed throughout the block of 36 trials.

The second training condition was a context-massed training con-

dition. In this condition, all cues (A, B, C, D) and associate stimuli (X, Y)

permutations were presented in a single quadrant (e.g., 1) before mov-

ing to a new quadrant (e.g., 4) and its permutations of cues and associ-

ate stimuli. Again, the order of spatial quadrants was randomly

generated for each block, and trials within each chunk were randomly

generated as well.

(a) (b)F IGURE 7 Average convergence time
as a function of noise gain for primal-dual
training (a) and primal-only training (b)

(a) (b)F IGURE 8 Average convergence
time as a function of the number of
hidden neurons for primal-dual training
(a) and primal-only training (b)
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3.2.4 | Response matrix

Each subject completed 320 trials. One trial in both training condi-

tions consists of 10 loops, in which a complete set of context-stimu-

lus-second stimulus triples are enumerated using the two training

conditions. For each participant, a response matrix is constructed

using all responses in a single loop as follows. If the subject reports a

match then the response of the (stimulus-context-second stimulus)

triplet shown to the subject is recorded as the response, otherwise

(if no-match is reported), then the complementary response is

recorded. We sum across all trials to form the response matrix. For

example, if (A-1-Y-match) and (A-1-X-no match) are in a loop, then

the response matrix R has R1, 1 = 2 (response Y counts for 1 and

response X for 0). If (A-1-Y-match) and (A-1-X-match) is observed,

then R1, 1 = 1. If (A-1-Y-no match) and (A-1-X-match) is observed,

then R1, 1 = 0.

The rank of the response matrices and the corresponding accu-

racy is shown in Figure 9. During the training process, the average

accuracy increases while the rank of the response matrix decreases.

The relationship between the matrix rank and the accuracy is shown

in Figure 9a. It is clear that the lower the rank of the response matri-

ces is, the higher the accuracy on the behavioral task was.

We also segregated the subjects into two cohorts—the good

learners and the less effective learners—and computed the average

rank of the response matrices in each cohort. We consider a subject

as a good learner if his/her accuracy during the last three loops is

above the median, and a less effective learner if this accuracy is below

the median. We calculated the mean of the response matrices of good

and less effective learners in their last three loops. The good learners

have an average rank of 2.92 and the less effective learners have an

average rank of 3.59, with a p-value of less 1% (using a t test across

the two sets of samples). This suggests that the rank of the response

matrix is the critical factor for good performance in the context asso-

ciation task and our primal-dual learning algorithm, which efficiently

discovers the low-rank property of the response matrix, is useful for

understanding the performance in the task.

4 | DISCUSSION

In this article, we address potential mechanisms for learning a set of

context-dependent rules involving a symmetrical set of associations

between specific cues and specific responses, and generalizing to a

number of hidden stimulus-context pairs. In addition, in a different

variant of the task, we demonstrated that the model can perform with

high accuracy when tested on broader generalization of these

context-dependent rules to a large number of additional contexts

when an example association is presented in each new context. A sim-

plified neural gating model presented here uses the recommender sys-

tem framework to perform matrix factorization that maps each

example of a contextual association to the correct response and gen-

eralizes with perfect accuracy. This illustrates how gating units that

regulate network connections can be used to learn the initial set of

rules concerning associations in a subset of contexts, and to effec-

tively generalize to a larger set of contexts. Behavioral data from this

task were analyzed in terms of the rank of the matrix that describes

the responses of the participants. The analysis shows that the forma-

tion of a lower rank matrix was associated with better performance in

the behavioral task.

One may postulate that the symmetric nature of the tasks in both

Figures 1 and 2 contributes to the generalization ability of primal-dual

learning (yielding 100% accuracy as we discussed in Section 3.1). We

considered additional tasks with no such symmetry. Specifically, we

(a)

(b)

(c)

F IGURE 9 Experimental results. (a) Relationship between
response matrix rank and accuracy for subjects trained in the context-
space mode. (b) Average accuracy of the subjects through time.
(c) Average rank of the response matrix of the subjects through time
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considered a task with five contexts and two association rules (three

contexts using Rule 1 and the remaining two contexts using Rule 2)

and a task with four contexts and five stimuli. In both these tasks,

primal-dual learning achieved 100% accuracy in the generalization

task. This suggests that the generalization ability of primal-dual learn-

ing is rooted in the existence of a low-rank factorization of the

response matrix (i.e., some association rules get repeated in some con-

texts) and not on the symmetry of the task.

The pattern of synaptic connectivity learned by this network

(Figure 3) shows a potential mechanism for the learning of selective

responses to item-context pairings, as observed in neurophysiological

data (Komorowski et al., 2009). For modeling the hippocampal

response, the input representing context and stimulus item in this

model could be considered to represent the sensory input for context

and item arriving in the entorhinal cortex after processing through

multiple cortical regions. These representations then interact via

matrices representing synaptic connectivity from the entorhinal cor-

tex to hippocampal regions CA3 and CA1 and from region CA3 to

CA1. The arrival of contextual information into the entorhinal cortex

could activate a contextual representation in region CA3 that inter-

acts with the synaptic input representing items. For example, a con-

textual representation in CA3 for Group 1 or Group 2 (Figure 3)

could interact with the connectivity from the entorhinal cortex

to region CA1 via multiplicative influences on synaptic input

(e.g., Hasselmo and Eichenbaum (2005); Katz et al. (2007)) to acti-

vate neurons coding a conjunction of context and item stimulus that

could further influence the selection of a behavioral response. In this

manner, the interaction of a context input (e.g., represented by input

from CA3 to CA1) with a stimulus input (represented by inputs from

the entorhinal cortex to CA1) can regulate the selective firing for a

specific stimulus in a specific context, as shown in neurophysiologi-

cal data (Komorowski et al., 2009). The conjunctive interaction of

CA3 and entorhinal input to CA1 has been used previously

(Hasselmo & Eichenbaum, 2005; Katz et al., 2007) to model the

mechanisms for context-dependent firing in the hippocampus during

spatial alternation, but these previous simulations did not address

the potential mechanism for generalizing this response to a wider

range of different contexts.

The mechanisms of gating were previously explored in a neural

network simulation of this task (Hasselmo & Stern, 2018) in which

gating units activated randomly during learning would regulate the

pattern of connectivity for subsequent sensory input. That network

was able to generalize when only a small number of gating units were

used, because this forced each unit during learning to cover the full

range of associations within a context, allowing one association to

reactivate that same gating unit to provide the full range of associa-

tions within that context. However, when larger numbers of gating

units were used, this prevented accurate generalization, because

subsets of associations could be coded on different gating units,

preventing full generalization by reactivation of an individual gating

unit. The recommender system framework presented here avoids this

problem by ensuring that each gating unit (row of the matrix) is associ-

ated with a second matrix representing the full set of associations.

Future studies must address how the learning of the symmetrical

associations of stimulus–response pairs in different contexts could be

combined with the learning of the baseline association between stim-

ulus E and response Z that does not change between the different

contexts.

These networks rely on a framework in which the activity of indi-

vidual units gate a full matrix of connectivity at the subsequent step.

This gating could arise from different physiological mechanisms. In

one potential mechanism, the gating unit could be an axoaxonic inter-

neuron that directly regulates the output from a subset of pyramidal

cells within the circuit (Baude, Bleasdale, Dalezios, Somogyi, &

Klausberger, 2006; Cutsuridis & Hasselmo, 2012). Another potential

mechanism could involve the nonlinear interaction of adjacent synap-

ses on the dendritic tree of pyramidal cells. In this framework, the

activity of a first set of gating neurons may cause synaptic currents in

the dendritic tree of postsynaptic neurons that are adjacent to the

synaptic inputs from a second set of neurons. The nonlinear interac-

tion of synapses can occur due to voltage-sensitive postsynaptic

channels known as N-Methyl-D-Aspartate (NMDA) receptors, as

modeled extensively in previous work (Koch & Poggio, 1992; Mel,

1993; Poirazi et al., 2003). NMDA receptor channels only allow cur-

rent to pass through when postsynaptic depolarization of voltage cau-

ses release of magnesium blockade of the channel that then allows

presynaptic glutamate release to activate excitatory ionic current

through the channel. The synapses arising from gating units could pro-

vide sufficient postsynaptic depolarization to release magnesium

blockade, thereby allowing the glutamate released from the second

set of synaptic inputs to cause suprathreshold excitatory currents in

the postsynaptic neurons. Thus, the synapses from the second set of

input neurons on the postsynaptic neuron have strength zero unless

they are adjacent to an active gating synapse. In this manner, the gat-

ing unit can set the pattern of active connectivity within the circuit.

Other potential mechanisms for gating could involve circuit level mul-

tiplicative interactions (Nezis & Van Rossum, 2011; Sherfey et al.,

2018) that can be implemented by interacting populations of neurons

(Eliasmith & Anderson, 2004) or gating by the interaction of local

oscillatory dynamics of cortical circuits with the dominant frequency

of input from other regions (Buschman et al., 2012; Lundqvist et al.

2018,b; Sherfey et al., 2018).

This framework for gating focuses on local interactions within

neocortical circuits. In contrast, many other gating mechanisms have

been proposed to involve interaction of different regions, such as the

interaction of the basal ganglia with cortical circuits. These are not

mutually exclusive theories. These other types of gating models could

potentially be utilized to learn and generalize the contextual associa-

tion task as well.
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