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clinical development include novel opiates,
adenosine kinase inhibitors, nicotinic agon-
ists and various high-tech approaches, such
as spinal implantation of analgesic-produc-
ing chromaffin cells. Since most conceptual
advances have occurred in the last decade
there is every reason to be optimistic that,
after many years of limited progress, anal-
gesic drug development programmes will
lead to truly novel, and better, chronic
pain therapies.
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V I E W P O I N T

The hippocampus as an associator of
discontiguous events
Gene V. Wallenstein, Howard Eichenbaum and Michael E. Hasselmo

The hippocampus has long been thought to be an important cortical region for associative learning
and memory. After several decades of experimental and theoretical studies, a picture is emerging
slowly of the generic types of learning tasks that this neural structure might be essential for solving.
Recently, there have been attempts to unify electrophysiological and behavioral observations from
rodents performing spatial learning tasks with data from primates performing various tests of
conditional and discrimination learning.Most of these theoretical frameworks have rested primarily
on behavioral observations.Complementing these perspectives,we ask the question:given certain
physiological constraints at the neuronal and cortical level, what class of learning problems is the
hippocampus, in particular, most suited to solve? From a computational point of view, we argue
that this structure is involved most critically in learning and memory tasks in which discontiguous
items must be associated, in terms of their temporal or spatial positioning, or both.
Trends Neurosci. (1998) 21, 317–323

IT HAS BEEN almost 40 years since the first report of
a severe memory impairment in patient HM, follow-

ing a bilateral temporal lobectomy for treatment of a
seizure disorder1. This initial observation has been fol-
lowed by numerous lesion studies in rodents and non-
human primates, in attempts to replicate the result
and to delineate further the anatomical substrates for
learning and memory2–4. From these data, it has
become clear that several medial temporal lobe areas,
particularly the hippocampus (Ammon’s horn and
dentate gyrus) and adjacent parahippocampal regions
(for example, entorhinal, perirhinal and para-
hippocampal cortices), play an important role in cer-
tain forms of memory. However, a greater challenge
has been to distinguish between the specific types 
of memory representations that are hippocampal
dependent and those that are not and, in addition, to
determine the neural mechanisms that support such
phenomena. 

Interestingly, both amnesia patients and animals
with hippocampal system damage exhibit ‘time-
dependent impairments’ in behavioral tasks generally
described as associative or relational in nature5,6. HM
and patients with medial temporal lobe damage show
intact short-term working memory, although they
exhibit severe deficits in the recall of events that were
encountered only a brief period (~1 min or longer)
before testing7 (see Ref. 8 for a review of retrograde
impairments). This deficit in intermediate-term mem-
ory is also seen in hippocampal-damaged animals per-
forming tests of associative learning, such as time in-
terval discrimination. In this paradigm, subjects must
respond to indicate the end of an estimated time
interval in the presence of a stimulus cue9. Rats with
fimbria–fornix lesions (which disconnect the hippo-
campus from subcortical innervation) and normal rats
show similar response rates and accuracy using this
standard protocol. However, when the experiment is
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constructed such that the time period to be estimated
is interrupted briefly (for example, if the stimulus cue
is removed), normal rats estimate the total interval by
adding together the (estimated) time periods before
and after the interruption9. In contrast, lesioned ani-
mals ignore the estimated time period before the
interruption and initiate timing after the interruption
is removed9.

Rawlins5 has suggested that many experimental
tasks that are sensitive to hippocampal dysfunction
have an inherent temporal ‘discontiguity’ in their
design. By discontiguity, we mean that the events that
must be associated together do not overlap. Another
example of this can be found in classic conditioning
of the nictitating-membrane response in rabbits.
During training, a conditioned stimulus (CS; tone) is
presented before an unconditioned stimulus (UCS; air-
puff to eye). When the two stimuli overlap in time,
animals with hippocampal lesions and normal ani-
mals both learn the response equally well10. However,
when there is a brief delay period (0.5 s) between the
two stimuli, hippocampal-lesioned animals show
marked impairment in learning compared with normal
animals10. Similar observations using a classical con-
ditioning procedure with rats have been reported11.
Taken together, these data suggest that animals with
hippocampal impairment have difficulty in associating
temporally discontiguous events.

Spatial discontiguity

There is another class of tasks, however, that hippo-
campal-damaged animals are particularly poor at per-
forming relative to controls, in which a discontiguity
in the ‘spatial positioning’ of related items (rather
than being temporal in nature) must be bridged.
Previous research has shown that rats can use extra-
maze cues to guide performance during spatial learn-
ing tasks12,13. Using a radial arm maze, Suzuki and col-
leagues found that rotating a set of extramaze cues or
the maze itself failed to disrupt task performance13.
However, transposing the cues, which alters the spa-
tial relationship among stimuli, impaired performance
significantly. These results are consistent with the cog-
nitive mapping theory of hippocampal function,
which postulates that navigational behavior is guided
by learning the spatial relationships among a constel-
lation of stimuli in an environment rather than by
any one specific cue2. Indeed, previous research has
shown that the spatial learning performance of hippo-
campal-damaged rats depends critically on the place-
ment of extramaze cues14,15. For example, when visual
stimuli used to guide performance are situated in close
proximity to one another, forming a compound cue,
both hippocampal-damaged rats and controls learn
maze tasks equally well. However, when the same cues
are distributed around the maze, requiring the capac-
ity for forming associations among spatially disparate
items to guide performance, hippocampal-damaged
rats typically show significant impairment relative 
to controls14. Thus, the idea that the hippocampus 
creates a cognitive map by storing relationships
among spatially distributed stimuli during navigation2

is predicated on the assumption that this neural sub-
strate can support associations among discontiguous
cues.

When one considers the spatial and temporal data
together, these behavioral observations suggest that

one general contribution of the hippocampal system
is that it provides an associative link between discon-
tiguous events. As shown above, the nature of the dis-
contiguity can occur in different domains. What then
is special in the neural structure of the hippocampal
system that enables this particular contribution to
learning? 

Context and the hippocampus

Part of the answer to this question might be found
in the way contextual information is represented neur-
ally in the hippocampus. Within our present frame-
work, ‘context’ can be thought of as a stimulus envi-
ronment that is changing much more slowly than the
specific stimuli being learned. To illustrate how cellu-
lar activity related to context might be important for
learning discontiguous information, we return to the
example of associating temporally disparate events. At
the cellular level, it has been shown that concurrent
activation of a presynaptic and postsynaptic cell pro-
vides the physiological basis for the induction of a
long-term potentiation (LTP) of the postsynaptic
response16,17. Thus, the synaptic efficacy or association
between two cells can increase with their co-activation.
Detailed investigations of the receptor kinetics under-
lying this phenomenon have indicated that a time
window exists, whereby the postsynaptic cell must be
sufficiently depolarized within ~100 ms of presynaptic
excitation for LTP induction to occur18,19. If one im-
agines a group of cells that encodes one feature in a
learning environment while another group of cells
encodes a different feature, then these features might
be ‘bound’ together neurally by the co-activation of
their cellular representations using an LTP-like
process. A problem arises, however, if the features
being bound together are perceived at different points
in time, and if the inter-event time exceeds the time
window normally associated with LTP induction
(~100 ms). Starting with the known biophysical
mechanisms of LTP induction; how are temporally
discontiguous events (having an inter-event time
greater than ~100 ms) associated?

Earlier theoretical and computational models of
associative memory showed that static patterns of in-
formation can be stored in simplified networks of cells
using an LTP-like learning rule20–23. These models are
capable of learning input patterns and recalling them
during completion tasks in which a degraded version
of the full pattern is presented24. However, until re-
cently, no theoretical model has been able to learn and
recall time-dependent patterns of events (sequence
information) without relying on mechanisms un-
supported by existing physiological observations (for
example, Refs 25,26). Primarily, this is because experi-
mental observations of hippocampal cellular behavior
have not pointed to a clear mechanism that could
support such a process. In the last year, however, 
several physiologically realistic models have emerged
that learn and recall sequence information and, thus,
are capable of solving the time-spanning problem
alluded to above27–30. All of these models are based 
on hippocampal region CA3, as its pronounced ana-
tomical pattern of recurrent excitatory connections
among pyramidal cells results in an extensive network
of potential associations31. 

During the course of learning a sequence of items
separated in time, these models develop what can be
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called ‘context fields’ as illustrated
in Fig. 1 (Refs 27,29,30,32). In 
simulations of sequence learning, 
a single item is most often repre-
sented by a unique group of cells
firing at the same time (five cells in
this figure). With respect to hippo-
campal physiology, this pattern of
input can be considered analogous
to the afferent activation of a sub-
set of CA3 pyramidal cells via the
perforant path, owing to a unique
pattern of sensory events. When a
cell that encodes a sequence item
fires closely in time to a synapti-
cally connected cell (that might be
firing at that particular moment as
a result of recurrent excitation
from another cell), the association
between the two cells is increased
in proportion to their temporal
overlap. That is, of course, assum-
ing that they fire within ~100 ms
or less of each other, given the
temporal constraints on LTP induc-
tion18,19. This simple Hebbian-type
learning rule used to approximate
LTP in several of the models results
in a gradient of different synaptic
strengths between cells that en-
code the items in a sequence and
cells that are firing at random in
the background, owing to recurrent
activation from other pyramidal
cells. With repeated exposure to
the same sequence of items, this
gradient of synaptic potentiation
from cells encoding the sequence
causes background cells to fire in a
sustained manner for a period of
time that is proportional to the
potentiation strength. This marked
change in background firing can be
seen most readily by comparing
Fig. 1A, which shows a sample of
simulated pyramidal cell activity 
in our own model29,30,33 during the
first learning trial, with Fig. 1B,
which shows the fourth learning
trial. In this figure, each item (13 
in total) in the sequence is repre-
sented by the co-activation of a
unique set of five simulated pyrami-
dal cells shown at the top of both
graphs. As can be seen, the initially random back-
ground activity (Fig. 1A) becomes organized with
learning (Fig. 1B) to the point where certain cells
begin to respond to contiguous segments of the longer
sequence. These simulated context-sensitive cells have
similar characteristics and development to hippocam-
pal place cells that fire selectively when an organism is
in a specific location of a test environment (place
field) during a spatial learning task27,29,32. In this case,
one could think of a navigational path being learned
as a series of specific locations in a particular order.
Thus, the full path can be represented by a serially
ordered sequence of items. 

In these computational models, context-sensitive
cell firing serves to ‘glue’ together subsequent items in
a sequence, even when the time period between them
is an order of magnitude longer than the time frame
for LTP induction (~100 ms). This is because the ith

and ith + 1 items in a sequence are associated with 
each other indirectly through their mutual association
with one or more context-sensitive cells that fire at
that particular portion of the full sequence. Indeed,
because many of the context fields overlap, items with
a very large temporal disparity (that is, several orders
of magnitude greater than the time frame for LTP
induction) can also be associated using this general
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Fig. 1. Context field development. Each rectangle shows a subset of 50 simulated pyramidal cells firing across time. For
clarity, each action potential is represented as a vertical line. A unique group of five cells firing at the same time encodes
a single item in a 13-item sequence. These items are encoded by cells firing in the top portion of each rectangle. This
pattern of input can be thought of as representing the afferent activation of a subset of hippocampal CA3 pyramidal
cells via the perforant path owing to a specific pattern of sensory events. (A) Notice the presence of unorganized back-
ground firing in pyramidal cells during the first learning trial that do not encode sequence items directly. This firing stems
from activity at recurrent excitatory synapses. Repeated exposure to the same sequence can lead to enhanced synaptic
potentiation between cells firing in the background and cells that encode sequence items if they fire closely to each other
in time. This is due to a simple Hebbian-type learning rule used to approximate conditions that result in the long-term
potentiation (LTP) of a synapse (see text for details). (B) After the fourth learning trial, this repeated potentiation leads
to a condition where background cells begin to respond to the appearance of contiguous segments of the entire
sequence. The portion of the full sequence to which the cell responds is called the ‘context field’ of the cell. This is some-
what analogous to the formation of place fields, where a cell fires selectively when an organism is in a specific location
comprising a longer navigational path. Because the context fields overlap, the entire sequence can be reconstructed by
interdigitating them in the proper order. Context fields develop in a variety of neural models that use different single-
cell approximations and different learning rules as long as certain critical factors regarding network topology and activity
levels are satisfied (see text). 
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mechanism, where one context-sensitive cell potenti-
ates the firing of a second one29. Thus, context fields can
be thought of as a biophysical realization within CA3
of earlier behavioral theories positing a role for the
hippocampus in associating temporally discontinuous
stimuli5,34,35. 

A physiological recipe for context field
development

It is important to note that while these models are
based on hippocampal physiology, the essential com-
ponents for context field development might also
exist in other brain areas, particularly in the prefrontal
cortex36 and perhaps in the parahippocampal
region37,38. An interesting feature of context fields is
that they develop in a diversity of different neural
models, ranging from those that use simple integrate-
and-fire representations27,32 to those that incorporate
multi-compartmental approximations of the different
cell types known to exist in region CA3 (Refs
29,30,33). Thus, their development is robust with
regard to specific parameters at the single-cell level
and, as will be noted below, with respect to the par-
ticular learning rule implemented in the model. The
critical factors that determine whether or not context
fields develop reside at the network level and have all
been seen experimentally in the hippocampus. These
factors include the following: 

(1) Asymmetric connections among excitatory
synapses allow items occurring at different times to 
be associated together in an order-preserving manner.
If connections are symmetric in a model (that is, cell
A contacts cell B and cell B in turn contacts cell A), 
the ith item encoded by a group of cells will potentiate
cells encoding the ith + 1 and ith − 1 items equally. This
symmetry condition must be broken to maintain the
correct order of items. In the hippocampus, it has
been estimated from in vitro recordings that a single
CA3 pyramidal cell contacts ~1–5% of its neighboring
pyramidal cells39,40. This sparse connectivity among
pyramidal cells leads to a highly asymmetric network,
assuming a random distribution of connections. 

(2) A low level of diffuse background pyramidal cell
firing during learning provides a source of cellular
activity for forming potentiated associations with cells
encoding the items to be remembered (Fig. 1A). It is
the sustained firing by these cells that results in con-
text field development. Sources of background activity
include firing owing to recurrent excitation within
region CA3 as well as diffuse innervation from cholin-
ergic cells in the basal forebrain41. Background cells 
firing randomly are associated, through an LTP-like
process, with cells encoding an input item by varying
degrees, depending on how closely in time they are
activated relative to one another. This gradient of dif-
ferent synaptic association strengths becomes more
robust with repeated presentation of the same
sequence of items, and can lead progressively to sus-
tained firing of background cells with the appearance
of specific input items (formation of context fields).
The size of the context field (measured as the number
of contiguous items in the sequence to which the cell
responds with active firing) varies proportionately to
the average level of synaptic potentiation in each cell.
Hippocampal recordings from rodents suggest that
only a small fraction of pyramidal cells (10–20%) 
are active at any given point in time in vitro42 and 

in vivo43–45. This range of activity levels is, in fact, con-
sistent with model parameters found to produce the
most stable context fields during learning27,29,30. 

(3) An LTP-like (Hebbian) learning mechanism at
excitatory synapses of pyramidal cells provides a basis
for making potentiated associations between different
cells. It appears that context field formation is fairly
robust with respect to this factor, occurring in a vari-
ety of models using very different learning rules27,29.
Repeated experimentation has shown such a physio-
logical mechanism to exist in the hippocampus16,17. 

(4) Periodic switching between afferent and intrin-
sic sources of synaptic activity driving context-sensi-
tive cell firing enables the system to update current
sensory information regularly from regions extrinsic
to CA3, while allowing intrinsic associations (at recur-
rent collaterals between different context-sensitive
cells) to be potentiated further by this information29.
This means that a context field arises through a
process where afferent synaptic transmission stem-
ming from sensory events (the items in a sequence) is
dominant for a brief period of time over synaptic
transmission from other context-sensitive cells, allow-
ing potentiated associations to form between the 
context-sensitive cell and cells encoding the sequence
items. This is followed by an equally brief period of
time in which synaptic transmission between differ-
ent context-sensitive cells (intrinsic fibers) within
region CA3 dominates over synaptic transmission
from afferent sources, in order to potentiate associ-
ations between these cells without interference from
competing sensory information. 

This fourth mechanism has a basis in recent in vitro
observations that the γ-aminobutyric acid-B (GABAB)
receptor agonist baclofen selectively decreases the
amplitude of excitatory postsynaptic potentials
(EPSPs) in hippocampal CA1 pyramidal cells induced
by Schaffer collateral stimulation (stratum radiatum),
while showing no significant effect on perforant path
transmission46,47. Thus, communication between pyra-
midal cells within the hippocampus (intrinsic and
association fibers) is suppressed, in part, by GABAB

receptor activation, while sensory signals arising from
afferent fibers outside this cortical area are relatively
unaffected. Consequently, the relative contribution of
information from inside and outside the hippocam-
pus is shaped by this modulation. Recent biophysical
modeling has shown that such GABAergic modulation
might occur in synchrony with the endogenous
4–10 Hz theta rhythm29,30, a prominent field oscil-
lation present throughout the entorhinal–hippocampal
system during exploratory behavior and learning2,48.
Previous reports have suggested that the frequency of
the theta oscillation might be optimal for inducing
LTP using patterned stimuli49. Additional investigation
has shown that LTP induction at theta frequency stimu-
lation is dependent on GABAB receptor activation 
in vitro50. This suggests that GABAB receptor-activated
modulation of synaptic transmission might play a role
in certain forms of hippocampal plasticity during
behaviors that foster theta activity. 

Computational modeling in our laboratory and
others suggests that either an increase in context field
size or an increase in the degree of overlap between
fields is required to associate temporally discontiguous
items with very large inter-event times (that is, several
orders of magnitude larger than the time frame for
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LTP induction). Context fields overlap with associ-
ations made between different context-sensitive cells
only when synaptic transmission and potentiation
between them does not have to compete continually
with afferent activity from cells encoding the input
pattern items29,30. Thus, some modulation must occur
that enables a period of time to occur within a theta
cycle in which increased potentiation between con-
text-sensitive cells is encouraged, without interference
from cells encoding the afferent input pattern. In 
our particular implementation of the critical factors
listed in this section, rhythmic variation in network
GABAB-receptor-mediated conductance levels pro-
vides a source of switching between periods (within a
theta cycle) where potentiation between afferent cells
and context-sensitive cells dominates (afferent dy-
namics) to periods where potentiation between differ-
ent context-sensitive cells dominates (intrinsic dy-
namics)29,30. Numerous simulations have shown that
context fields fail to develop enough overlap between
them to learn and recall accurately input items sep-
arated by as little as 200 ms without such switching
between afferent and intrinsic dynamics during theta
oscillations29,30. 

Task classification via neural mechanisms

Levy27 has remarked that models capable of se-
quence learning demonstrate a capacity for solving a
wide variety of tasks thought to be hippocampal
dependent. Thus, in addition to being able to solve
time delay29,30 and sequence completion tasks27,29,30,
models with the general architecture described above
that develop context fields can also solve other classes
of tasks that involve discontiguities in the serial pos-
itioning of related items. For example, it has been
shown that rats with neurotoxic lesions of the hippo-
campus or fimbria–fornix perform comparably to con-
trol rats in odor-guided versions of paired-associate
learning. However, when the same items are used later
in tests of transitive inference (that is, satisfying the
relationship: if item A is associated with item B and
item B is associated with item C, then item A is
inferred to be associated with item C), lesioned rats
score at chance levels, while control rats display a sig-
nificant capacity for solving the task51,52. Models that
form context fields can solve tasks that involve tran-
sitive inference learning. Figure 2A shows the experi-
mental design used by Bunsey and Eichenbaum in
their study of transitive inference51. We have adopted
this protocol in a computer simulation of the task
using a detailed, biophysical model based on region
CA3 (Refs 29,30,33). Each of the four factors (outlined
above) found to be critical for context field develop-
ment has been included in the model. We have also
included realistic approximations of the intrinsic
ionic conductances known to exist in real hippocam-
pal pyramidal cells and interneurons, the synaptic
kinetics governing their interactions, conduction
velocities and connectivity parameters (Fig. 2A)29,30,33.
First, we trained the model to learn simple paired-
associates (such as, A–B, X–Y, B–C and Y–Z) and then
tested for transitivity by priming it with either item A
or item X and determining the completion accuracy.
Two versions of the same model were tested; one in
which normal context field development occurred
during learning (normal); and another in which con-
text fields failed to develop (damaged). As mentioned

earlier, context field development depends critically
on the periodic switching between afferent and intrin-
sic sources of synaptic activity dominating the popu-
lation dynamics. This is mediated in our model by
rhythmic (entrained to the endogenous population
oscillation – theta rhythm) presynaptic GABAergic
suppression of recurrent EPSPs (Refs 29,30). Context
field development is curtailed substantially when this
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Fig. 2. Transitive inference. Models that form context fields can also perform learning tasks
that involve discontiguities in the serial positioning of items. (A) Using the Bunsey and
Eichenbaum51 design, we simulated this task using a biophysically detailed model of hip-
pocampal region CA3 (see Refs 29,30,33 for details on model structure). We tested two ver-
sions of the same model in a simulation of transitive inference learning. One version of the
model (normal) showed typical context field development similar to that illustrated in Fig. 1
and another version (damaged) was altered such that normal field development did not occur
(see text for details). (B) We first tested the ability of each version of the model to learn sim-
ple paired-associates. During a five-trial learning session, we presented different pairs of items
in sequence (for example, A–B, X–Y, B–C and Y–Z) together. Each item within a pair was pre-
sented 250 ms apart and 3 s passed between the presentation of each distinct pair. We next
tested for accurate completion by presenting the model with the first item in each pair and
determining which paired item was recalled. Both the normal and damaged versions of the
model demonstrated accurate completion of these pairs at approximately the same percentage
values. (C) We next tested for transitivity by presenting either item A or item X to both 
versions of the model and determined which item (C or Z) was recalled. In this case, only the
normal version of the model showed a capacity for transitive inference learning. The damaged
version of the model performed at near chance levels. 
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modulation is removed from our model29,30. As can be
seen in Fig. 2B, both versions of the model displayed
a capacity for learning simple paired-associates.
However, only the model that showed context field
development (normal) was able to learn the transitiv-
ity condition (Fig. 2C), as the damaged version of the
model performed at near chance levels. This suggests
that the neural mechanisms that support the for-
mation of context fields might be critical elements 
in allowing the hippocampus to bridge discontiguous
events together across time or serial positioning, or
both. 

There are other classes of tasks that might, in part,
also be reduced to the problem of bridging together
distinct events across temporal or spatial discontigu-
ities, or some combination of the two. Undoubtedly,
spatial tasks such as maze learning are dependent on
numerous brain regions for successful completion.
However, the hippocampal contribution to such phe-
nomena can be framed as a problem of linking
together different spatial locations into a specific 
serial order. Thus, hippocampal models that learn 
and recall sequence information using context fields
should, in principle, have the capacity for solving cer-
tain spatial tasks. Figure 3 shows an example of this,
where the normal model was able to recall a previ-
ously learned spatial path (in the correct sequence
order) when information about the first two locations
only was provided (Fig. 3B). Without context field for-
mation, the damaged version of this model failed to
recall sequence locations in the correct order (Fig. 3C).
Thus, in both transitive inference and spatial learning,
accurate performance depended on context field
development to preserve sequence order relationships.
This suggests that tasks which appear quite different
with regard to overt behavior might, in fact, have
common neural mechanisms supporting components
of learning. These results also suggest that context
fields should not be thought of as only being place
fields. As has been shown, context fields can be used

in computational models to solve a variety of tasks
involving time delays, pattern completion and disam-
biguation, transitive inverse and transverse pattern-
ing, as well as spatial learning27–30,32. Furthermore, sev-
eral studies have now emerged showing that
hippocampal place cells might encode much more
than just spatial location. For instance, hippocampal
cells in rodents have been shown to encode tempo-
ral53–55 and positional55,56 relationships among non-
spatial cues in different non-spatial memory tasks.
Pyramidal cells in region CA1 have also been shown to
fire selectively when a rodent is in close proximity to
specific goals or landmarks in a learning environment,
regardless of their actual spatial location57. Thus, it
seems that robust, sustained firing of hippocampal
cells might encode a diversity of features in any given
task. A still unresolved set of questions concerns how
such fields arise in different learning situations and if
there are any generic organizing principles controlling
their development. 

An additional point of note is that some forms of
associations between discontiguous events might
depend on specific mechanisms other than those out-
lined above58–60. For instance, conditioned taste aver-
sion (CTA) involves associating an illness with a par-
ticular food eaten some time in the past. Clearly, this
association involves a long temporal discontiguity, yet
CTA persists even with hippocampal lesions59,60. Thus,
this form of association is not accounted for readily
within the present framework. It remains to be deter-
mined experimentally whether the components
advanced in the present model actually exist in brain
regions thought to be important for CTA, such as the
medial thalamus and the lateral nuclear group of the
amygdala60. 

What then is the best strategy for understanding
the role of the hippocampus in learning and memory?
Several attempts have been made to determine a gen-
eral class of learning tasks to which this brain region
might contribute. From a biophysical perspective, it is
still not clear what features are encoded in the hippo-
campus. However, by incorporating physiologically
realistic approximations and behaviorally relevant
tasks into neural models, one can generate a better
understanding of how the biophysical machinery of
the hippocampus constrains the types of information
processing in which it participates. Based on a conflu-
ence of experimental observations and computational
modeling, our position is that one important contri-
bution of the hippocampus to learning and memory is
the association of discontiguous events. Behavioral
experiments that vary the degree to which discontigu-
ities appear between items might be used to assess this
dependency. Furthermore, specific physiological
experiments can be performed to better determine
how context fields arise in different task environ-
ments and their pharmacological signatures. For
example, this work predicts that the local application
of GABAB receptor antagonists in region CA3 will dis-
rupt context field formation. It is known that tempo-
rary blockade of GABAergic and cholinergic innerv-
ation from the medial septum does impair place field
activity in CA3 (Ref. 61). However, additional phar-
macological manipulations must be performed to
determine which class of receptors is involved most
directly in this effect, where they reside and how they
modulate relational memory in vivo. 
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Fig. 3. Models that develop context fields can also perform spatial learning tasks. Using the
same two versions of the model described previously (see text and Refs 29,30,33 for details),
we simulated simple path learning in a two-dimensional environment. (A) Each circle repre-
sents a specific ‘location’ in a simulated two-dimensional space. Each sequence of connected
locations represents a spatial path. This simulation consisted of two learning trials in which a
path was ‘traversed’ from a start position in the lower right-hand corner of the environment
to the goal location in the top-left hand corner. A different location was reached every 100 ms.
We tested recall of the path by priming each version of the model with the first two locations
(black circles) in the path to give it a general vicinity and direction. (B) The full path was
recalled accurately (grey circles) in the correct order by the normal version of the model. 
(C) However, the correct sequence order was not preserved in the damaged version of the
model in which context fields failed to develop. In this example, the third location was recalled
immediately, followed by locations six and seven. This suggests that the ‘predictive’ value of con-
text fields might be an important component of path learning during navigational behavior. 



Copyright © 1998, Elsevier Science Ltd. All rights reserved. 0166 - 2236/98/$19.00     PII: S0166-2236(98)01265-X TINS Vol. 21, No. 8, 1998 323

Selected references
1 Scoville, W.B. and Milner, B. (1957) J. Neurol. Neurosurg.

Psychiatry 20, 11–21
2 O’Keefe, J. and Nadel, L. (1978) The Hippocampus as a Cognitive

Map, Oxford University Press
3 Squire, L.R. (1992) Psychol. Rev. 99, 195–231
4 Eichenbaum, H. et al. (1994) Behav. Brain Sci. 17, 449–518
5 Rawlins, J.N.P. (1985) Behav. Brain Sci. 8, 479–496
6 Cohen. N.J. and Eichenbaum, H. (1993) Memory, Amnesia, and

the Hippocampal System, MIT Press
7 Squire, L.R. (1987) Memory and Brain, Oxford University Press
8 Nadel, L. and Moscovitch, M. (1997) Curr. Opin. Neurobiol. 7,

217–227
9 Meck, W.H. et al. (1984) Behav. Neurosci. 98, 3–22

10 Thompson, R.F. et al. (1982) in Conditioning: Representation of
Involved Neural Functions (Woody, C.D., ed.), pp. 115–129,
Plenum Press

11 Ross, R.T. et al. (1984) Behav. Neurosci. 98, 211–225 
12 Zoladek, L. and Roberts, W.A. (1978) Learn. Behav. 6, 77–81
13 Suzuki, S. et al. (1980) Learn. Motiv. 11, 1–18
14 O’Keefe, J. and Conway, D.H. (1980) Physiol. Psychol. 2,

229–238
15 Eichenbaum, H. et al. (1990) J. Neurosci. 10, 331–339
16 Bliss, T.V.P. and Lomo, T. (1973) J. Physiol. 232, 331–356
17 Bliss, T.V.P. and Collingridge, G.L. (1993) Nature 361, 31–39 
18 Levy, W.B. and Steward, O. (1983) Neuroscience 8, 791–797
19 Larson, J. and Lynch, G. (1989) Brain Res. 489, 49–58
20 Marr, D. (1971) Philos. Trans. R. Soc. London Ser. B 262, 23–81 
21 McNaughton, B.L. and Morris, R.G.M. (1987) Trends Neurosci.

10, 408–415 
22 Hasselmo, M.E. and Bower, J.M. (1993) Trends Neurosci. 16,

218–222
23 Hasselmo, M.E. (1993) Neural Comput. 5, 32–44
24 Hasselmo, M.E. (1995) Behav. Brain Res. 67, 1–27 
25 Kleinfeld, D. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 9469–9473
26 Kleinfeld, D. and Sompolinsky, H. (1988) Biophys. J. 54,

1039–1051
27 Levy, W.B. (1996) Hippocampus 6, 579–590
28 Jensen, O. and Lisman, J.E. (1996) Learn. Mem. 3, 279–287
29 Wallenstein, G.V. and Hasselmo, M.E. (1997) J. Neurophysiol.

78, 393–408
30 Wallenstein, G.V. and Hasselmo, M.E. (1997) in Advances 

G.V. Wallenstein et al. – Hippocampal association VI E W P O I N T  

in Computational Neuroscience (Bower, J.M., ed.), pp. 547–552,
Plenum Press

31 Amaral, D.G. and Witter, M.P. (1989) Neuroscience 31, 571–591
32 Levy, W.B. (1989) in Computational Models of Learning in Simple

Neural Systems (Hawkins, R.D. and Bower, G.H., eds), pp. 243–305,
Academic Press

33 Wallenstein, G.V. and Hasselmo, M.E. (1997) Brain Res. Bull.
43, 485–493

34 Nadel, L. and Willner, J. (1980) Physiol. Psychol. 8, 218–228
35 Nadel, L. et al. (1985) in Context and Learning (Balsam, P.,

Tomie, A. and Hillsdale, N.J., eds), pp. 385–406, Erlbaum
36 Fuster, J.M. (1989) The Prefrontal Cortex: Anatomy, Physiology,

and Neuropsychology of the Frontal Lobe, Raven Press
37 Kohler, C. (1989) J. Comp. Neurol. 246, 149–169
38 Burwell, R.D. et al. (1995) Hippocampus 5, 390–408
39 MacVicar, B.A. and Dudek, F.E. (1980) Brain Res. 184, 

220–223
40 Traub, R.D. and Miles, R. (1991) Neuronal Networks of the

Hippocampus, Cambridge University Press
41 Frotsher, M. and Leranth, C. (1985) J. Comp. Neurol. 239, 237–246
42 Traub, R.D. et al. (1989) Science 243, 1319–1325
43 Buzsáki, G. et al. (1983) Brain Res. Rev. 6, 139–171
44 Thompson, L.T. and Best, P.J. (1989) J. Neurosci. 9, 2382–2390
45 Ylinen, A. et al. (1995) Hippocampus 5, 78–90
46 Ault, B. and Nadler, J.V. (1982) J. Pharmacol. Exp. Ther. 223,

291–297
47 Colbert, C.M. and Levy, W.B. (1992) J. Neurophysiol. 63, 1–8
48 Stewart, M. and Fox, S.E. (1990) Trends Neurosci. 13, 163–168
49 Larson, D. et al. (1986) Brain Res. 368, 347–350 
50 Mott, D.D. and Lewis, D.V. (1991) Science 252, 1718–1720
51 Bunsey, M. and Eichenbaum, H. (1996) Nature 379, 255–257
52 Dusek, J.A. and Eichenbaum, H. (1997) Proc. Natl. Acad. Sci. 

U. S. A. 94, 7109–7114
53 Otto, T. and Eichenbaum, H. (1992) Hippocampus 2, 323–334
54 Zhu, X.O. et al. (1995) Eur. J. Neurosci. 7, 753–765
55 Hampson, R.E. et al. (1993) Behav. Neurosci. 107, 715–739
56 Deadwyler, S.A. et al. (1996) J. Neurosci. 16, 354–372
57 Gothard, K.M. et al. (1996) J. Neurosci. 16, 823–835
58 Stevens, R. and Cowey, A. (1972) Brain Res. 46, 1–22
59 Reilly, S. et al. (1993) Behav. Neurosci. 107, 996–1004
60 Yamamoto, T. et al. (1995) Neurosci. Res. 22, 31–49
61 Mizumori, S.J.Y. et al. (1989) J. Neurosci. 9, 3915–3928

Acknowledgements
This work was
supported in part 
by the Human
Frontier Science
Program and the
National Institutes
of Mental Health
(MH-52732-04).

What is the amygdala?
Larry W. Swanson and Gorica D. Petrovich

‘Amygdala’ and ‘amygdalar complex’ are terms that now refer to a highly differentiated region
near the temporal pole of the mammalian cerebral hemisphere. Cell groups within it appear to
be differentiated parts of the traditional cortex, the claustrum, or the striatum, and these parts
belong to four obvious functional systems – accessory olfactory, main olfactory, autonomic and
frontotemporal cortical. In rats, the central nucleus is a specialized autonomic-projecting motor
region of the striatum, whereas the lateral and anterior basolateral nuclei together are a
ventromedial extension of the claustrum for major regions of the temporal and frontal lobes.The
rest of the amygdala forms association parts of the olfactory system (accessory and main), with
cortical, claustral and striatal parts.Terms such as ‘amygdala’ and ‘lenticular nucleus’ combine cell
groups arbitrarily rather than according to the structural and functional units to which they now
seem to belong.The amygdala is neither a structural nor a functional unit.
Trends Neurosci. (1998) 21, 323–331

SLICES THROUGH THE TEMPORAL POLE of the
human cerebral hemispheres reveal an almond-

shaped mass of gray matter that Burdach1 discovered
and called the amygdalar nucleus in the early 19th
century (Fig. 1). Starting about 50 years later, the
microscopic examination of histological tissue sec-
tions began to reveal more and more structural differ-

entiation in the amygdala; and the extent of its outer
border, and number and classification of its sub-
divisions, remain controversial today. In this article,
we present a model of amygdalar architecture based
on recent embryological, neurotransmitter, connec-
tional and functional data. When placed in the con-
text of cerebral hemisphere architecture as a whole,
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