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Most functional magnetic resonance imaging (fMRI) studies
examining working memory (WM) load have focused on the prefrontal
cortex (PFC) and have demonstrated increased prefrontal activity
with increased load. Here we examined WM load effects in the
medial temporal lobe (MTL) using an fMRI Sternberg task with novel
complex visual scenes. Trials consisted of 3 sequential events: 1)
sample presentation (encoding), 2) delay period (maintenance), and 3)
probe period (retrieval). During sample encoding, subjects saw either
2 or 4 pictures consecutively. During retrieval, subjects indicated
whether the probe picture matched one of the sample pictures.
Results revealed that activity in the left anterior hippocampal
formation, bilateral retrosplenial area, and left amygdala was greater
at retrieval for trials with larger memory load, whereas activity in the
PFC was greater at encoding for trials with larger memory load. There
was no load effect during the delay. When encoding, maintenance,
and retrieval periods were compared with fixation, activity was
present in the hippocampal body/tail and fusiform gyrus bilaterally
during encoding and retrieval, but not maintenance. Bilateral
dorsolateral prefrontal activity was present during maintenance, but
not during encoding or retrieval. The results support models of WM
predicting that activity in the MTL should be modulated by WM load.
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Introduction

Models of working memory (WM) have proposed a mechanism

whereby persistent spiking at a cellular level could be used to

maintain multiple items in a WM buffer (Lisman and Idiart

1995; Jensen et al. 1996; Jensen and Lisman 1998, 2005; Koene

and Hasselmo 2007). These mechanisms could also be critical

for holding novel information across a delay and could allow

multiple items to be linked together across time (Hasselmo and

Stern 2006). These models use persistent spiking mechanisms

that have been demonstrated in intracellular recordings from

slices of entorhinal cortex (Klink and Alonso 1997; Egorov et al.

2002; Fransén et al. 2006) and amygdala (Egorov et al. 2006).

Therefore, some of these models focus on WM in medial

temporal lobe (MTL) regions instead of prefrontal cortex (PFC)

(Jensen and Lisman 2005; Koene and Hasselmo 2007).

Previous functional neuroimaging work established that the

PFC is recruited to maintain items in WM in humans (Jansma

et al. 2000; Jha and McCarthy 2000; Druzgal and D’Esposito

2001; Rypma et al. 2002; Woodward et al. 2006; Altamura et al.

2007) and that activity in the PFC increases when more items

are being held online during the memory delay (Rypma et al.

1999, 2002; Druzgal and D’Esposito 2003; Veltman et al. 2003;

Cairo et al. 2004). The stimuli that these studies used, such as

letters (Rypma et al. 1999, 2002; Veltman et al. 2003; Cairo et al.

2004; Altamura et al. 2007) or words and faces (Druzgal and

D’Esposito 2003), were highly familiar to the subjects, and

these studies did not report activity in the MTL.

In contrast, recent functional magnetic resonance imaging

(fMRI) studies suggest that when stimuli are trial unique, the

MTL regions are recruited to maintain this novel information

(Ranganath and D’Esposito 2001; Stern et al. 2001; Schon et al.

2004; Nichols et al. 2006). Furthermore, this delay activity is

related to long-term memory encoding (Schon et al. 2004).

These results are consistent with neurophysiological recording

and functional mapping studies of WM in animals (Eacott et al.

1994; Suzuki et al. 1997; Davachi and Goldman-Rakic 2001)

and with neuropsychological studies in humans that have

demonstrated that the MTL is crucial for WM with novel

information even for memory delays as short as 4 s (Nichols et al.

2006; Olson et al. 2006). Most critically, this research has raised

doubts that WM and long-term memory are 2 separate entities

as both PFC andMTLhave been shown to be critical for both types

of memory (Ranganath and Blumenfeld 2005; Jonides et al. 2008).

Computational modeling also predicts that MTL regions are

critical for maintaining trial-unique stimuli and would be

modulated by WM load (Lisman and Idiart 1995; Jensen et al.

1996; Jensen and Lisman 2005; Koene and Hasselmo 2007). Our

study was designed to test the model-based prediction that fMRI

activity in the anterior MTL would increase as a function of WM

load. We tested this prediction by combining fMRI with

a Sternberg task paradigm during which subjects had to remem-

ber either 2 or 4 sequentially presented stimuli over a brief

WM delay. This paradigm allowed for the investigation of load

effects separately during encoding, maintenance, and retrieval.

Materials and Methods

Subjects
Eighteen healthy young individuals (age: 22 ± 5 years; 8 males) from the

Boston University community participated in this fMRI study after

providing informed consent in a manner approved by both the Partners

Human Research Committee of the Massachusetts General Hospital and

the Boston University Charles River Campus Institutional Review Board.

Subjects were included if they did not have any history of or current

neurological or psychiatric symptoms and did not have any conditions

that are counterindicators for magnetic resonance imaging. Vision was

normal or corrected to normal. All subjects were right handed.

Task Procedures

Stimuli

As in our previous work (Sherman et al. 2003; Schon et al. 2004, 2005),

we used a set of 600 digital color photographs of unfamiliar trial-unique

complex visual outdoor scenes as stimuli.
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Sternberg Task

Subjects performed a Sternberg task (Sternberg 1966) while in the fMRI

scanner (Fig. 1). There were 2 conditions, LOAD2 and LOAD4. Each

trial consisted of an initial encoding phase during which the subjects

saw either 2 (LOAD2, 4 s) or 4 (LOAD4, 8 s) sequentially presented

scenes. The encoding period was then followed by a variable-length

delay period (4, 6, or 8 s; maintenance phase), which, in turn, was

followed by a retrieval phase (2 s), and lastly, the retrieval phase was

followed by a variable-length intertrial interval (8, 10, 12 s; fixation/ITI).

During the encoding phase, each scene was presented for an average

of 1600 ms (ranging from 1400 to 1800 ms) and was followed by

a variable temporal jitter during which the screen was black (mean,

400 ms; range, 200--600 ms, uniform distribution in steps of 100 ms).

This temporal jitter during the encoding phase was included in order

to allow use of the identical task in a future intracranial electroen-

cephalography (iEEG) and magnetoencephalography study. As in

previous studies (Sakai and Passingham 2003; Cairo et al. 2004;

Ranganath et al. 2005; Piekema et al. 2006), the variable length of both

the delay period and the ITI reduces multicollinearity between

covariates (i.e., overlap between hemodynamic responses) that model

temporally adjacent events (encoding, maintenance, and then retrieval)

by introducing differential overlap. Adding variable-length delay and ITI

periods thus allows assessment of the hemodynamic response

separately for encoding, maintenance, and retrieval periods. In addition,

we performed a separate behavioral pilot study with 15 healthy young

subjects (age: 20 ± 2 years) that demonstrated no effect of delay length

(4, 6, or 8 s) on accuracy or reaction time (RT) and no delay length by

memory load interaction on these behavioral measures.

During the retrieval phase, subjects indicated with a button press

response whether the probe picture was identical to one of the sample

pictures seen during that trial (Match). Subjects were asked to respond

as quickly and as accurately as possible. Matching stimuli at retrieval

were equally likely to have been encountered before in any of the

temporal positions during the encoding phase (positions 1 and 2 for

LOAD2 trials and positions 1, 2, 3, and 4 for LOAD4 trials). The

probability of Match trials for each condition was 0.5.

Task Procedure

One day before scanning, subjects viewed task instructions and

practiced the task on a computer screen using a different set of

unfamiliar, trial-unique scenes. The following day, subjects performed 8

runs of the task with 18 trials each in the scanner. There were 9 LOAD2

trials and 9 LOAD4 trials per run. Thus, each subject performed a total

of 144 trials (72 trials per memory load). Scanning took approximately

60 min. We used PsyScope X Build 46 (http://psy.ck.sissa.it/) for task

presentation and recording of RTs and accuracy on an Intel Macintosh

MacBookPro laptop.

fMRI Data Acquisition
All imaging data were acquired on a 3-T MAGNETOM Trio scanner

(Siemens AG, Medical Solutions, Erlangen, Germany) using a 12-channel

Tim� Matrix coil at the Athinoula A. Martinos Center for Biomedical

Imaging at the Massachusetts General Hospital in Charlestown, MA. We

acquired 2 high-resolution T1-weighted magnetization-prepared rapid

gradient echo structural scans (time repetition [TR], 2530 ms; time

echo [TE], 3.39 ms; flip angle, 7�; 128 slices; matrix size, 256 3 192; field

of view, 256; in-plane resolution, 1 mm2; slice thickness, 1.33 mm).

Following the structural scans, we acquired 8 functional T 2*-weighted

blood oxygen level--dependent (BOLD) scans with 216 images each

during which the subjects performed the task. Thirty slices were

Figure 1. Sternberg task. Subjects performed 72 LOAD2 trials (top) and 72 LOAD4 trials (bottom) in 8 runs. Each trial consisted of 4 phases—1) encoding: During encoding, 2 or
4 sample scenes were viewed sequentially for ~1600 ms each. After each scene, the screen turned black for ~400 ms. 2) Maintenance: Subjects were instructed to remember
the scenes from the sample period across a variable-length delay period. 3) Retrieval: Subjects indicated via button press whether the scene matched one of those seen during
the encoding period (50% of trials were Match trials). 4) ITI: Each trial ended with a variable-length fixation/ITI.
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aligned in a coronal oblique fashion perpendicular to the long axis of

the hippocampus. This slice prescription (TR, 2000 ms; TE, 30 ms; flip

angle, 90�; matrix size, 64 3 64; field of view, 200 mm; in-plane

resolution, 1.125 mm2; slice thickness, 5 mm; 1 mm gap between slices;

interleaved slice acquisition) optimized signal in the MTL while at the

same time covering the whole brain.

fMRI Data Preprocessing
fMRI data were preprocessed with SPM5 software (Friston et al. 1994,

Friston, Holmes, Poline, et al. 1995; Friston, Holmes, Worsley, et al.

1995). Preprocessing included 1) Reorienting of all BOLD images such

that the origin (i.e., coordinate x y z = [0 0 0]) was at the anterior

commissure. 2) Slice-timing correction of all BOLD images temporally

smoothed all images to the first slice acquired in time. 3) Motion

correction included realigning and unwarping the BOLD images in

order to correct for variance due to susceptibility-by-movement

interactions (Andersson et al. 2001). This step created a mean BOLD

image and 6 movement parameters (3 translations and 3 rotations), the

latter of which were later entered into the general linear model as

covariates of no interest. In step 4), the structural images were

coregistered to the mean BOLD image for later visualization of

functional activity. In the following step 5), the high-resolution

structural images were segmented into white and gray matter images.

A bias-corrected structural image was also created at this step using the

default tissue probability maps as priors. SPM5 uses a modified version

of the ICBM (International Consortium for Brain Mapping) Tissue

Probability Atlas, and images are registered to the Montreal Neurolog-

ical Institute (MNI) space. Bias correction of smooth image intensity

variations may allow more accurate spatial registration (Ashburner and

Friston 2005). 6) For later signal averaging across subjects, the bias-

corrected structural images and the coregistered BOLD images were

spatially normalized into standard ICBM/MNI space using parameters

derived during segmentation of the structural images and using

nonlinear image registration (including resampling to 1 mm3 isotropic

voxels for structural images and 3 mm3 isotropic voxels for BOLD

images). The normalized structural images of all subjects were

averaged, and the average was used for statistical overlay of the

statistical parametric maps (SPMs) in Figures 2 and 3. 7) Finally, the

BOLD images were spatially smoothed using a 6-mm full-width at

half-maximum Gaussian kernel.

Data Analysis

Behavioral Data Analysis

We calculated median RTs for each subject and each condition and then

averaged them across subjects to obtain the mean. Averaged RTs and

accuracy (proportion of correct responses) were analyzed with a 2-

factor, repeated-measures analysis of variance (ANOVA) with the factors

load (LOAD2 vs. LOAD4) and trial (Match vs. Nonmatch) in order to

demonstrate that a load effect was present for the 2 behavioral measures

and that this load effect was modulated by trial type (Match/hit vs.

Nonmatch/lure). All behavioral analyses use an alpha level of 0.05.

In addition, we performed a separate analysis in order to demonstrate

absence of an effect of delay length (4, 6, or 8 s) on accuracy or RT and

absence of a delay length by memory load interaction on these

behavioral measures.

fMRI Data Analysis

Sixteen separate regressors were created for each subject as a function

of load (LOAD2 vs. LOAD4), event (encoding vs. maintenance vs.

retrieval vs. fixation/ITI), and accuracy (correct vs. incorrect) and

convolved with the canonical hemodynamic response function in

SPM5. Thus, all conditions were explicitly modeled as a regressor,

including fixation/ITI. The 6 movement parameters from the

realignment procedure were additionally added as covariates of no

interest to account for residual movement--related spurious activation.

The design matrix was constructed separately for each subject and

analyzed using the modified general linear model approach in SPM5.

T contrasts assessing WM load effects compared LOAD4 versus LOAD2

separately for each event of a trial (encoding, maintenance, and

Figure 2. Load-dependent activations during encoding and retrieval (LOAD4 [
LOAD2). SPMs are displayed on anatomical images derived from an average obtained
from the normalized structural images of all subjects using a statistical threshold of
pFDR \0.05 with SVC for ROIs outside PFC. Time courses display percent signal
change with respect to the overall ROI mean and are separated into 3 plots: 1) Peri-
sample onset time courses (left), 2) Postsample time courses (center), and 3) Peri-
probe onset time courses (right) for Nonmatch trials. Peri-sample onset time courses
illustrate activity during encoding with zero corresponding to the onset of the first
sample scene during the encoding phase, postsample time courses illustrate activity
during the maintenance phase with zero corresponding to the onset of the last
sample scene during the encoding phase (i.e., scene #2 for LOAD2 trials and scene
#4 for LOAD4 trials), and peri-probe onset time courses illustrate activity during
retrieval with zero corresponding to the onset of the probe during the retrieval period.
Blue lines indicate activity during LOAD4 trials, and red lines indicate activity during
LOAD2 trials. (A) WM load effect during encoding in the right and left anterior VLPFC
and the right DLPFC, (B) WM load effect during retrieval in the left anterior
hippocampal formation, in the left and right retrosplenial area, and in the left
amygdala. R, right; L, left.
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retrieval), and t contrasts assessing load-unrelated effects compared

encoding, maintenance, and retrieval versus fixation/ITI. Only correct

trials were included for these comparisons. In a second step, we

created group-averaged SPMs by entering the resulting contrast images

into 1-sample t-tests using subject as a random factor. The group SPMs

were thresholded at p <0.00005 using false discovery rate (FDR)

correction (Genovese et al. 2002) (pFDR ) for encoding versus fixation/

ITI and retrieval versus fixation/ITI at pFDR <0.05 for maintenance

versus fixation/ITI across the whole brain, and at pFDR <0.05 for LOAD4

versus LOAD2 comparisons with small-volume correction (SVC) using

a large regions of interest (ROIs) mask for all nonprefrontal ROIs (see

below) and without SVC for lateral prefrontal ROIs (see below). In all

Figure 3. Load-independent activations during encoding, maintenance (delay), and retrieval. SPMs are displayed on anatomical images derived from an average obtained from
the normalized structural images of all subjects using a statistical threshold of pFDR\0.00005 with whole-brain correction for encoding[fixation/ITI and for retrieval[fixation/ITI
and pFDR \0.05 with whole-brain correction for delay [fixation/ITI. Time courses display percent signal change with respect to the overall ROI mean and are separated into 3
plots: 1) Peri-sample onset time courses (left), 2) Postsample time courses (center), and 3) Peri-probe onset time courses (right). Peri-sample onset time courses illustrate activity
during encoding with zero corresponding to the onset of the first sample scene during the encoding phase, postsample time courses illustrate activity during the maintenance
phase with zero corresponding to the onset of the last sample scene during the encoding phase (i.e., scene #2 for LOAD2 trials and scene #4 for LOAD4 trials), and peri-probe
onset time courses illustrate activity during retrieval with zero corresponding to the onset of the probe during the retrieval period. Blue lines indicate activity during LOAD4 trials,
and red lines indicate activity during LOAD2 trials. (A) Activity during encoding versus fixation/ITI in the right hippocampal body/tail, the right fusiform gyrus, and the right VLPFC,
(B) Activity during maintenance (delay) versus fixation/ITI in the right anterior DLPFC, (C) Activity during retrieval versus fixation/ITI in the right hippocampal body/tail, the right
fusiform gyrus, the left VLPFC, and the right anterior DLPFC, (D) Activity during retrieval that is greater than activity during encoding (retrieval [ encoding) in the right
hippocampal body/tail and in the right anterior DLPFC. R, right; L, left.
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cases, the threshold extent was 5 voxels. A statistical threshold of

pFDR <0.05 was employed whenever activity was expected to be less

robust (i.e., when assessing delay-period activity and when assessing

differential activity as a function of WM load), whereas a statistical

threshold of pFDR <0.00005 was used whenever activity was expected

to be very robust, such as encoding or retrieval versus ITI/fixation. The

FDR measure (Genovese et al. 2002) controls the expected ‘‘pro-

portion’’ of false-positive voxels among all suprathreshold voxels; thus,

a more stringent threshold was used whenever a very large number of

activated voxels was expected (Nichols and Hayasaka 2003). SVC was

restricted to an a priori--defined ROI as described below.

ROI Selection

SVC included a large a priori--defined mask generated using the

WFU_PickAtlas tool (Maldjian et al. 2003) and included the hippocam-

pus, parahippocampal gyrus, amygdala, fusiform gyrus, lingual gyrus,

and posterior cingulate cortex, bilaterally. We performed SVC on

regions within this mask because of the known susceptibility-induced

signal reduction in the anterior MTL (Veltman et al. 2000; Greicius et al.

2003). ROIs were selected based on previous fMRI studies on WM,

recognition memory, and long-term encoding with complex visual

scenes (Stern et al. 1996, 2001; Epstein et al. 1999; Menon et al. 2000;

Rombouts et al. 2001; Schon et al. 2004; Castelo et al. 2006). These

studies have demonstrated a role for the MTL (including perirhinal/

entorhinal cortex [Brodmann Area (BA) 28/34/35], posterior parahippo-

campal cortex, and hippocampus), the fusiform gyrus (BA 36/37), the

lingual gyrus (BA 19/18), and the retrosplenial cortex (BAs 30 and 29)

in memory for complex visual scenes. We used this large mask for SVC

for comparisons assessing WM load effects. Because previous studies

have indicated a WM load effect in the lateral PFC (Rypma et al. 1999,

2002; Druzgal and D’Esposito 2003; Veltman et al. 2003; Cairo et al.

2004), additional ROIs included the dorsolateral PFC (DLPFC) (BAs 9

and 46) and the ventrolateral PFC (VLPFC) (BAs 44, 45, and 47). MTL

areas were anatomically localized using anatomical maps, including the

probabilistic cytoarchitectonic maps by Amunts et al. (2005), provided

in the SPM5 Anatomy toolbox (Eickhoff et al. 2005, 2006, 2007).

Extraction of Signal Intensities and Percent Signal Change

Calculation

Raw signal intensities were extracted using the Volumes toolbox

(http://sourceforge.net/projects/spmtools) extension for SPM5. Using

the activation peaks from the group analyses within our ROIs, we

extracted raw time series separately for each ROI and each subject

from a sphere with a 5-mm radius and the ROI peak as the center

coordinate. Percent signal change over time was calculated to explore

temporal dynamics as follows: ([signal intensity during task – average

signal intensity in ROI]/average signal intensity in ROI) 3 100. Thus, the

baseline used to calculate percent signal change for each ROI was the

overall mean of all voxels that are included in the 5-mm sphere of that

ROI (~15 voxels). Similar to previous papers reporting tasks with

variable-length delay periods (Sakai and Passingham 2003; Ranganath

et al. 2005), we constructed peri-sample onset, postsample, and peri-

probe onset time courses (see Figs 2 and 3). In these line graphs,

percent signal change is displayed on the y axis and time (in seconds,

with 0 as onset) is displayed on the x axis. Peri-sample onset time

courses illustrate activity during encoding with zero corresponding to

the onset of the first sample scene during the encoding phase,

postsample time courses illustrate activity during the maintenance

phase with zero corresponding to the onset of the last sample scene

during the encoding phase (i.e., scene #2 for LOAD2 trials and scene #4

for LOAD4 trials), and peri-probe onset time courses illustrate activity

during retrieval with zero corresponding to the onset of the probe

during the retrieval period. For each time point, averages and standard

errors of the mean were calculated.

Results

Our results revealed a WM load effect in the left anterior MTL,

including the hippocampal formation and the amygdala.

Additional load effects were localized in a region that included

both the retrosplenial cortex and the anterior lingual gyrus,

bilaterally; we have labeled this region the retrosplenial area.

This WM load effect was present during retrieval specifically

during Nonmatch trials, that is, during the correct rejection of

new scenes (lures). In addition, activity in the hippocampal

body/tail was greater during retrieval than during encoding but

was not modulated by WM load.

Behavioral Results

A 2-factor, repeated-measures ANOVA with the factors load

(LOAD2 vs. LOAD4) and trial (Match vs. Nonmatch) on the

dependent measures RTs (correct trials) and accuracy revealed

a main effect of load on both RT (F1,17 = 28.35, P < 0.05) and

accuracy (F1,17 = 5.72, P < 0.05), demonstrating that subjects

were faster and made fewer errors on LOAD2 trials than on

LOAD4 trials. Whereas the main effect of trial for RT was not

significant (F1,17 = 2.38, NS), subjects made significantly fewer

errors on Nonmatch trials (when lures needed to be rejected)

than on Match trials (when the probe picture was identical to

one of the sample pictures) as indicated by a significant main

effect of trial for accuracy (F1,17 = 55.54, P < 0.05). There was

no significant interaction between load and trial neither on RT

(F1,17 = 0.14, NS) nor on accuracy (F1,17 = 1.07, NS). Additional

2-factor repeated-measures ANOVAs investigated whether load

effects (LOAD2 vs. LOAD4) were modulated by delay length

(4 vs. 6 vs. 8 s) for the dependent measures RT (correct trials)

and accuracy. These analyses revealed only a main effect of load

for RT (LOAD4 > LOAD2; F1,17 = 25.25, P < 0.05) and for

accuracy (LOAD2 > LOAD4; F1,17 = 9.49, P < 0.05). As

expected, there was no significant main effect of delay length

(F2,34 = 0.30, NS, and F2,34 = 0.93, NS, for RT and accuracy,

respectively) and no significant load 3 delay length interaction

for RT (F2,34 = 1.40, NS) or for accuracy (F2,34 = 0.45, NS).

fMRI Results

Effects of WM Load during Retrieval

WM load modulated activity in the left hippocampal formation,

the left amygdala, and the retrosplenial area, bilaterally. When

activity during the retrieval phase of LOAD4 trials was

compared with activity during the retrieval phase of LOAD2

trials (LOAD4 > LOAD2) across all trials (Match and Non-

match), we observed greater MTL activity in the left anterior

hippocampal formation (possibly subiculum) ([x y z] = [–24 –

21 –18]; Z = 3.92) (Fig. 2B) and the left amygdala (possibly

basolateral nucleus) ([x y z] = [–24 –3 –12]; Z = 4.30). Additional

load effects during retrieval within our ROIs were present in

a region that spanned both the retrosplenial cortex and the

anterior lingual gyrus, bilaterally. This activity was centered on

the junction between the parietooccipital fissure and the

anterior calcarine sulcus (retrosplenial area/anterior lingual

gyrus) ([x y z] = [–15 –45 0]; Z = 4.41; [x y z] = [15 –45 –6];

Z = 3.40; BA 30/19) (Fig. 2B) and is labeled retrosplenial area in

the figures and discussion. Peri-probe time courses illustrate

that this load effect was present for Nonmatch trials when new

scenes (lures) were correctly rejected (Fig. 2B). Consistent

with this, when we repeated the SPM analysis separately for

Match and Nonmatch trials, the load effect was present in the

same areas for Nonmatch trials (i.e., correct rejections), but not

for Match trials (i.e., hits) (not depicted). When activity during

the probe period of Nonmatch trials was directly compared

with activity during the probe period of Match trials regardless
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of WM load (Nonmatch > Match), none of the above areas

showed differential activation, indicating that activity in these

regions does not reflect incidental long-term memory encoding

of the novel, nonmatching stimuli. In addition, there was no

statistically significant difference between Match and Non-

match trials during retrieval as assessed by comparing ([LOAD4

Nonmatch > LOAD2 Nonmatch] > [LOAD4 Match > LOAD2

Match]), nor any activation differences for Match trials greater

than Nonmatch trials regardless of WM load during the retrieval

period. We did observe a load effect neither in the PFC nor in

brain areas outside our ROIs during retrieval.

Effects of WM Load during Encoding

When activity during the encoding phase of LOAD4 trials was

compared with activity during the encoding phase of LOAD2

trials (LOAD4 > LOAD2), there were no suprathreshold voxels

in any of our ROIs outside the PFC using the ROI mask for SVC

at a threshold of pFDR <0.05. Within the lateral PFC, using pFDR
correction across the whole brain, we observed greater activity

with higher load for this comparison in the right and left

anterior VLPFC (inferior frontal gyrus [IFG], [x y z] = [42 45 3];

Z = 4.54; [x y z] = [–39 48 –3]; Z = 3.98; BA 10) and in the right

DLPFC (middle frontal gyrus, [x y z] = [48 27 36]; Z = 3.64; BA

9) (Fig. 2A). The peri-sample onset and postsample time

courses also demonstrate greater activity during the encoding

phase of LOAD4 trials than during the encoding phase of

LOAD2 trials in these VLPFC and DLPFC regions. Activity in

other regions demonstrating a load effect during encoding

included the right and left supramarginal gyrus, posterior

occipital areas, the anterior cingulate, left and right insula, the

midcingulate gyrus, and precuneus.

Effects of WM Load during Maintenance

When activity during the maintenance phase of LOAD4 trials

was compared with activity during the maintenance phase of

LOAD2 trials (LOAD4 > LOAD2), there was no differential

activity in any of our ROIs, including the lateral PFC. In

addition, there was no differential activity in any area outside of

the ROIs for this comparison, demonstrating the absence of

a WM load effect during the maintenance phase.

WM Load--Independent Effects in the MTL and PFC during

Encoding

Activation during encoding recruited the hippocampal body/

tail, independent of WM load. When encoding was compared

with fixation/ITI, activity was present in the fusiform gyrus,

bilaterally ([x y z] = [27 –54 –9]; Z = 6.51; [x y z] = [–27 –63 –15];

Z = 6.20; BA 37) and in the hippocampal body/tail, bilaterally

([x y z] = [–21 –36 3]; Z = 6.15; [x y z] = [18 –33 –3]; Z = 5.90)

(Fig. 3A). Activity in these regions was not modulated by WM

load as demonstrated by the peri-sample onset and postsample

time courses (Fig. 3A). Within the lateral PFC, the right VLPFC

(inferior frontal sulcus; [x y z] = [45 15 27]; Z = 5.00; BA 45) was

recruited during encoding. During encoding, activity in other

regions included posterior occipital areas, the left pre-SMA, the

left and right intraparietal sulci, the left putamen, and the

mediodorsal thalamic nucleus.

WM Load--Independent Effects in the MTL and PFC during

Retrieval

When retrieval was compared with fixation/ITI, the observed

activity pattern was similar to that seen during encoding versus

fixation/ITI and included the right and left hippocampal body/

tail ([x y z] = [21 –30 –3]; Z = 6.13; [x y z] = [–21 –30 –9];

Z = 6.23) and the right and left fusiform gyrus ([x y z] = [24 –

45 –15]; Z = 6.29; [x y z] = [–24 –45 –12]; Z = 6.00; BA 37)

(Fig. 3C). Activity in these regions was not modulated by WM

load, as demonstrated by the postsample and peri-probe onset

time courses (Fig. 3C). Within the PFC, the right and left anterior

DLPFC ([x y z] = [27 51 15]; Z = 5.22; [x y z] = [–30 48 21];

Z = 5.36; BA 10) and the right and left VLPFC (inferior frontal

sulcus; [x y z] = [45 9 27]; BA 45; Z = 4.82; [x y z] = [–51 9 30]; BA

45; Z = 5.30) were recruited during retrieval. During retrieval,

activity in other regions included posterior occipital areas, the

right posterior superior temporal gyrus, the midcingulate gyrus,

the dorsal anterior cingulate cortex/pre-SMA, the insula, the

right posterior superior temporal sulcus, the left frontal eye

fields (BA 6), the left and the right mediodorsal thalamic nuclei,

the left and the right intraparietal sulci, as well as the left and the

right putamen.

A direct comparison between encoding and retrieval periods

across WM loads revealed greater activity during retrieval

compared with encoding in the right and left hippocampal

body/tail ([x y z] = [24 –27 –6]; Z = 5.34; [x y z] = [–21 –30 –9];

Z = 5.80) and in the right and left anterior DLPFC ([x y z] = [27

51 15]; Z = 5.09; [x y z] = [–33 48 18]; Z = 5.37; BA 10) (Fig. 3D).

There was no differential activity for the reverse contrast

(encoding > retrieval).

WM Load--Independent Effects in the PFC, but not the MTL,

during Maintenance

When maintenance was compared with fixation/ITI, there was

no activity in any of the ROIs outside the PFC. Within the lateral

PFC, the right and left anterior DLPFC ([x y z] = [36 42 30];

Z = 4.52; [x y z] = [–33 45 30]; Z = 4.39; BA 10) were active

during the delay period when novel scenes needed to be

maintained during the WM delay (Fig. 3B). Activity in these

regions was not modulated by WM load as demonstrated by the

postsample and peri-probe onset time courses (Fig. 3B). During

maintenance, activity in other regions included the basal

ganglia, anterior insula, posterior occipital regions, the left

intraparietal sulcus, and the dorsal anterior cingulate/pre-SMA.

Discussion

WM load effects occurred in the left anterior MTL, including

the hippocampal formation and the amygdala, and bilaterally in

the retrosplenial area. This WM load effect was present only

during retrieval, specifically for Nonmatch trials when lures

were correctly rejected, but not when old stimuli were

correctly recognized as a Match (i.e., hit).

Our results reveal additional evidence for rejecting the view

that WM and long-term memory are 2 separate entities (for

review, see Ranganath and Blumenfeld 2005; Jonides et al.

2008). Previous work has provided evidence that the same PFC

regions are recruited during WM and during long-term

memory. This has been demonstrated for both encoding

(Ranganath et al. 2003) and retrieval (Cabeza et al. 2002;

Ranganath et al. 2003). Most importantly, recent work has

attributed a critical role for the MTL in encoding and

maintenance during WM (Ranganath and D’Esposito 2001;

Stern et al. 2001; Schon et al. 2004; Karlsgodt et al. 2005;

Hasselmo and Stern 2006; Nichols et al. 2006) in addition to

episodic encoding and retrieval (e.g., Stern et al. 1996; Gabrieli
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et al. 1997). Our findings demonstrate not only that MTL

regions are also recruited during retrieval in the context of

a WM task (Cabeza et al. 2002; Karlsgodt et al. 2005) but also

that this region can be modulated by cognitive load during WM

retrieval when items are correctly rejected in the case of

Nonmatch trials.

These results match predictions from computational models

(Lisman and Idiart 1995; Jensen et al. 1996; Jensen and Lisman

2005; Koene and Hasselmo 2007) based on cellular mecha-

nisms of persistent spiking in parahippocampal regions (Klink

and Alonso 1997; Egorov et al. 2002). According to these

models, multiple items can be held in a WM buffer in

a sequential order during the WM delay. These models predict

load-related MTL activity during the delay period of the

Sternberg task, but it is equally likely that the load effect

would be observed during retrieval because subjects would

replay the items held in the WM buffer sequentially until

a matching item is found (Sternberg 1966; Lisman and Idiart

1995; Jensen and Lisman 1998). Replay during retrieval could

also explain why the load effect was present only for Nonmatch

trials when lures were correctly rejected, but not for Match

trials (i.e., hits). In the case of Nonmatch trials, subjects have to

sequentially replay all 4 items during LOAD4 trials, but only 2

items during LOAD2 trials. On Match trials, replay would end

when the correct match is encountered (Jensen and Lisman

1998). Although this replay idea is appealing as a possible

interpretation for our findings, parallel search process models

have sometimes been favored as they fit behavioral RT data

better than serial scanning process models (Jonides et al. 2008),

and our behavioral RT data also do not support serial scanning,

possibly because of the small number of items viewed during

the encoding phase. The load effect is also consistent with

other models of WM that buffer multiple items in parallel but

use different magnitudes of activity rather than different

spiking phases (Grossberg 1978; Bullock 2004). It is unlikely

that this load effect can be explained by WM rehearsal

processes because the stimuli used were novel complex visual

outdoor scenes, which are difficult to label verbally.

Our results are consistent with the idea that the hippocam-

pus may act as a match/mismatch detector, as put forth in

a series of recent papers by Kumaran and Maguire (2006,

2007a, 2007b). In their fMRI studies, the left hippocampus was

recruited whenever a mismatch was detected between a stored

representation, such as a sequence of items, and perceptual

input. In our Sternberg task, it is possible that the observed

hippocampal activation during retrieval might have been due to

mismatch detection during Nonmatch trials when the scene

encountered during the probe period did not match any of the

scenes encountered during the sample period. This mismatch

(i.e., Nonmatch) condition was also the condition that

demonstrated a load effect (LOAD4 > LOAD2) in a similar left

hippocampal region in our study. Although our paradigm was

not designed to assess the role of the hippocampus as a match/

mismatch detector, this comparator role of the hippocampus

may be more general than originally proposed (Eichenbaum

and Buckingham 1990; Hasselmo and Wyble 1997; Vinogradova

2001; Lisman and Grace 2005; Kumaran and Maguire 2006,

2007a, 2007b). According to these models, the hippocampus

generates a mismatch signal during novelty detection when

prior expectations are violated. Our behavioral task should not

have produced prior expectations because 50% of all trials

were Nonmatch trials (i.e., they occurred by chance).

Therefore, we argue that the hippocampus may act as

a mismatch detector whenever the perceptual reality does

not match the stored representation, regardless of prior

expectations. Whereas this contrasts with the conclusion of

Kumaran and Maguire that the hippocampus is not critical for

associative novelty per se, the idea that the hippocampus may

be a general comparator is consistent with our observed load

effect in this region because it should take longer to compare

the stored representation of larger stimulus sets (i.e., LOAD4

trials) with the perceptual input than to compare the stored

representation of smaller stimulus sets (i.e., LOAD2 trial) with

the perceptual reality.

The WM load effect observed in the left anterior hippocam-

pal formation (including subiculum) during retrieval for Non-

match trials when lures were correctly rejected is consistent

with a high-resolution fMRI study demonstrating greater left

subiculum activity for subsequent correctly rejected lures (i.e.,

Nonmatch) than for hits (i.e., Match) (Kirwan and Stark 2007).

Thus, our data demonstrate that areas that have previously

been implicated in episodic retrieval are also recruited during

WM retrieval. Anatomical tracer studies have demonstrated

strong reciprocal connections between the subiculum and

both the retrosplenial cortex (Morris et al. 1999; Kobayashi and

Amaral 2003, 2007) and the lateral PFC (Barbas and Blatt 1995).

The WM load effect was clearly evident on the behavioral

level as well. Subjects made significantly more errors and were

slower on LOAD4 trials than on LOAD2 trials. Whereas this

behavioral load effect and its associated MTL activity could

alternatively be interpreted as being related to cognitive effort,

the fact that the MTL activity was greater for Nonmatch trials

on which subjects also made fewer errors than on Match trials

discredits this alternative explanation.

An iEEG study by Axmacher et al. (2007) recently

demonstrated a WM load effect in the rhinal cortex using

a Sternberg task paradigm. In their study, gamma power

increased with increasing WM load. In supplemental fMRI data,

they found increased activity with greater WM load in the same

region within the left anterior hippocampal formation that we

report here. However, in contrast to our findings, they

observed their fMRI load effect during maintenance, specifi-

cally during the late delay, but not during retrieval. The results

of the 2 fMRI studies may actually be consistent with each

other, as the load effect reported by Axmacher et al. (2007)

during the late delay period might have been associated with

activity at retrieval due to collinearity between regressors

assessing activity during the late delay and activity during

retrieval in their supplemental fMRI study. Our results move

beyond this study by demonstrating that the WM load effect in

the anterior hippocampal formation is present only during

Nonmatch trials when lures were correctly rejected, but not

during Match trials when old scenes were correctly recognized

as old.

A recent functional connectivity study, using a Sternberg

task with unfamiliar faces (Rissman et al. 2008), has demon-

strated that the correlation between the IFG and the

hippocampus increases with increasing WM load during the

maintenance delay. However, inconsistent with our results and

with the data presented by Axmacher et al. (2007), only the

IFG, but not the hippocampus, increased linearly with

increasing WM load using standard univariate analysis methods.

This discrepancy is likely attributable to that study’s reduced

power as indicated by smaller number of trials and subjects.
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The fact that we did not observe a WM load effect during the

delay period in the PFC may be due to the stimulus material

used. Our data suggest that this area is not recruited if stimuli

are unfamiliar and trial unique (Stern et al. 2001).

Consistent with previous WM studies, we observed a WM

load effect in the PFC. Specifically, we observed a load effect in

the anterior VLPFC, bilaterally, and in the right DLPFC. Unlike

previous reports (Rypma et al. 1999, 2002; Druzgal and

D’Esposito 2003; Veltman et al. 2003; Cairo et al. 2004), we

observed this effect during encoding, but not during mainte-

nance. Whereas we observed load-independent activity in the

anterior DLPFC during the delay period, in contrast to these

other studies, this area was not modulated by WM load in our

study. It is possible that PFC activity is increased with

increasing WM load during maintenance when the memoranda

are highly familiar, as in most previous studies (Rypma et al.

1999, 2002; Veltman et al. 2003; Cairo et al. 2004), but not

when they are unfamiliar and trial unique as in our study. This

idea is consistent with the suggestion that the PFC is needed

when task monitoring requirements are high (Owen et al.

1996; Owen 2000; Petrides 2000; Stern et al. 2000; Petrides

et al. 2002) and is consistent with the putative role of the

DLPFC in executive control (Postle et al. 1999; Smith and

Jonides 1999; Menon et al. 2001; Wagner et al. 2001; Lie et al.

2006). Previous work in our laboratory has demonstrated

greater PFC activity for 2-back task performance with familiar

stimuli than with novel stimuli and MTL activity for 2-back task

performance if stimuli were novel, but not if stimuli were

familiar (Stern et al. 2001). Similarly, using a delayed matching-

to-sample task, we have recently demonstrated that delay-

period activity in the PFC is also modulated by whether the

stimuli were unfamiliar (trial unique) or preexposed (Schon

et al. 2008). Thus, the MTL and the PFC may be differentially

recruited for WM based on whether the stimuli are unfamiliar

and trial unique or highly familiar (Hasselmo and Stern 2006).

The retrosplenial cortex has not been implicated previously

in WM studies. Most fMRI studies on WM that used novel

stimuli have focused on the hippocampus and related regions

within the MTL (Ranganath and D’Esposito 2001; Stern et al.

2001; Schon et al. 2004; Nichols et al. 2006) and not on

functionally related or anatomically connected brain areas such

as the retrosplenial area. In addition, studies that specifically set

out to investigate brain areas involved in WM retrieval are

sparse (Oztekin et al. 2008) and have not included the

retrosplenial area. This study demonstrates that brain regions

that have previously been implicated in episodic retrieval are

also recruited for WM retrieval, including the MTL and the

retrosplenial cortex. Studies on scene recognition (Suzuki et al.

2005; Epstein et al. 2007) and autobiographical memory

retrieval (Gilboa et al. 2004; Steinvorth et al. 2006) point to

the role of the retrosplenial cortex in episodic retrieval (see

also Wiggs et al. 1999), a mechanism that, as we demonstrate

here, may be modulated by the number of items held in a WM

buffer. Consistent with our findings, anatomical investigations

using tracer methods have found strong bidirectional anatom-

ical connections between the retrosplenial cortex and the

hippocampal formation, including the subiculum, and the

entorhinal cortex (Morris et al. 1999; Kobayashi and Amaral

2003, 2007).

Episodic retrieval of autobiographical memories has also

been shown to recruit the amygdala when the retrieved

content is emotional (Dolcos et al. 2005; Cabeza and St Jacques

2007; Daselaar et al. 2008). Similarly, the left amygdala has been

shown to be recruited during retrieval of emotional informa-

tion (Maratos et al. 2001; Smith et al. 2004, 2005; Sergerie et al.

2006). The amygdala has also been linked to recollection

during episodic retrieval (Dolcos et al. 2005; Fenker et al.

2005). The outdoor scenes used in our study were not

emotionally salient, suggesting that the amygdala may play

a general role in memory retrieval. Consistent with this idea,

the amygdala has been implicated in attentional modulation of

memory (Gallagher and Holland 1994; Gallagher and Chiba

1996; Holland and Gallagher 1999; Holland et al. 2000),

associative learning (Hatfield et al. 1996; Holland and Gallagher

1999), and memory consolidation (Cahill and McGaugh 1998;

Malin and McGaugh 2006). The basolateral nucleus of the

amygdala has direct connections with the hippocampal

formation (Saunders et al. 1988; Ishikawa and Nakamura

2006) and with the retrosplenial cortex in rats and monkeys

(Buckwalter et al. 2008), providing a consistent neuroanatom-

ical framework for our results. In addition, consistent with our

observation that a WM load effect during retrieval was absent in

the lateral PFC, direct connections between the amygdala and

lateral PFC have been shown to be sparse (Ghashghaei and

Barbas 2002).

In summary, the current fMRI study demonstrates that

interconnected brain structures that have previously been

implicated in episodic retrieval, including the hippocampal

formation, the amygdala, and the retrosplenial area, are also

recruited to retrieve complex visual scenes during WM.

Retrieval-related activity in these areas was modulated by WM

load during Nonmatch trials, which required the correct

rejection of lures. This finding is consistent with predictions

derived from recent computational modeling work that suggest

a WM load effect in the MTL, an effect that has previously been

attributed mainly to the PFC. This work extends recent WM

studies in demonstrating a role for the MTLs not only for long-

term encoding but also for episodic retrieval during WM and

supports models of WM predicting that activity in the MTL

should be modulated by WM load.
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