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Changes in GABAB modulation may underlie experimentally observed
changes in the strength of synaptic transmission at different phases of
the theta rhythm (Wyble, Linster, & Hasselmo, 1997). Analysis demon-
strates that these changes improve sequence disambiguation by a neural
network model of CA3. We show that in the framework of Hopfield and
Tank (1985), changes in GABAB suppression correspond to changes in
the effective temperature and the relative energy of data terms and con-
straints of an analog network. These results suggest that phasic changes
in the activity of inhibitory interneurons during a theta cycle may produce
dynamics that resemble annealing. These dynamics may underlie a role
for the theta cycle in improving sequence retrieval for spatial navigation.

1 Introduction

Manipulations that abolish the hippocampal theta rhythm impair spatial
navigation (Winson, 1978), but the computational function of theta is not
known. Previous experiments have found that the amplitude of evoked field
potentials due to neuronal spiking activity changes during different phases
of the theta rhythm (Rudell, Fox, & Rank, 1980; Buszaki, Grastyan, Czopf,
Kellenyi, & Prohaska, 1981; Rudell & Fox, 1984). This could result from
changes in presynaptic and/or postsynaptic inhibition during a theta cycle.
More recent evidence suggests that the strength of synaptic transmission
also depends on the phase of theta rhythm (Wyble et al., 1997), another
possible indication of phasic changes in presynaptic inhibition.

Phasic changes in presynaptic inhibition could result from the rhythmic
activation of presynaptic GABAB receptors, which selectively suppress re-
current synaptic transmission in piriform cortex (Tang & Hasselmo, 1994)
and hippocampus (Ault & Nadler, 1982; Colbert & Levy, 1992). Stewart and
Fox (1990) have hypothesized, and in vivo recordings have shown (Buszaki
& Eidelberg, 1983; Fox et al., 1986; Skaggs, McNaughton, Wilson, & Barnes,
1996) that some interneurons tend to fire near a preferred phase of theta.
Phasic firing by even a subset of interneurons may rhythmically activate
presynaptic GABAB receptors, producing the changes in synaptic strength
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observed in vivo (Wyble et al., 1997). Paired pulse depression, thought to
result from activation of presynaptic GABAB receptors on interneurons, has
a rise time and fast component of decay (Otis, Dekoninck, & Mody, 1993)
that are compatible with theta frequency oscillations in GABAB-mediated
synaptic suppression.

These rhythmic changes could be important for retrieval of sequences
of activity in the hippocampus. Evidence suggests that the hippocampus
may represent a series of adjacent locations by a sequence of successively
firing place cells (Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996; Jensen
& Lisman, 1996; Wallenstein & Hasselmo, 1997). This evidence includes the
phenomenon of theta phase precession: during a theta cycle, place cells fire
in the order in which their place fields are encountered along a path (O’Keefe
& Recce, 1993; Skaggs et al., 1996).

In a neural network model of hippocampal region CA3, we find that
changes in GABAB suppression during a theta cycle improve sequence dis-
ambiguation: the retrieval of sequences with identical starting points. We
show that these changes in the level of GABAB modulation (within a theta
cycle) correspond to changes in (1) the effective temperature and (2) the
relative energy of data terms and constraints of an analog network (using
the terminology of Hopfield & Tank, 1985). Data terms and constraints cor-
respond to afferent input and recurrent connections, respectively, in our
model.

2 Analysis

2.1 The Problem of Sequence Disambiguation. When two sequences
with the same starting components, {X1, . . . ,Xm} and {X1, . . . ,Xi,Yi+1, . . . ,

Ym}, are stored in a network, it is ambiguous whether Xi should be followed
by Xi+1 or Yi+1. The only information that can resolve this ambiguity is
knowledge of the desired end point, Xm or Ym. If the patterns of activity are
neural representations of locations, then disambiguating forked sequences
using knowledge of the desired end point corresponds to the everyday
problem of deciding which way to turn at an intersection based on one’s
destination.

2.2 A Model of Sequence Disambiguation. The simplest neural realiza-
tion of this problem, shown in Figure 1, contains two sequences: {a1, a2} and
{a1, a3}. When a1 becomes active, the pattern of activity that should follow
a1 is ambiguous. We assume that during disambiguation of the sequences
{a1, a2} and {a1, a3}, a2 receives a small amount of afferent input. This input
could arrive in CA3 from the dentate gyrus via the mossy fibers or from the
entorhinal cortex via the perforant path. It represents the knowledge that
a2 is the desired goal and should bias the network so that it completes the
sequence {a1, a2} rather than {a1, a3}. This assumption predicts that place
cells representing the location of a goal should receive some biasing input
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Figure 1: (A) The simplest neural representation of a forked sequence, com-
posed of the sequences {a1, a2} and {a2, a3}. a1 represents the point of the “fork,”
and a2 and a3 represent the “branches” of the forked sequence. (B) The connec-
tivity in a simple network that has stored this forked sequence.

while a rat searches for that goal. With strong enough biasing input to a2,
the network can easily disambiguate {a1, a2} from {a1, a3} when a2 is given
a biasing input. Here we focus on the optimal characteristics of a network
that can perform this disambiguation with weak bias.

We study such a simplified network because the decision selectively to
activate a2 but not a3 corresponds to the decision to activate neurons repre-
senting Xi+1 but not those representing Yi+1 during the previously described
sequence disambiguation problem. Elsewhere (Sohal & Hasselmo, 1997) we
show that the conditions that optimize the decision to activate a2 selectively
in this simplified network can both be produced by GABAB receptors with
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biologically plausible dynamics and significantly improve disambiguation
of multiple sequences, composed of many items each, in more complex
networks.

The network parameters, shown in Figure 1B, are: A, the strength of exci-
tation from a1 to a2 and a3; Abias, afferent input to a2; A′, afferent input to the
inhibitory interneuron; W, the strength of recurrent excitatory connections
from a2 to a2 and a3 to a3; W′, the strength of excitatory connections from
a2 and a3 to the interneuron; −H, the strength of the inhibitory connections
from this interneuron to a2 and a3; h, activation of the model interneuron; η,
the rate of passive decay for the activities, a2, a3, and h; and θ , the threshold
of the neurons represented by a2, a3, and h.

The parameters k(t) and k′(t) represent the GABAB suppression of re-
current synaptic transmission. All recurrent excitatory connections in the
network (A, W, and W′) are multiplied by k(t). So [1 − k(t)] represents the
suppression of recurrent excitation at time t. Similarly, k′ multiplies recur-
rent inhibition in the network (H), so [1− k′(t)] represents the suppression
of recurrent inhibition.

The activation of each model neuron is a continuous variable represent-
ing the mean membrane potential of a pool of real neurons. The equations
for the evolution of a2, a3, and h have been derived by averaging over short
timescales and many neurons, and are similar to those used elsewhere (Wil-
son & Cowan, 1972):

ȧ2 = −ηa2 + kA+ Abias + kW(a2 − θ)+ − k′H(h− θ)+

ȧ3 = −ηa3 + kA+ kW(a3 − θ)+ − k′H(h− θ)+ (2.1)

ḣ = −ηh+ A′ + kW′(a2 − θ)+ + kW′(a3 − θ)+,

where (x)+ = x if x > 0 and 0 otherwise. As long as Abias > 0, a2 will cross
threshold before a3, giving a2 > θ and a3 < θ . Assume the interneuron will
be activated before a3 > θ (we have found that this is the case for networks
that perform sequence disambiguation). Then the activities are in the regime
a2 > θ , a3 < θ , and h > θ , in which network dynamics reduce to the linear
system:

ȧ2 = (kW − η)a2 − k′Hh+ kA+ Abias + k′Hθ

ȧ3 = −ηa3 − k′Hh+ kA+ k′Hθ

ḣ = −ηh+ kW′a2 + A′ − kW′θ.

We measured the performance of sequence disambiguation by this system as
a2(tf inal)−a3(tf inal), where tf inal is the time at which sequence disambiguation
ends. Thus, a2(tf inal)− a3(tf inal) measures the differential completion of the
two sequences, {a1, a2} and {a2, a3}, at the end of sequence disambiguation.
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2.3 Optimal Network Parameters During Sequence Disambiguation.
We found the k(t) and k′(t) that maximized the quantity a2(tf inal)− a3(tf inal)

using the maximum principle (Pontryagin, Boltyanskii, Gamkrelidze, &
Mishchenko, 1962). The maximum principle determines necessary condi-
tions on the functions k(t) and k′(t) to maximize the difference a2(tf inal) −
a3(tf inal). These conditions uniquely specify k(t) and k′(t):

k =
{

kmin if t < tf inal − t1,

kmax if t > tf inal − t1

}

where t1 = π√
4HW′k′maxkmax −W2k2

max

k′ =
{

k′min if t < tf inal − t1 − t2,

k′max if t > tf inal − t1 − t2

}

where t2 = π√
4HW′k′maxkmin −W2k2

min

.

This result is true as long as:

tf inal > 0

0 ≤ kmin ≤ k(t) ≤ kmax ≤ 1

0 ≤ k′min ≤ k′(t) ≤ k′max ≤ 1.

(The quantities inside the square roots are negative if and only if all eigenval-
ues of the linearized system are real. We assume that damped oscillations,
produced by complex eigenvalues, represent the typical behavior of hip-
pocampal neurons and therefore confine our analysis to this regime.) Thus,
optimal sequence disambiguation always occurs when the suppression of
recurrent excitation and inhibition are step functions that decrease from
their maximum to their minimum values during the sequence disambigua-
tion task. The maximum principle also shows that Abias should be fixed at
its maximum value for optimal sequence disambiguation. Note that this
optimality does not depend on the specific values of kmax, kmin, or tf inal.

2.4 Linearly Decreasing GABAB Suppression Significantly Improves
Sequence Disambiguation. Because step function decreases in the sup-
pression of synaptic transmission seem biologically unrealistic, we studied
whether more plausible decreases in the suppression of synaptic transmis-
sion might also significantly improve sequence disambiguation in our sim-
plified network. Any sufficiently smooth k(t), k′(t), such as the changes
in synaptic strength observed in vivo (Wyble et al., 1997), may be locally
approximated by linear functions. Therefore, we solved for the final state
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of the system described above and studied how that final state changed if
the suppression of recurrent synaptic transmission decreased linearly while
that system disambiguated two sequences.

k(t) and k′(t) took the form:

k(t) = k′(t) = αt+ β

where α(100 msec) + β = 1 (100 msec represents about one-half of a theta
cycle, and α measures the amount by which the suppression of recurrent
synaptic transmission decreases during the sequence disambiguation task).

If a1 is active and a2 is receiving biasing input, then the system has only
two possible final states: for low Abias, both a2 and a3 are active, whereas
for Abias sufficiently large, only a2 is active in the final state, so sequence
disambiguation is successful. We found the minimum Abias necessary for
successful sequence disambiguation as a function of α. The results, shown
in Figure 2, demonstrate that increasingα, corresponding to a greater change
in the suppression of recurrent synaptic transmission, allows successful se-
quence disambiguation using weaker biasing inputs, that is, using less in-
formation about the desired goal. This confirms that biologically plausible
changes, such as linear decreases, in the suppression of synaptic transmis-
sion can also significantly improve sequence disambiguation.

In simulations (Sohal & Hasselmo, 1997), theta frequency septal input
to interneurons entrains oscillations in GABAB receptor activation such
that GABAB suppression falls during the phase of pyramidal cell activity.
Consistent with the preceding analysis, this decrease improves sequence
disambiguation. Furthermore, the tendency toward preferred phases of in-
terneuron firing in these simulations is similar to those observed in vivo
(Skaggs et al., 1996). Thus, oscillations in GABAB suppression, which may
underlie experimentally observed changes in the strength of synaptic trans-
mission (Wyble et al., 1997), may also optimize sequence disambiguation.
Alternatively, synaptic depression due to previous transmission (Markram
& Tsodyks, 1996) may underlie the observed changes in synaptic strength,
although this form of depression has been found only in neocortex, and
hippocampal pyramidal cells are more likely to show facilitation than de-
pression.

3 Relation to Annealing

In our model, GABAB suppression is initially high during sequence dis-
ambiguation. As a result, recurrent excitation and inhibition are weak, so
neurons representing multiple sequences are active. However, as GABAB
suppression falls, recurrent excitation and inhibition become stronger, so
that fewer neurons, representing only one sequence, are active while the
remaining neurons are inhibited. Thus, as the level of GABAB modulation
falls, the network shifts from sampling many possible states to selecting the
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Figure 2: The minimum biasing input, Abias, required for successful sequence
disambiguation as a function of α. In every case, the level of GABAergic mod-
ulation reaches the same value at the end of the sequence disambiguation task,
but during the task, the level of GABAergic modulation decreases with slope α.
Thus, α measures the rate at which the level of GABAergic modulation, and
hence the suppression of recurrent synaptic transmission, declines during the
sequence disambiguation task. This figure shows that greater rates of decrease
in GABAergic modulation permit successful sequence disambiguation with
weaker biasing inputs.

optimal state. A similar shift also occurs during annealing as the tempera-
ture of a system decreases. The system samples states of varying energy at
high temperatures, but selects the minimum energy state at low tempera-
tures. This suggests that a falling level of GABAB modulation may improve
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sequence disambiguation in the same way that a decreasing temperature
drives annealing.

Hopfield and Tank (1985) showed that the equilibrium solution in an
analog network equals the effective field solution for a Boltzmann machine
(Hinton & Sejnowski, 1986) at a temperature determined by the gain width.
Similarly, the equilibrium solution to our network is the same as the effective
field solution in a Boltzmann machine, and the fall in GABAB modulation
that occurs in our network is equivalent to decreasing both the effective
temperature and the energy of data terms relative to constraints. Consider
the energy function:

E = ρexc

[
−W

2
((a2 − θ)2+ + (a3 − θ)2+)− A(a2 + a3)

]
+ ρinhW′H(a2a3)− ρaf f Abiasa2, (3.1)

where ρexc, ρinh, and ρaf f measure the relative contributions of recurrent ex-
citation, recurrent inhibition, and afferent input, respectively, to the energy.
Following Hopfield and Tank (1985), we find the effective field solution for
a Boltzmann machine in which the ai are Ising spins restricted to the val-
ues ai = amax or amin, the temperature is τ , and the energy, E, is given by
equation 3.1. Rescale variables so that amin = 0 < θ < amax = 1. Then the
expected value for ai is:

〈ai〉 = eHi/τ

1+ eHi/τ
, i = 2 or 3, (3.2)

where:

H2 = ρexcb−A−W(a2 − θ)+c + ρinhHW′a3 − ρaf f Abias

H3 = ρexc[−A−W(a3 − θ)+]+ ρinhHW′a2.

Equation 3.2 reduces to:

〈ai〉 ∼= Hi

τ
, (3.3)

if

Hi ¿ τ. (3.4)

The condition in equation 3.4 is true when the amax state is far from the
saturating regime of the equation, that is, when the mean activity 〈ai〉 still
increases linearly with synaptic input. This is true (Barkai & Hasselmo, 1994)
over the range of firing frequencies observed in vivo (O’Keefe & Recce, 1993;
Skaggs et al., 1996).
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Now consider a simplification of the neural network shown in Figure 1
in which the interneuron is replaced by linear inhibition:

ȧ2 = −ηa2 + kA+ Abias + kW(a2 − θ)+ − kk′HW′a3
ȧ3 = −ηa3 + kA+ kW(a3 − θ)+ − kk′HW′a2.

(3.5)

The steady-state solution to equation 3.5 is:

a2 = k
η

[
1
k

Abias + A+W(a2 − θ)+ − k′HW′a3

]
a3 = k

η
[A+W(a3 − θ)+ − k′HW′a2].

(3.6)

The steady-state solution for this network (see equation 3.6) equals the effec-
tive field solution (see equation 3.3) for which the temperature, τef f , equals
η/k and the relative energies of afferent input, recurrent excitation, and
recurrent inhibition are given by:

ρaf f = 1
k
= ητef f

ρexc = 1

ρinh = k′ = 1
ητef f

(assuming k′ ≈ k).

Falling GABAB modulation produces a rise in k and is therefore equivalent to
annealing, in which there is a simultaneous fall in both the temperature and
the energy of afferent input relative to recurrent excitation and inhibition.

3.1 Why Do the Relative Energies of Afferent and Recurrent Inputs
Change? Because activation of GABAB receptors selectively suppresses re-
current but not afferent connections (Ault & Nadler, 1982; Colbert & Levy,
1992), the energy of afferent input relative to recurrent excitation and in-
hibition decreases as the level of GABAB modulation falls. Two analyses
showed that the selectivity of GABAB suppression optimizes network per-
formance. First, by applying the maximum principle, we found that the
strength of recurrent synapses should increase during the sequence dis-
ambiguation task, but afferent input should remain maximal throughout.
Second, suppose that the relative energies of afferent input and recurrent
excitation and inhibition were fixed. To model this, we multiplied afferent
input by the same factor,αt+β, as recurrent connections. Then the necessary
biasing input, shown in Figure 2, decreases less with increasing α; that is,
a fall in the level of GABAB modulation produces less of an improvement
in sequence disambiguation. (However, note that sequence disambigua-
tion still improves when the strengths of both afferent input and recurrent
connections change. Thus, phasic changes in postsynaptic excitability could
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improve sequence disambiguation, but this improvement would be smaller
than the improvement caused by changes in GABAB suppression.)

The decrease in the energy of afferent input relative to recurrent inputs
can be understood intuitively. Afferent input contributes what Hopfield
and Tank (1985) call “data terms” to the energy function. These represent
the locations of the starting point and goal. The energy contributions of
recurrent excitation and inhibition represent the constraints that one con-
tinuous sequence should be active and only one sequence should be active,
respectively. Data terms determine the general location of the global mini-
mum of the energy function, whereas constraints refine the global minimum
but also introduce local minima (Lin & Lee, 1995). The level of GABAB mod-
ulation is initially high, so that afferent input and the corresponding data
terms dominate the energy function, causing the network to converge to the
neighborhood of the global energy minimum. As the level of GABAB modu-
lation falls, recurrent connections become stronger, enforcing constraints, so
that the network zeros in on the global energy minimum in which exactly
one continuous sequence is active. Because constraints are enforced only
after the network has converged to the neighborhood of the global energy
minimum, the network is less prone to become trapped in local minima.

Thus, the correspondence between annealing and a fall in GABAB sup-
pression elucidates specific mechanisms by which GABAB modulation im-
proves sequence dismabiguation: falling GABAB suppression both shifts
the network from sampling multiple states to selecting the best one, and
increases the strength of constraints relative to data terms.

Figure 3 shows how these mechanisms improve the performance of the
network described by equation 3.5. When the network includes linearly de-
creasing GABAB suppression, the initially strong GABAB suppression slows
the subthreshold rise in activity. As a result, a2 rises well above threshold,
but recurrent inhibition prevents a3 from crossing threshold before the end
of the task (tf inal = 50 msec). In contrast, in the absence of GABAB sup-
pression, both a2 and a3 rise above threshold. When GABAB suppression is
present but does not decrease, a3 does remain subthreshold, but a2 barely
crosses threshold.

Figure 3 does not indicate whether there exists a constant, intermediate
level of GABAB suppression that produces the same final state, (a2(t), a3(t)),
as the linearly decreasing GABAB suppression, shown in Figure 3A. In fact,
one such constant level of GABAB suppression does exist. However, because
this constant, intermediate level of GABAB suppression does not produce
the slow initial activity rise that results from falling GABAB suppression,
it leads to successful sequence disambiguation over a smaller range of net-
work parameters. For example, after strengthening recurrent excitation, W,
while holding all other parameters fixed, only a2 crosses threshold in the
network with the linearly decreasing GABAB suppression, whereas both a2
and a3 cross threshold in the network with the constant, intermediate level of
GABAB suppression. Thus, consistent with the results of optimization and
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Figure 3: Activity in the network described by equation 3.5 when a2 is receiv-
ing biasing input. (A) The network includes linearly decreasing GABAB sup-
pression. Under these conditions, a2 rises well above threshold. However, the
initially strong GABAB suppression slows the subthreshold rise in activity, en-
abling recurrent inhibition to prevent a3 from crossing the threshold before the
end of the task (tf inal = 50 msec). (B) GABAB suppression is absent, so syna=
pses remain at their maximum strengths. As a result, both a2 and a3 rise above
threshold. (C) GABAB suppression is present but does not decrease, so that
synapses remain at their minimum strengths. In this case, although a3 remains
below threshold, synapses are so weak that a2 barely rises above threshold.

the analogy with annealing, falling GABAB suppression leads to successful
performance over a broader range of network parameters than do constant
levels of GABAB suppression. We have found analogous results in simula-
tions of more complex networks (Sohal & Hasselmo, 1997). While GABAB
suppression falls, neurons that belong to a sequence whose end point re-
ceives biasing input (and which therefore correspond to a2) become active,
while neurons belonging to competing sequences (and corresponding to
a3) do not. However, when GABAB suppression is fixed at an intermediate
value, both sets of neurons remain active.
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4 Relation to Behavior

Spatial navigation may utilize hippocampal representations of location
(Touretzky & Redish, 1996; Tsodyks et al., 1996). We have shown that the
dynamics of sequence disambiguation may resemble those of annealing,
and other studies have used simulated annealing by a Boltzmann machine
for robot navigation (Lin & Lee, 1995). Thus, cycles of GABAergic mod-
ulation may contribute to making choices between multiple competing
paths through the environment. Retrieval of specific temporal sequences
among competing alternatives in the hippocampus may also be important
for nonspatial tasks requiring relational processing. For example, Bunsey
and Eichenbaum (1996) found that both control rats and rats with hippocam-
pal lesions learn sample-associate pairs equally well, but that only control
rats display transitivity. A network that represents sample-associate pairs
as sequences can produce transitivity. In such a network, changes in GABAB
would have a similar role for enhancing retrieval of the optimal relational
representation from multiple possible representations.

These results suggest that one function of the theta rhythm may be to
cause rhythmic changes in GABAB suppression of synaptic transmission.
Our analysis demonstrates that such changes in GABAB suppression may
produce dynamics that resemble annealing and improve sequence disam-
biguation in the hippocampus.
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