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Abstract. Neurons in inferior temporal (IT) cortex exhibit selectivity for complex visual stimuli
and can maintain activity during the delay following the presentation of a stimulus in delayed match
to sample tasks. Experimental work in awake monkeys has shown that the responses of IT neurons
decline during presentation of stimuli which have been seen recently (within the past few seconds).
In addition, experiments have found that the responses of IT neurons to visual stimuli also decline
as the stimuli become familiar, independent of recency. Here a biologically based neural network
simulation is used to model these effects primarily through two processes. The recency effects
are caused by adaptation due to a calcium-dependent potassium current, and the familiarity effects
are caused by competitive self-organization of modifiable feedforward synapses terminating on IT
cortex neurons.

1. Introduction

Inferior temporal (IT) cortex has been implicated in both working memory (Mishkin and
Delacour 1975, Delacour 1977) and object recognition (Gaffan and Weiskrantz 1980, Mishkin
1982). IT neurons respond selectively to classes of complex stimuli (Gross et al 1969,
Hasselmo et al 1989a, b, Miller et al 1991a). Several researchers have recorded from IT
neurons during a variant of the delayed matching-to-sample (DMS) task. In this task, an
individual trial consists of the presentation of a sample stimulus, followed by presentation of
a variable number of nonmatching stimuli which differ from the sample, and concludes with
the presentation of a match stimulus which is identical to the sample.

An IT neuron may respond differently to successive presentations of a single stimulus.
For example, the responses of macaque IT neurons habituate during repeated presentations of
visual stimuli (Miller et al 1991a). In monkeys performing a DMS task with visual stimuli, the
responses of some IT neurons to matching stimuli are suppressed relative to both nonmatch
and sample responses (Miller et al 1991b, 1993, Brown et al 1987, Riches et al 1991). This
change in response, termed ‘match suppression’, was maintained if up to six nonmatching
stimuli intervened between the sample and match, but the amount of suppression generally
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decreased as the number of intervening stimuli increased (Miller et al 1991b, 1993, Riches
et al 1991). These changes in the response of an IT neuron to a single stimulus are collectively
described as ‘recency effects’, because the period of time between successive presentations of
the stimulus is short, e.g. one or a few seconds. These recency effects appeared whenever the
repeated stimuli were not relevant to performance of the task, but when the same stimulus was
relevant—e.g. when it was repeated as the sample on consecutive trials of the DMS task—
then the stimulus repetition did not always produce recency effects. When the same stimulus
was repeated as the sample on consecutive DMS trials, responses to each sample were not
significantly different (Miller et al 1991b, 1993). Neither these recency effects (habituation
and match suppression) nor this ‘active reset’ of response suppression between trials has a
known physiological basis.

In addition to these recency effects, the responses of approximately one-third of studied
IT neurons (‘negative cells’) to an initially novel stimulus declined by an average of 40% over
the course of many DMS trials (Miller et al 1991b, Li et al 1993). The responses of other
neurons exhibited no change or infrequently increased. The response to initially novel stimuli
reached a stable level after about six to eight trials and responses to already familiar stimuli did
not change significantly. Unlike what would be predicted if nonspecific neuronal fatigue were
the cause of the response decrement, the response decrement was stimulus-specific and was
greater when fewer trials intervened between successive presentations of a stimulus. Unlike
the recency effects (habituation and match suppression) described earlier, this decrement in
response lasted through presentations of>150 other stimuli. Other researchers have also found
that the responses of IT neurons decline during repeated presentations of initially novel stimuli
(Hasselmo 1988, Rolls et al 1989, Riches et al 1991). Because this response decrement is
long lasting and occurs during successive presentations of initially novel stimuli, it is called a
‘familiarity effect’.

Recency and familiarity effects appear to summate in IT cortex (Li et al 1993).
Nevertheless, no model has been presented which shows how both effects could progress
simultaneously in the same subset of IT neurons. Here a biologically based neural network
simulation will be used to model the short-term recency through adaptation caused by
a calcium-dependent potassium current and the long-lasting familiarity effects through
competitive self-organization of modifiable feedforward synapses terminating on IT cortex
neurons.

2. Methods (computational modelling)

2.1. Overall organization

Model units represent neurons that are organized into three regions: (1) input areas for IT cortex,
(2) IT cortex and (3) basal forebrain. Stimuli consisted of patterns of external input applied
to units in the input region. Activity spread from these units via feedforward connections to
units in the IT cortex region. This IT region contained recurrent excitatory connections and
an interneuron which provided feedback inhibition. Activity in IT cortex influenced activity
in the basal forebrain region, causing changes in the level of neuromodulation.

2.2. Model neurons

The representation used here is similar to that used in previous papers (Wilson and Cowan 1972,
Hasselmo et al 1995). The units in the network are highly simplified and intended to model the
average dynamics of a neuron or the summed activity of a pool of neurons. Hence the model
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units do not exhibit spiking behaviour. Parameters have been chosen so that each timestep
of the simulation represents approximately one millisecond. The variable ai represents the
membrane potential relative to rest of excitatory unit i (a model neuron in either the input
region or IT cortex). ai evolves according to

dai
dt

= Ai − ηai + (ENa − ai)
∑

j

Wi,j [aj − θ ]+ + (ECl − ai)Hi[h− θ ]+ + (EK − ai)µci.

(1)

The first term on the right-hand side, Ai , represents afferent input and is zero for units in IT
cortex and may be nonzero for units in the input region. The second term represents passive
decay of the membrane potential towards rest with a time constant of 1/η = 10 timesteps.
The third term represents total excitatory synaptic input. The excitatory input to unit i from
unit j is the product of three factors: the difference between the post-synaptic membrane
potential and the sodium reversal potential; Wi,j , the synaptic strength; and the pre-synaptic
output. [x]+ denotes the threshold-linear output function, i.e. [x]+ = 0 for x < 0 and [x]+ = x

for x � 0. This is more biologically realistic than sigmoid functions because neurons show
linear gain over the range of firing frequencies of cortical neurons observed in vivo (Hasselmo
et al 1989a, b). The output threshold for all units in the model, θ , was set to 8.0. The fourth
term represents feedback inhibition, which was the product of three analogous factors. ECl

is the reversal potential of chloride, Hi represents the strength of the inhibitory synapse from
the interneuron to unit i, and the interneuron has membrane potential h. Only units in IT
cortex receive feedback inhibition, so Hi = 0 for all units in the input region. The fifth
term represents adaptation resulting from a calcium-dependent potassium current (Lancaster
and Adams 1986, Schwindt et al 1988, 1992, Barkai and Hasselmo 1994). The magnitude
of this current is proportional to ci , the concentration of calcium inside unit i, multiplied
by the difference between the membrane potential and the potassium resting potential. The
proportionality constant, µ, was set to 0.05.

The variable ci evolves according to

dci
dt

= γ [ai − θ ]+ −�ci. (2)

The first term on the right-hand side represents calcium influx, which is proportional to
the output of the corresponding model neuron. The proportionality constant, γ , was
0.001. Calcium is removed from the model neuron via passive diffusion. The slow
afterhyperpolarization (AHP) in neocortical pyramidal cells lasts approximately 1–5 s
(McCormick and Prince 1987) and the first few seconds of slow AHP can be described as an
exponentially decaying hyperpolarization with a time constant of approximately 1 s (Schwindt
et al 1988). Our model neglects a small residual amount of slow AHP that occasionally lasts
up to 30 s (Schwindt et al 1988). Thus we set the time constant for the outward diffusion of
calcium, 1/�, to 1000 timesteps (which represents approximately 1 s).

The variable h, the membrane potential of the interneuron, is governed by

dh

dt
= A′ − ηh + (ENa − h)

∑

i

W ′
i [ai − θ ]+ + (ECl − h)H ′[h− θ ]+. (3)

The first term on the right-hand side,A′, represents external input. The second term represents
passive decay of the membrane potential to rest with a time constant of 1/η = 10 timesteps.
The third term represents excitatory synaptic input to the interneuron. Each unit in the IT
region makes an excitatory synapse, with strength W ′, onto the interneuron. The fourth term
represents an inhibitory synapse, with strength H ′, from the interneuron to itself.
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2.3. Network connectivity

Neurons in IT cortex selectively respond to complex visual stimuli (Gross et al 1969, Hasselmo
et al 1989a, b, Miller et al 1991b, 1993, Li et al 1993, Miller and Desimone 1994). Recordings
from IT neurons have revealed that they alter their patterns of responsiveness both to (1) sets
of novel stimuli as they become familiar and to (2) sets of familiar stimuli after addition of
a novel stimulus (Hasselmo 1988, Rolls et al 1989). These findings suggest that IT neurons
learn distributed representations for large sets of stimuli and that these representations change
to accommodate new stimuli.

Competitive self-organization of feedforward connections can produce distributed
representations that behave this way (Rumelhart and Zipser 1986, Hasselmo and Cekic 1996).
Therefore, the network contained modifiable feedforward connections from the input region to
excitatory IT neurons which could undergo self-organization. We use the term self-organizing
to describe connections which are the primary source of excitatory input to a region (here IT
cortex) and for which modification is driven entirely by intrinsic network variables (e.g. post-
synaptic activity). The initial strengths of these feedforward connections were drawn from a
Gaussian distribution (mean = 2.5 × 10−4, standard deviation = 2 × 10−5).

Neurons in IT cortex have been shown to maintain activity in the absence of a stimulus
(Fuster and Jervey 1981, 1982, Fuster 1990, Miller et al 1993). Such activity can be sustained
by recurrent excitation, but maintaining bounded levels of activity above the baseline firing
rate normally requires the presence of feedback inhibition (Zipser et al 1993, Hasselmo et al
1995). In the model, recurrent connections between IT neurons were initialized with the
uniform strength of 8×10−4. In addition, each excitatory neuron in IT cortex had an excitatory
connection with strength W ′ = 2.1 × 10−4 to the interneuron, and this interneuron had an
inhibitory connection to each IT neuron with strength H = 6 × 10−2 and inhibited itself via
an inhibitory connection with strength H ′ = 3 × 10−2.

Most of our simulations used a network with 20 input and 20 IT Neurons, but to model the
decline in IT activity with increasing stimulus familiarity we needed to store representations
for 25 distinct stimuli. In that case, we used a network with 50 neurons in both the input and
IT regions. All synaptic strengths were rescaled appropriately and the connections from input
neurons to the IT region were initialized with strengths drawn from the positive portion of a
Gaussian distribution (mean = 4×10−5, standard deviation = 1.2×10−4). Figure 1 diagrams
the connectivity between units in the input region and IT cortex. Connections to and from the
basal forebrain neuron region will be discussed later.

2.4. Modification of synapses

In this model, excitatory feedforward connections from the input layer to model IT neurons
were modifiable so that they could undergo competitive self-organization. IT neurons may be
involved in formation of long-term associations between complex stimuli (Miyashita 1988,
Desimone et al 1994). Hence, the recurrent excitatory connections between IT neurons were
also modifiable.

Synaptic modification proceeded in two steps. First, after each timestep, the strength
of each synapse was modified according to a local Hebbian-type learning rule supported by
evidence of long-term potentiation (LTP) (Gustafsson and Wigstrom 1988), which has been
found in neocortical structures (Bear et al 1992). This Hebbian learning rule for each set of
modifiable connections took the form

�Wi,j = ε(aj − θpre)+(ai − θpost)+. (4)

The rate constant of learning, ε, was 1 × 10−5 for the feedforward connections from input
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Figure 1. Connectivity between regions in the neural network model of IT cortex. Afferent input
enters the network in the input region, and spreads into the IT cortex region via self-organizing
feedforward connections. IT cortex contains feedback connections representing recurrent excitation
and some units mediating feedback inhibition. The cholinergic neuron in the basal forebrain region
is driven by the presence of a stimulus in the input region. However, strongly active neurons in IT
cortex can excite other basal forebrain neurons, which inhibit the cholinergic neuron. As a result,
the cholinergic neuron is most active when activity in the input region elicits diffuse, nonspecific
responses in IT cortex (e.g. as occurs in response to novel stimuli). In contrast, focused activity in
IT cortex (e.g. as occurs in response to a familiar stimulus) suppresses activity of the cholinergic
neuron. Activity of the cholinergic neuron determines the level of cholinergic modulation in IT
cortex and the input regions.

neurons to IT neurons and 1 × 10−4 for recurrent synapses between IT neurons. The
modification thresholds θpre and θpost were both 8.0 in the input region and 10.0 in IT cortex.
We found that setting the modification thresholds higher than the output thresholds in IT cortex
facilitated a ‘winner-take-all’ mode of self-organization.

Second, after application of the Hebbian learning rule (4), the sum of the squares of all
synaptic weights was normalized for each pre-synaptic neuron j . The sum of the squares of
all synaptic weights were then normalized for each post-synaptic neuron i.

Consider a simplified network in which only the self-organizing, feedforward connections
are modifiable. LetWi,j be the strength of the connection from input neuron i to IT neuron j ,
and�Wi,j be the unnormalized change inWi,j given by the Hebbian learning rule, equation (4).
We computed the net change in Wi,j after pre- and post-synaptic normalization. When we
expand this expression and drop terms higher than first order, this net change becomes

Wi,j = �Wi,j −Wi,j

∑
k Wi,k�Wi,k∑
k(Wi,k)2

−Wi,j

∑
k Wk,j�Wk,j∑
k(Wk,j )2

+Wi,j

∑
k,l Wk,l�Wk,l∑
k,l(Wk,l)2

. (5)

By considering each of the terms on the right-hand side of (5), we can interpret the physiolog-
ical meaning of our two-step procedure for synaptic modification. The first term represents
Hebbian-type synaptic strengthening, e.g., LTP. The second term is analogous to synaptic decay
due to strengthening of synapses from other input neurons to IT neuron i, and could represent
heterosynaptic depression (Levy 1989). The third term is analogous to synaptic decay due to
strengthening of synapses from input neuron j to other IT neurons, and could represent homosy-
naptic depression (Stanton and Sejnowski 1989). The fourth term is synaptic strengthening
due to decay of synapses from input neuron j to other IT neurons or from other input neurons
to IT neuron i, and represents long-term redistribution of cellular resources for synaptic main-
tenance. Thus, synaptic modification consisting of Hebbian synaptic modification followed
by normalization is approximately equivalent to these four biologically plausible processes.

Networks combining modifiable feedforward connections and recurrent excitation can
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show complex behaviour, e.g., both self-organization of input and maintained activity as
observed in IT cortex. However, such networks must also prevent feedback or recurrent
excitation from interfering with self-organization (Hasselmo and Cekic 1996). For this reason,
we included cholinergic modulation, described below.

2.5. Role of cholinergic modulation

IT cortex receives cholinergic innervation from the nucleus basalis of the substantia innominata
region (also known as the magnocellular nucleus basalis of Meynert) in the basal forebrain
(Mesulam et al 1983). Cholinergic antagonists have been shown to increase the average visual
response of all recorded IT neurons during a DMS task with delay (Miller and Desimone 1993,
Dudkin et al 1994). Finally, cholinergic neurons of the basal forebrain project to IT cortex
(Mesulam et al 1983). This suggests that acetylcholine can modulate the responses of IT
neurons.

Cholinergic agonists cause depolarization and suppress adaptation in piriform cortex
(Hasselmo and Bower 1992, Barkai and Hasselmo 1994), somatosensory neocortex (Schwindt
et al 1988) and motor cortex (Woody and Gruen 1987). Acetylcholine also suppresses feedback
but not feedforward excitatory synapses in neocortex (Cauller and Connors 1994, Hasselmo
and Cekic 1996). Other effects of acetylcholine include suppression of inhibitory transmission
and direct depolarization of inhibitory interneurons (Pitler and Alger 1992) and enhancement of
LTP (Burgard and Sarvey 1990, Blitzer et al 1990, Hasselmo and Barkai 1995). The selective
suppression of recurrent excitatory transmission by acetylcholine could prevent recurrent
connections from interfering with self-organization, as shown in the results section.

We assume that the effects of acetylcholine in IT cortex are similar to those described in
other cortical regions. The model contained a representation of the level of acetylcholine,
ψ , which varied between zero and one. Intrinsic synapses, those excitatory connections
originating in IT cortex and terminating on either other IT neurons or else on the inhibitory unit,
were suppressed by a factor of 0.8 ψ . Connections from the inhibitory unit were suppressed
by a factor of 0.8 ψ . The magnitude of the adaptation current in IT neurons was reduced by
a factor of 1.0 ψ . To model the cholinergic enhancement of synaptic modification, the rate
synaptic modification was multiplied by the factor (0.02 + 0.98ψ). Finally, the excitation of
both excitatory and inhibitory units in both the input region and IT cortex was represented by
a direct depolarization of the cells sufficient to bring their resting potentials to 4.0.

2.6. Feedback regulation of cholinergic modulation

Since cholinergic modulation serves to suppress recurrent excitation during self-organization
(Hasselmo and Cekic 1996), we hypothesize that cholinergic modulation is strongest during
presentation of a novel stimulus and decreases as that stimulus becomes more familiar and
self-organization becomes nearly complete. In fact, experimental data shows that cholinergic
neurons of the substantia innominata respond more strongly to novel stimuli than to familiar
stimuli (Wilson and Rolls 1990). Note that self-organization should cause initially diffuse
neural representations of novel stimuli to converge to sparser representations (von der Malsburg
1973, Grossberg 1976, Rummelhart and Zipser 1986, Hasselmo and Cekic 1996). This is
consistent with the focusing of inferotemporal activity with increasing stimulus familiarity
(Miyashita 1988, Miller et al 1991b, Li et al 1993). Cholinergic modulation used to suppress
recurrent connections during learning, when neural representations are diffuse, is similar to
the ‘2/3 rule’ used by adaptive resonance networks to suppress feedback activity that does not
coincide with feedforward activity (Carpenter and Grossberg 1993).
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In order to produce the levels of cholinergic modulation described above the model includes
feedback from IT neurons to the basal forebrain neurons, as diagrammed in figure 1. The
equation governing the evolution of a, the activity of a basal forebrain neuron, was similar to
equation (1). �, the level of cholinergic modulation in the network, was determined by the
activity of one cholinergic neuron. This neuron received afferent input to produce the tonic
firing observed during wakefulness (Richardson and DeLong 1991), excitation from the input
region and inhibition from other basal forebrain neurons, as diagrammed in figure 1.

This sort of circuit, in which feedback from IT neurons regulates the output of a cholinergic
neuron, is supported by several anatomical studies that have found feedback connections from
IT cortex to the substantia innominata (Whitlock and Nauta 1956, Mesulam and Mufson 1984,
Russchen et al 1985, Wilson and Rolls 1990). Furthermore, whereas the substantia innominata
projects to much of the neocortex (Mesulam et al 1983), IT cortex is one of the few regions
of neocortex with feedback connections to the substantia innominata (Mesulam and Mufson
1984, Russchen et al 1985). Mesulam and Mufson (1984) found that the feedback connections
from IT cortex to the substantia innominata are concentrated in the particular sector (Ch4i)
from which most of the connections to IT cortex originate. Finally, the responses of IT
neurons differentiate between novel and familiar stimuli approximately 100 ms after stimulus
presentation (Li et al 1993) whereas neurons in substantia innominata do so approximately
200 ms after stimulus presentation (Wilson and Rolls 1990), so there is enough time for
feedback from IT cortex to reach neurons in the substantia innominata before they exhibit
familiarity effects. Thus it seems reasonable to assume that IT cortex could control the amount
of cholinergic modulation it receives in such a way that the observed decrease in substantia
innominata activity as stimuli become familiar is due to feedback from IT cortex.

2.7. Active reset mechanism and cholinergic modulation

Cholinergic modulation might provide a mechanism for the ‘active reset’ of match suppression
between trials. As described in the introduction, during DMS tasks in which the same sample
stimulus appeared on two consecutive trials, IT neurons’ responses to the second presentation
did not differ significantly from their responses to the first presentation (Miller et al 1991b,
1993). In our model, the level of cholinergic modulation was initially high, but fell during
presentation of the sample stimulus. However, by focusing their attention on the sample
stimulus at the beginning of each DMS trial, monkeys may have maintained a high level
of cholinergic modulation for the duration of the sample presentation. Because high levels
of acetylcholine suppress the currents which cause adaptation (Hasselmo and Bower 1992,
Barkai and Hasselmo 1994), they could prevent the response to the sample stimulus from
being suppressed even when that stimulus had been seen on the previous trial. To test whether
higher levels of cholinergic modulation due to increased attention could produce an ‘active
reset’ between trials, we performed simulations in which a single sample stimulus was repeated
on consecutive trials, but the tonic input to the cholinergic neuron was doubled.

3. Results

We present the results in three parts. First, we store several input patterns in the network by
repeatedly presenting them to the input region, and we show that the network can subsequently
recall these patterns. Second, to study short-term recency effects, we use these stored patterns
to simulate either repeated presentations of a single stimulus, or DMS trials (which have been
described in the introduction). Third, to study long-term familiarity effects, we simulate DMS
trials in a new network, using initially novel input patterns.
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3.1. Cholinergic modulation prevents recurrent connections from interfering with
self-organization

Self-organization normally proceeds via competition between patterns. Consider two input
stimuli, pattern A and pattern B. Presentation of one of these patterns to the input region
activates a set of IT neurons, called the ‘IT representation’ for that input pattern. Now suppose
that the representations for patterns A and B initially overlap in a single neuron. In the absence
of recurrent excitation, presentation of pattern A in the input region will strengthen connections
from pre-synaptic neurons in pattern A to all of the neurons in the IT representation of pattern
A, including the overlapping neuron which is in the IT representations of both patterns. At
the same time, as a consequence of normalization, connections from pre-synaptic neurons in
input pattern B to the overlapping neuron are weakened. Similarly, presentation of pattern B in
the input region will strengthen connections from the pre-synaptic neurons in pattern B to all
of the neurons in its IT representation, and weaken connections from pre-synaptic neurons in
pattern A to the overlapping neuron. The net result is that connections between both patterns
and the nonoverlapping elements of their respective IT representations are strengthened, while
they compete for the overlapping elements.

However, when recurrent excitatory connections are present, the spread of activity along
these connections can interfere with self-organization. Suppose that the IT representations for
two input patterns, A and B, overlap in one or more elements. Then, when input pattern
A is presented, excitation spreads along recurrent excitatory connections in IT cortex to
activate elements of the IT representation for pattern B. As a result, connections between
the neurons in input pattern A and the IT representations for pattern A and pattern B
are strengthened. After normalization, connections between the input neurons for pattern
B and all of the neurons in its IT representation will be weakened. When pattern B is
presented, the converse occurs. As a result, the representations for two patterns which
initially overlapped only in one element may become completely overlapping. Figure 2(c)
shows how this can occur in a network without cholinergic modulation. At time zero, the
network was initialized with random synaptic weights, as described in the methods. Then,
we repeatedly presented a set of five random patterns of activity to the input region. As
described above, because of the spread of activity along recurrent connections between IT
neurons, the IT representations for these input patterns become totally overlapping. As a
result, every IT neuron responds in the same way to each of these five stimuli, so these
responses are noninformative. Furthermore, as shown in the figure, when the network was
tested with degraded versions of the original input patterns, it failed to recall the corresponding
IT representations.

However, cholinergic modulation suppresses recurrent connections during learning. As a
result, self-organization is able to proceed in a network with cholinergic modulation, as shown
in figure 2(a). Recent experimental evidence supports this role for cholinergic modulation (Gil
et al 1997, Hsieh et al 1998). With cholinergic modulation in the model, repeated presentation
of the five random input patterns produces a unique, nonoverlapping IT representation for
each one. When the network was tested with degraded versions of the input stimuli, it
correctly recalled the corresponding IT representation. The recurrent connections allow IT
neurons to maintain self-sustained activity. Figure 2(b) shows a similar network in which the
feedforward connections from the input areas to the IT region do not undergo self-organization
but are instead initialized with an identity mapping. The performance of each network in
figure 2 is measured using a normalized dot product to compare activity in the IT region during
presentation of the degraded and complete patterns. The network with self-organization and
cholinergic modulation attains optimal performance.
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Figure 2. Self-organization in the presence and absence of cholinergic modulation. After the set
of input patterns is presented for learning, each network is tested using degraded versions of those
patterns and performance is measured using a normalized dot product to compare activity in the
IT cortex region during presentation of the degraded and complete patterns. (a) When cholinergic
modulation is present, self-organization proceeds normally and nonoverlapping representations
of input patterns form in the IT cortex region. Degraded versions of input patterns recall the
complete IT cortex representation, indicating that stable attractor states have formed to represent
input patterns. (b) Performance when cholinergic modulation is present, but there is an identity
mapping rather than self-organizing synapses from input areas to IT cortex. In the absence of self-
organization, representations for the input patterns form in IT cortex, but are not nonoverlapping.
This causes interference between patterns. (c) In the absence of cholinergic modulation, recurrent
excitation interferes with self-organization and stable, nonoverlapping attractor states do not form.
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Figure 3. (a) The average response of model IT neurons to successive presentations of a familiar
stimulus for 1 s, when 2 s intervene between each presentation and when 6 s intervene between
each presentation. (b) The average responses recorded intracellularly from IT neurons in awake
macaque monkeys to successive presentations of visual stimuli with interstimulus intervals of 2
and 6 s (Miller et al 1991a). As in (a) there is habituation with an interstimulus interval of 2 s, but
not for one of 6 s.

3.2. Recency effects

3.2.1. Habituation of individual neurons. In the model, activation of an IT neuron causes a
calcium influx. Subsequent responses are suppressed due to activation of a calcium-dependent
potassium current. Figure 3(a) shows the average response of simulated IT neurons to repeated
stimulation by presentation of a familiar visual stimulus for interstimulus intervals of 2 and 6 s.
For comparison, figure 3(b) shows analogous responses obtained by extracellular recording
from IT neurons in awake macaque monkeys (Miller et al 1991a).

As the interstimulus interval increased in the simulation, increasing amounts of calcium
diffused out of neurons between stimulus presentations so that the amount of habituation
decreased until the habituation due to adaptation disappeared altogether. As can be seen
from figures 3(a) and (b), both the simulation and extracellular recordings found significant
habituation at an interstimulus interval of 2 s but not at an interstimulus interval of 6 s.

3.2.2. Match suppression. Presentation of a sample stimulus activates a subset of IT neurons,
leading to a buildup of calcium in these neurons. Presentation of the match stimulus activates
the same subset of neurons and their responses are therefore suppressed due to adaptation of
the individual neurons. To study the suppression of responses to match stimuli during DMS
tasks, we simulated DMS trials using a network which had stored several random input patterns
(as described above). Each input pattern corresponded to one stimulus in a DMS trial.
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Figure 4. (a) The average response of model IT neurons during a DMS task to sample, match
and nonmatch stimuli as a function of the number of intervening stimuli. The responses were
averaged over all of the IT neurons in the network and five different random input patterns. (b) The
average response of IT neurons recorded extracellularly from awake monkeys during performance
of a similar DMS task (Miller et al 1991b). In both cases match and nonmatch responses are both
suppressed relative to sample responses. In addition, match responses are suppressed relative to
nonmatch responses and the amount of match–nonmatch difference decreases as the number of
intervening stimuli increases. The responses were averaged over all cells and those trials on which
there was a significant difference between responses to matching and nonmatching stimuli.

Figure 4(a) shows the average response of all IT neurons in the model to sample, match
and nonmatching stimuli in a DMS task as a function of the number of intervening stimuli.
Results from corresponding experiments are shown in figure 4(b) (Miller et al 1993). In
both simulations (figure 4(a)) and experiments (figure 4(b)), suppression of match responses,
relative to responses to either sample or nonmatching stimuli, decreases as the number of
intervening stimuli increases. This decrease in response may contribute to differences in
activation of visual association cortex measured by functional magnetic resonance imaging
(Stern et al 1996).
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3.2.3. Suppression of responses to repeated nonmatching stimuli. In both simulations and
experiments (Miller and Desimone 1994), responses to nonmatch stimuli presented twice
during one trial (‘repeated nonmatches’) were lower on the second than on the first presentation,
and the amount of suppression was slightly greater than the difference between responses
to sample and match stimuli. This suggests that the mechanism of match suppression
affects both repeated nonmatch and match stimuli (Miller and Desimone 1994). Indeed,
in the simulations, residual adaptation currents in recently activated neurons produced this
suppression of responses to the second presentation of a repeated nonmatch.

3.2.4. Nonmatch suppression. Self-organization in this network led to the formation of
distributed representations for input patterns in IT cortex. In such distributed representations,
the amount of overlap between the representations for two input patterns reflected their
similarity. Nonmatch responses are suppressed relative to sample responses in proportion
to the number of IT neurons that the representations of the two stimuli have in common. Thus,
the amount of nonmatch suppression reflects the degree of similarity between the sample and
nonmatch stimuli, consistent with experimental evidence (Miller et al 1993).

3.3. Familiarity effects

3.3.1. Decline of response with increasing stimulus familiarity. The recency effects
described above (habituation, match suppression, suppression of repeated nonmatches and
nonmatch suppression) occurred for responses to familiar stimuli, i.e. stimuli that had already
been learned by the network. As described earlier, we also simulated DMS trials using
initially novel input patterns for the sample/match stimuli and familiar input patterns for
nonmatching stimuli. This modelled previous experiments (Miller et al 1991b, Li et al
1993). In order to study how responses of IT neurons to initially novel sample and
match stimuli changed as those stimuli became familiar to the network, simulations and
experiments (Miller et al 1991b, Li et al 1993) both used the following protocol. After
each initially novel stimulus appeared as the sample and match stimulus in a DMS trial, it
would be absent from a certain number of subsequent DMS trials before appearing as the
sample and match stimuli in another DMS trial. The number of intervening trials alternated
between three and 35, so that the effects of different numbers of intervening trials could be
compared.

Figure 5(a) shows the response of neurons in the network model (averaged over four runs
of the simulation, each with 20 initially novel random stimuli) to sample and match stimuli as
they became familiar. To demonstate that match suppression results from calcium-dependent
adaptation currents, figure 5(b) shows the average responses to sample and match stimuli from
an identical network in which the amount of calcium in IT neurons was reset to zero after
each stimulus presentation. This reset should eliminate recency effects due to adaptation.
Figure 5(c) shows the experimentally observed decline in the responses of these neurons to
sample and match stimuli as they become familiar.

In accordance with previous experimental studies (Miller et al 1991b, Li et al 1993),
we used linear regression to find the best fit line for the average response of each neuron as a
function of the number of presentations, and used the slope of this line to determine whether the
average response of an IT neuron declined over the course of the simulation. On average, 45%
of model IT neurons (referred to as ‘negative cells’) satisfied this criterion, and their responses
to sample stimuli declined by an average of 58% after 12 presentations of the stimuli (six as
samples and six as matches). Experimental studies have classified approximately one-third of
IT neurons in vivo as ‘negative cells’ using the same criteria (Miller et al 1991b, Li et al 1993).
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Figure 5. (a) The response of model IT neurons to sample and match stimuli as they became familiar
during repeated DMS trials. The number of trials intervening between successive presentations
of a particular sample/match stimulus alternated between three and 35. The average response was
computed for those IT neurons whose responses declined over the course of each simulation (an
average of 13 out of 20 neurons). (b) The average responses to sample and match stimuli from an
identical network in which calcium levels were reset after each stimulus presentation, eliminating
any recency effects caused by adaptation currents. (c) The experimentally observed decline in the
responses of IT neurons to sample and match stimuli as they become familiar (Miller et al 1991b, Li
et al 1993). Here the number of trials intervening between successive presentations of a particular
stimulus alternated between three and 35. Again, the average included only those neurons whose
responses declined significantly over the course of the recording session (approximately one-third
of the total number of IT neurons studied).

Other studies have found that as many as 66% of IT neurons satisfy similar criteria (Riches
et al 1991).

3.4. Recency and familiarity effects summate and result from different mechanisms

In this paradigm, which uses initially novel sample and match stimuli, response to match
stimuli are still suppressed relative to sample responses. Responses to match stimuli also
decline with increasing stimulus familiarity. This is consistent with experimental evidence
which suggests that recency effects (match suppression) and familiarity effects summate in IT
cortex (Li et al 1993). This suggests that match suppression and the decline in responses to
increasingly familiar stimuli are caused by independent mechanisms. Indeed, in the network
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Figure 6. (a) The average response of the cholinergic neuron in the model to initially novel stimuli
as they are repeated. (b) The average response of a cholinergic neuron in primate basal forebrain
to initially novel visual stimuli, as a function of the number of repetitions (Wilson and Rolls 1990).
In both cases the response is higher for novel than for familiar stimuli.

with normal calcium dynamics and adaptation currents (figure 5(a)) sample responses are
greater than match responses by an average of 44%, whereas in the network in which calcium
levels are reset after each stimulus presentation (figure 5(b)) average match responses are only
4% weaker than average sample responses. This confirms that most of the match suppression
observed under this paradigm in the model results from adaptation, not from the synaptic
changes that produce the decline in response with increasing stimulus familiarity.

3.5. Familiarity effects result from competitive self-organization

Whereas match suppression results from adaptation currents that decay in seconds, the decline
in response with increasing stimulus familiarity results from long-term changes in synaptic
weights and persists through presentations of at least 105 other stimuli. In the model, these
synaptic changes result from the competitive self-organization described earlier. Presentation
of a novel stimulus activates a fixed subset of input neurons. IT neurons ‘compete’ for
connections from these input neurons. The dominant processes during this competition are
described by the first and third terms on the right-hand side of equation (5), namely, Hebbian-
type synaptic strengthening and homosynaptic depression. IT neurons whose connections from
input neurons undergo depression ‘lose’ the competition and their responses to the stimulus
decline as it becomes familiar.

Both input patterns and the IT representations of those patterns are relatively sparse. As
a result, during the interval between successive presentations of an initially novel stimulus,
those connections from input neurons to IT neurons which had been weakened, are strengthened
because of the last term on the right-hand side of equation (5), synaptic strengthening due to
nonlocal processes. Thus, as intervening stimuli are presented, there is some recovery in the
synaptic connections of those neurons which had been ‘losing’ the competition for connections
to input neurons, and the response decrements are gradually ‘forgotten’.

As a result of these learning processes, the responses of many IT neurons to a stimulus
fall after each presentation of that stimulus, but recover during the presentation of different
intervening stimuli. In the model, responses of ‘negative cells’ to a stimulus fell by an average
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of 16% when there were only three intervening trials between successive presentations of that
stimulus, but fell by an average of only 10% when 35 trials intervened. Experimental studies
of ‘negative cells’ in IT cortex have also found larger response decrements when there were
fewer intervening trials (Miller et al 1991b, Li et al 1993). This explains the staircase-like
appearance of figures 5(a) and (c), where response decrements are large when there are few
intervening stimuli but small when there are many intervening stimuli.

3.6. Decline in levels of cholinergic modulation with increasing stimulus familiarity

In the model, as in experimental recordings from the substantia innominata (Wilson and Rolls
1990), responses of the cholinergic neuron fell as stimuli became familiar. Figure 6(a) shows
the average response of the cholinergic neuron in the model to initially novel stimuli as a
function of the number of repetitions. For comparison, figure 6(b) shows an analogous decline
in the responses of cholinergic neurons in vivo (Wilson and Rolls 1990).

3.6.1. Acetylcholine masks recency effects. To simulate focusing of attention on the sample
stimulus, tonic input to the cholinergic neuron was doubled during presentation of the sample
stimulus. Under this condition, responses to a single sample stimulus presented on two
consecutive trials increased slightly on the second presentation even though the same stimulus
had just been seen on the preceding trial as the match stimulus. Thus, cholinergic modulation
could provide the active reset mechanism described in the introduction.

3.7. Combination of recency and familiarity effects

Familiarity and recency effects can summate in IT cortex, when initially novel stimuli are
presented repeatedly with short (500 ms) interstimulus intervals. Figure 7(a) shows the average
Z score, computed from responses of model IT neurons to initially novel stimuli, as a function
of presentation number. Figure 7(b) shows analogous data computed from the responses of
IT neurons in awake macaque monkeys to initially novel faces (Hasselmo 1988). The rapid
decline of the Z scores suggests that in both cases the responses to the first presentations are
much higher than responses to subsequent presentations. As in previous experimental studies
(Hasselmo 1988, Rolls et al 1989), the distribution of responses across neurons changes as
initially novel stimuli become familiar.

4. Discussion

This network model of IT cortex reproduces the following experimental observations:

(1) The responses of IT neurons decline during repeated presentations of a single stimulus
(habituation).

(2) During DMS trials, IT neurons’ responses to nonmatch stimuli are suppressed relative
to responses to sample stimuli (nonmatch suppression). Responses to match stimuli are
suppressed relative to responses to both sample and nonmatch stimuli (match suppression).

(3) When a single nonmatch stimulus is presented twice during a single trial, the response to
the second presentation is suppressed relative to that to the first (suppression of repeated
nonmatch).

(4) Elevated levels of cholinergic modulation during presentation of the sample stimulus
prevent suppression of the response to a sample stimulus that is repeated on two consecutive
trials (active reset mechanism).
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Figure 7. (a) The average Z score, computed from responses of model IT neurons to a set of four
initially novel stimuli, as a function of presentation number. Stimuli were presented for 500 ms
and 500 ms intervened between consecutive stimuli. (b) The average Z score as a function of the
number of presentations for responses recorded extracellularly from IT neurons in awake macaque
monkeys during presentation of an initially novel set of faces (Hasselmo 1988).

(5) The decline in response to an initially novel stimulus as it becomes familiar is greater
when fewer other stimuli intervene between successive presentations of the initially novel
stimulus.

(6) This decrease in response with increasing familiarity summates with match suppression
in IT cortex.

(7) The responses of cholinergic neurons in the basal forebrain decline with increasing
stimulus familiarity.

Observations (1)–(3) describe recency effects that are produced by adaptation currents in
our model. Observation (4) suggests that cholinergic modulation may underlie the active reset
mechanism. Observation (5) describes a familiarity effect that results from competitive self-
organization of feedforward connections terminating on IT neurons. Observation (7) shows
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that feedback from IT neurons to the basal forebrain can regulate the level of cholinergic
modulation, such that it prevents recurrent connections from disrupting self-organization.

4.1. Cholinergic modulation and arousal

Several researchers have suggested that feedback from adaptive memory filters in IT cortex
could control attention and orienting systems (Li et al 1993, Desimone et al 1994). In this
scheme novel stimuli elicit high levels of activity in IT cortex, indicating that they are worthy of
attention whereas familiar stimuli elicit lower levels of activity, freeing the organism to focus
its attention on other stimuli. In our model, widespread activity in IT cortex results in high
levels of cholinergic modulation and focused activity in IT cortex is associated with low levels
of cholinergic modulation. Thus, the level of cholinergic modulation in our model reflects the
amount of attention focused on IT cortex by attention or orienting systems.

In fact, levels of acetylcholine release do seem to be correlated with levels of cortical
activation and arousal (Richardson and DeLong 1991). This relationship and the ability of
acetylcholine to facilitate long-lasting changes in the efficacy of synaptic transmission have
led other authors to suggest that phasic increases in levels of cholinergic modulation may
accompany learning (Richardson and DeLong 1991), as this model assumes.

4.2. Relation to cholinergic modulation in other cortical structures

Our results suggest that acetylcholine may facilitate the encoding of novel stimuli by IT
cortex. The observed effects of cholinergic modulation on neuronal responses in other cortical
structures are consistent with this hypothesis. For example, in the cat somatosensory cortex,
pairing of acetylcholine infusion with somatosensory stimuli causes long-term enhancement
of the neuronal response to this same somatosensory stimuli (Tremblay et al 1990), suggesting
that cholinergic modulation could provide a strong ‘encode’ signal which activates neurons in
a manner which makes them more selectively responsive during a subsequent match episode
(Dykes 1997). Muscarinic activation also enhances the response of auditory cortex neurons to
auditory stimuli (Metherate et al 1990) and pairing application of acetylcholine with auditory
stimuli of specific frequencies can selectively enhance the response of a recorded neuron
to those specific frequencies (Metherate and Weinberger 1989). Iontophoretic injection of
acetylcholine into the primary visual cortex (Sillito and Kemp 1983) greatly enhances the
stimulus-specific response of many visually responsive neurons (and causes depression of
other responses).

4.3. Comparison to adaptive resonance theory

The role of cholinergic modulation may also be understood by comparing this model to the
adaptive resonance theory (ART) model of Carpenter and Grossberg (1993). Both our model
and the ART model contain two sets of units. One set receives input and has self-organizing
feedforward connections to the other set of units, which could represent IT neurons. The units
representing IT neurons compete for connections from the units receiving input. The effects of
cholinergic modulation in our model resemble the function of the orienting subsystem in the
ART model. Cholinergic modulation and the orienting subsystem of ART both nonspecifically
activate units until the IT units become active.

While these overall dynamics are similar, we have tried to relate the parameters of our
model to specific neural processes. For example, unlike the ART model our model includes
adaptation currents with dynamics determined by in vitro studies of slow AHP. Also, the
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neural network described here uses a learning rule representing LTP, LTD and long-term
redistribution of resources for synaptic maintenance. In the presence of cholinergic modulation,
this biologically plausible learning rule causes self-organization in which the responses of many
IT neurons decline as stimuli become familiar. In contrast, the ART model learns by searching
for a recognition code among the units representing IT neurons until the dot product between
the output of these units and the input pattern exceeds a vigilance parameter.

4.4. Comparison to other models

Recently, several new models of learning in IT cortex have appeared (Brunel 1996, Wallis 1998,
Riesenhuber and Poggio 1999). These models focus on describing data from experiments
(Miyashita 1988) showing increases in responses to visual stimuli after they have been
consistently paired with stimuli evoking a stronger neuronal response. Thus, they focus on
different experimental phenomena than the ones addressed here. Furthermore, none of these
models have combined learning at feedforward and recurrent synapses. Learning at both sites
is critical in our model—at the former learning changes the distribution of IT neurons activated
by a stimulus, and at the latter learning enables IT neurons to sustain stimulus-specific activity
following removal of that stimulus. The model of Brunel (1996) and related work by Amit (see
Amit (1999) for an overview) study how recurrent connections between IT neurons develop
during repeated presentations of stimuli, but the set of IT neurons activated by feedforward
input to IT cortex does not change. In contrast, other models have focused on how learning
affects feedforward connections onto IT neurons, without specific mechanisms for maintaining
activity in the absence of stimuli (Wallis 1998, Riesenhuber and Poggio 1999). None of these
models specifically addresses the subject of this work: short- and long-term decreases in the
responses of IT neurons. Wallis (1998) has proposed that activity in IT cortex is maintained
via connections with prefrontal cortex, and while we tried to build a model which shows how
mechanisms within IT cortex could explain many experimental observations, we cannot rule
out a role for prefrontal cortex.

4.5. Predictions

(1) The adaptation current of neurons which had been ‘match suppressed’ should continue to
exert a hyperpolarizing effect on these neurons after any stimulus presentation, reducing
their baseline firing rate for a few seconds.

(2) Another consequence of the adaptation of individual neurons is that for a short time after
the presentation of one stimulus, responses to subsequent stimuli that activate the same IT
neurons should also be suppressed. Although they have not explicitly tested this claim,
past studies have found suggestive evidence that the amount of suppression of a neural
response to a nonmatch stimulus may be greatest when the sample and nonmatch activate
the neuron to a similar degree (Miller et al 1993).

(3) In our simulations, IT neurons show response decrements after their connections from
input neurons become weaker. These are neurons which either do not respond strongly
enough for Hebbian synaptic modification to strengthen their connections from input
neurons, or which respond to too many stimuli, and therefore do not develop stable
connections from a single set of input neurons. Therefore, the population of ‘negative cells’
should generally consist of those neurons which do not respond strongly to a particular
stimulus or particular class of stimuli. Conversely, those neurons which continue to
respond to stimuli even after they become familiar should respond strongly to a small
subset of stimuli.
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(4) We hypothesize that high levels of cholinergic modulation are sustained during
presentation of a sample stimulus so that sample responses are not suppressed even when
the sample stimulus is repeated. However, this should not affect adaptation currents
during the response to the match stimulus. Therefore presenting the same sample/match
stimulus on consecutive DMS trials should result in a higher than normal amount of match
suppression on the second trial.

(5) Another prediction of our hypothesis for the active-reset mechanism is that if cholinergic
antagonists are applied to IT neurons, this active reset should be blocked.

(6) Blocking cholinergic innervation should also interfere with effective self-organization, as
described earlier.

(7) One final prediction of our model is that cholinergic agonists or acetylcholinesterase
blockers should reduce the amount of match suppression by blocking adaptation currents.

4.6. Limitations of the model

We have found some limitations of our model for IT cortex which result from the small size of
this network. Because there were only a limited number of IT neurons available to participate
in representations of input stimuli, some neurons were removed from the representations of
previously learned familiar stimuli as representations of novel stimuli were learned. As a
result, whenever novel stimuli were learned, the pattern of IT neurons’ responses to familiar
stimuli changed, so that some neurons’ response decrements to familiar stimuli were gradually
‘forgotten’. This characteristic of the network could be alleviated by increasing the number of
IT neurons.

Larger networks may enjoy other desirable properties. For example, there is evidence that
IT neurons have different stimulus selectivity properties during the stimulus presentation than
during the subsequent delay interval of a DMS task. In our model, connectivity between IT
neurons is all-to-all. During presentation of a stimulus, synapses between all active IT neurons
are strengthened. These neurons form an attractor state which maintains activity during the
delay. As a result, the same neurons are active during the stimulus presentation and subsequent
delay. However, in a larger network, in which IT cortex was only partially connected, the
neurons which are active during presentation of a stimulus could excite cells from which they
do not receive reciprocal excitatory connections. As the cholinergic suppression of excitatory
connections between IT neurons falls, neurons active during the stimulus presentation could
activate a distinct subset of neurons, which contained recurrent connections and would remain
active during the delay. Thus, different sets of neurons could be active during presentation of
the stimulus and during the delay.

Another limitation of this model is that unlike the decline in sample responses, the decline
in match responses is not significantly greater when fewer trials intervene between successive
presentations of a stimulus. This is because in the model learning occurs instantaneously, so
that familiarity effects accrued during a sample presentation manifest themselves in the match
response. These instantaneous familiarity effects also explain why in figure 5(b), even when
calcium levels are reset to zero after every stimulus presentation, match responses are still
suppressed slightly relative to sample responses. In real neurons, changes in synaptic efficacy
might occur gradually so that the familiarity effects accrued during the sample presentation
would not manifest themselves during the match response. This could explain why in the
experimental data, unlike the model, the decline in match response has the same staircase-like
appearance as the decline in the sample response.
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5. Conclusions

The results demonstrate that in a biologically based neural network model of IT cortex,
adaptation with a time constant determined by in vitro studies of slow AHP causes responses
to a stimulus to decrease depending on its recency. They also show how self-organization
using a learning rule that represents the physiological processes of LTP, LTD and long-
term redistribution of resources for synaptic maintenance causes responses to a stimulus to
decrease depending on its familiarity. These results provide mechanisms for similar response
decrements observed experimentally (Brown et al 1987, Hasselmo 1988, Rolls et al 1989,
Miller et al 1991b, 1993, Riches et al 1991, Li et al 1993).

This model also shows how a sustained, high level of cholinergic modulation during sample
presentations provides a possible mechanism for the observed active reset between DMS trials
(Miller et al 1991b, 1993). Finally, a feedback circuit from IT cortex to basal forebrain, like
that used in this model, could explain why some neurons in substantia innominata respond
more strongly to novel than to familiar stimuli (Wilson and Rolls 1990). These results provide
a possible relationship between IT cortex, the level of cholinergic modulation and the monkey’s
behaviour during a DMS task.
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