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Abstract

With the goal of understanding behavioral mechanisms of generalization, we analyzed the ability of neural networks to
generalize across context. We modeled a behavioral task where the correct responses to a set of specific sensory stimuli
varied systematically across different contexts. The correct response depended on the stimulus (A,B,C,D) and context
quadrant (1,2,3,4). The possible 16 stimulus-context combinations were associated with one of two responses (X,Y), one of
which was correct for half of the combinations. The correct responses varied symmetrically across contexts. This allowed
responses to previously unseen stimuli (probe stimuli) to be generalized from stimuli that had been presented previously.
By testing the simulation on two or more stimuli that the network had never seen in a particular context, we could test
whether the correct response on the novel stimuli could be generated based on knowledge of the correct responses in
other contexts. We tested this generalization capability with a Deep Belief Network (DBN), Multi-Layer Perceptron (MLP)
network, and the combination of a DBN with a linear perceptron (LP). Overall, the combination of the DBN and LP had the
highest success rate for generalization.
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Introduction

A hallmark of intelligent behavior is the controlled and flexible

reuse of experience. A number of studies suggest the mammalian

prefrontal cortex guides behavior based on rules generalized from

experience [1,2,3,4,5,6,7]. The neural activity in the prefrontal

cortex shows changes that depend upon sensory context and these

changes in activity can be used to guide decision-making

[8,9,10,11]. Models of prefrontal cortex have attempted to

simulate how neural circuits could provide the rules for action

selection during behavioral tasks based on the context of the

decision in addition to specific sensory input cues [12,13,14].

However, many previous models of prefrontal cortex activations

and behavior focus on responses to familiar stimuli and not

context-dependent responses for novel stimuli. Here, we simulate

behavior for novel stimuli where correct responses can only be

inferred from context. We establish this context by using two

symmetries.

Generalization versus specialization is a major problem in

computational learning. This is the case for supervised, unsuper-

vised, and semi-supervised or reinforcement learning [15,16].

Generalization can happen by using context, e.g. in the form of

symmetries. Such symmetries can be represented in a structure

preserving map [17,18,19], or symmetries might be built up in a

decision tree [20,21,22]. We decided to capture symmetries using

more biologically plausible networks, which do well in a number of

tasks [23].

For the generalization through context we study three networks:

A Deep Belief Network (DBN), a Multi-Layer Perceptron (MLP)

network, and the combination of a DBN with a linear perceptron

(LP). We explore the parameter space of these networks and chose

parameters (such as the number of repetitions, number of layers,

or number of hidden neurons) of well-performing networks while

training with a subset of all stimuli but testing all stimuli. For

networks with these fixed parameters we then further increase the

subset excluded from training and again evaluate the performance

by testing all stimuli. The combination of DBN and LP shows the

best performance. We conclude that DBNs provide representa-

tions that allow a linear separation of outcomes including novel

stimuli by extracting symmetries from presented stimuli.

Methods

We ran all simulations in Matlab 7.12.0.635 (R2011a). The

supplementary material includes scripts to replicate our figures

and simulations (File S1).

Task
The task requires the association of sixteen stimulus-context

combinations with one of two responses (Fig. 1A). Stimuli are

referred to by the letters A, B, C, and D and context is referred to

by the numbers 1, 2, 3, and 4. In this task responses vary

symmetrically across contexts, which allows for the inference of

responses to novel stimuli based on previously presented stimuli.
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For instance, the symmetry of response X within the 1st and 4th

quadrant is expressed in the associations A1RX, B1RX and

A4RX, B4RX. We use ‘R’ to express ‘is associated with’. If now,

A1RX is a novel stimulus but all other three included in the

symmetry have been presented before (along with the comple-

mentary ones C1RY, D1RY, C4RY, D4RY) then A1RX can

be inferred using the symmetry. In total the task has symmetries

for the 1st and 4th and the 2nd and 3rd quadrant, which we refer to

as the 1st context, and within the quadrant for stimuli grouped

together with the same response, which we refer to as the 2nd

context (Fig. 1A). Because of these two contexts we call this a

double-context task. To train the networks we use the four stimuli

and four contexts quadrants as binary input nodes. An input node

has a ‘1’ if the stimulus in a certain context is present. Otherwise

the input node receives a ‘0’. We use the same binary format for

the two output nodes, which we label X and Y according to the

associated responses. We also refer to these labeled responses as

class labels X and Y. This gives sixteen possible combinations or

data points (Fig. 1B).

Simulations
In simulations we trained the networks with 14, 13, or 12 out of

16 possible data points (the term ‘‘data points’’ refers to the 16

stimulus-context-response combinations used in the task). We ran

tests with all 16 possible data points. Our fixed parameter set

included 200 replicates of the 14 data points, which were

randomly shuffled for each of the 50 epochs. These

200614 = 2,800 data points (including replicas) were divided into

batches of 100 data points. During one epoch all 28 batches were

presented. Other fixed parameters used in most simulations

include the use of 40 hidden neurons per layer and three layers for

the DBN (except when otherwise noted). The MLP had 40 hidden

neurons as well. In addition, to this fixed parameter configuration

we varied one parameter at a time in the four simulations. These

simulations vary the number of repetitions, vary the number of

hidden neurons, vary the number of layers (not for the MLP); or

they vary the data points excluded from training.

Performance Evaluation
We evaluated the performance of the networks by reporting the

error probability defined as the number of incorrect responses

divided by the sum of incorrect and correct responses. In all our

simulations we ran 50 repetitions with different initializations and

computed the mean error probability plotted as histogram. In

addition, we plotted plus/minus the standard errors using error

bars superimposed onto the histogram.

Restricted Boltzmann Machine
One neural network model used for generalization in these

simulations was a deep belief network (DBN) of which each layer is

a Restricted Boltzmann Machine (RBM). More generally than the

RBM we assume a Random Markov Field (RMF) with the visible

variables V~ V1,:::,Vmð Þ and hidden variables H~ H1,:::,Hmð Þ. A

note on nomenclature: We use non-cursive, bold face letters to

indicate vectors. Uppercase letters denote random variables and

lowercase letters the corresponding samples of such random

variables. For the Gibbs distribution of V,Hð Þ we marginalize over

the hidden variables H to get the marginal distribution for the

observable variables V:

p(v)~
X

h

p(v,h)~
1

Z

X
h

exp ({E(v,h)) with

Z~
X
v,h

exp ({E(v,h)):
ð1Þ

For this marginal distribution of the RMF we define the log-

likelihood with hidden variables for the model parameters h:

ln L(hjv)~ ln p(vjh)~ ln
X

h

exp ({E(v,h))

{ ln
X
v,h

exp ({E(v,h)):
ð2Þ

Calculating the gradient w.r.t. the model parameters h of this

log-likelihood we get:

L ln L(hjv)

Lh
~{ ln

X
h

p(hjv)
LE(v,h)

Lh
z ln

X
v,h

p(h,v)
LE(v,h)

Lh
: ð3Þ

The RBM is a network consisting of two layers: A visible layer

and a hidden layer, which represent the visible and hidden

variables, respectively. For the RBM we assume that the network

has no recurrent connections; thus, visible and hidden variables

are not dependent on themselves. Visible and hidden variables

V,Hð Þ are binary, thus v,hð Þ[ 0, 1f gmzn
. For this RBM network

we chose the Gibbs distribution p(v,h)~1=Z exp ({E(v,h)) with

the energy function:

E(v,h)~{
Xm

i~1

Xn

j~1

viwijhj{
Xn

i~1

bivi{
Xm

j~1

cjhj : ð4Þ

Figure 1. Shows the double-context task which has four stimuli
A, B, C, and D in one of four contexts 1, 2, 3, or 4. (A) Mapping
between stimuli and quadrant context onto responses X or Y, which
gives 16 stimulus-context combinations or data points. (B) Matrix with
binary, training data where stimuli and quadrant context are
concatenated into one input vector with eight dimensions and X and
Y into an output vector with two dimensions.
doi:10.1371/journal.pone.0093250.g001
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We will see that this choice of an energy function has several

properties that make it possible to interpret the resulting RBM as a

neural network with the weights wij modeling the synaptic

plasticity – these weights are updated only locally – and the

visible and hidden variables being interpreted as neurons with a

sigmoid activation function and the bias term bi and cj,

respectively.

Interpreting the RBM as a graph, this graph has only

connections between layers and thus visible and hidden variables

are independent. Formally, we express this through:

p(hDv)~ P
n

j~1
p(hj Dv) and p(vDh)~ P

m

i~1
p(vi Dh): ð5Þ

For the RBM, assuming the Gibbs distribution

p(v,h)~1=Z exp ({E(v,h)) with the energy function from Eq.

(4), we get the conditional probabilities:

P(Hj~1jv)~s(
Xm

i~1

wijvizcj) and ð6Þ

P(Vi~1jh)~s(
Xm

j~1

wijhjzbi) ð7Þ

with the sigmoid function s(z)~1=(1z exp ({z)): These identi-

ties can be shown using the definition of the energy function [24].

When evaluating the gradient from Eq. (3) for the energy

function in Eq. (4) and using the expressions from Eq. (6) and (7)

we get the following gradient updates:

L ln L(wij jv)

Lwij

~p(Hj~1jv)vi{
X

v

p(v)p(Hj~1jv)vi, ð8Þ

L ln L(bijv)

Lbi

~vi{
X

v

p(v)vi, and ð9Þ

L ln L(cj jv)

Lcj

~p(Hj~1jv){
X

v

p(v)p(Hj~1jv): ð10Þ

For the contrastive divergence (CD) algorithm we run a Gibbs

chain for 1.5 steps starting with the sampling of h(t) from p(hjv(t)).

Next we use this h(t) to sample v(tz1) from the distributionp(vjh(t))

and then again h(tz1) from p(hjv(tz1)): We use the endpoint of this

sampled chain together with the data to update the weights and

biases. For N data points in one batch we get the updates:

Dwij~
1

N

XN

k~1

p(Hj~1jv(0)
k ):v(0)

k,i{p(Hj~1jv(1:5)
k ):v(1:5)

k,i for

i~1:::m j~1:::n,

ð11Þ

Dbi~
1

N

XN

k~1

v
(0)
k,i{v

(1:5)
k,i for i~1:::m, and ð12Þ

Dcj~
1

N

XN

k~1

p(Hj~1jv(0)
k ){p(Hj~1jv(1:5)

k ) for j~1:::n: ð13Þ

Note that we use the super-index 1.5 to denote the expansion of

the Gibbs chain by 1.5 steps, essentially using a positive phase

computing the hidden node probabilities and a negative phase back

projecting the hidden node probabilities to the visible nodes and

then computing the probabilities for the hidden nodes in another

positive phase. The positive phase increases the likelihood and,

therefore, is called positive while the negative phase reduces the

likelihood and, therefore, is called negative. The updates from Eqs.

(11) to (13) are embedded into the general learning rule for

parameters h either being wij, bi, or cj:

h(tz1)~k:h(t)zg:
L
Lh

1

N

XN

k~1

ln L(hjvi)

 !
{l:h(t)

 !
: ð14Þ

The parameter k = 0.5 is the momentum term, the parameter

g = 0.2 is the learning rate, and the parameter l = 261024 is a

penalty term. For the update of these bias terms in Eq. (12) and

(13) we set the penalty term l = 0. We used M = 50 epochs of

training. For the last Mavg = 5 epochs we averaged the weights and

biases for the updates. If a teacher signal is present in the form of

correct responses or class labels we use the same update rules from

Eqs. (11) to (13) for the hidden layer.

To predict a class label for the given input data v we use the log

likelihood from Eq. (2) with the energy definition from Eq. (4) for

each class label j separately:

ln Lj(v)~{xjc
c
j {log 1zexp

Xm

i~1

wc
ijxiz

Xm

i~1

wijvizcj

 ! !
:ð15Þ

The identifier cc
j denotes the bias and wc

ij the weights linking the

output of the hidden layer to the class labels. The binary variable x
represents the likelihood of a class, e.g. when probing for the jth

class the jth component in x is set to one and all other components

are set to zero. We select the class with the minimum log likelihood

as output (winner takes all).

Deep Belief Network
A deep belief network (DBN) can be constructed as a stack of

RBMs where the hidden layer of the (i-1)th RBM in the stack is the

input to the visible layer of the ith RBM in the stack. Training of

these RBMs happens sequentially starting with the 1st RBM in the

stack. When the training has finished (all epochs and batches) for

the first RBM in the stack an abstract output representation, also

called features, of the input has formed at the hidden layer. These

features are passed on to the 2nd RBM in the stack and then this

RBM is trained. This proceeds until the last RBM in the stack has

been trained. In addition to the data from the output layer of the

prior RBM the training at this last RBM happens with the correct

response labels using the same rules as in Eqs. (11) to (13). Note

that the information of these correct response labels is only present

during the training of the last RBM. None of the other RBMs in

the stack are affected by the correct response labels. Thus, training

within each RBM uses forward and feedback signaling (known as

positive phase and negative phase) but no feedback signaling happens
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across RBMs. This is different from a multi-layer perceptron

whose weights are adapted through back propagation. DBNs

found many applications [23,25].

Multi-Layer Perceptron Network
Another network that we used to test generalization was the

multi-layer perceptron (MLP). The MLP network undergoes

adaptation of its weights using a gradient descend approach like

the RBM. A two layer perceptron network is powerful enough to

approximate functions or solve classification tasks that are not

linear separable [26]. Thus, we chose a two-layer network: The

layer between input and hidden nodes and the layer between

hidden and output nodes. The m input nodes receive the input

x[<m. These inputs are connected through the weights W(1)[<mxh

to the h hidden nodes, which have the bias h(1)[<m. These hidden

nodes have a nonlinear transfer function f. Thus, the signal flow

through the first layer from the input to the output of the hidden

nodes is:

u
(1)
i ~

Xm

k~1

xkw
(1)
ki {h

(1)
i and ð16Þ

y
(1)
i ~f u

(1)
i

� �
: ð17Þ

Similarly, the signal is transferred from the hidden to the output

nodes through the weights W(2)[<hxn and passed through a

nonlinear transfer function f in the output nodes, which have the

bias h(2)[<n. The signal flow from the outputs of the hidden nodes

to the outputs of the output nodes is:

u
(2)
j ~

Xn

i~1

y
(1)
i w

(2)
ij {h

(2)
j and ð18Þ

y
(2)
j ~f u

(2)
j

� �
: ð19Þ

The weights of the two layers are adapted using a least square

optimization for the output error assuming the teacher signal

t[<n:

E~
Xn

j~1

tj{y
(2)
j

� �2

: ð20Þ

Calculating the gradient of the energy functional E with respect

to the variables W(1), W(2), h(1) and h(2) and using a least gradient

descend approach when updating these variables we get

w
(2),tz1
ij ~w

(2),t
ij zg: tj{y

(2)
j

� �
:f 0 u

(2)
j

� �
:y(1)

i for i~1:::m

j~1:::n

ð21Þ

h(2),tz1
j ~h(2),t

j {g: tj{y
(2)
j

� �
:f 0 u

(2)
j

� �
for j~1:::n ð22Þ

w
(1),tz1
ik ~w

(1),t
ik zg:

Xn

j~1

tj{y
(2)
j

� �
:f 0 u

(2)
j

� �
:w(2)

ij
:f 0 u

(1)
i

� �
:xk

for i~1:::m j~1:::n

ð23Þ

h
(1),tz1
i ~h

(1),t
i {g:

Xn

j~1

tj{y
(2)
j

� �
:f 0 u

(2)
j

� �
:w(2)

ij
:f 0 u

(1)
i

� �
for

i~1:::m:

ð24Þ

We absorbed factors of two into the learning rate g = 0.1 and

used the sigmoid function f (z)~1=(1z exp ({x)): For training

we used M = 50 epochs each consisting of 200 repetitions of the

original data in randomly shuffled order. For 14 data points we

have 146200 = ,800 data in one epoch, which were presented

sequentially. So we do not use batch learning. Instead the weights

and thresholds are updated using Eqs. (21) to (24) after the

presentation of each data point.

Linear Perceptron
The Linear Perceptron (LP) is a single node ‘‘network’’

receiving the inputs ~xx[<m, has the weights ~ww[<m, and the

threshold h[<. This LP has two outputs: ‘1’, which we associate

with the response X, and ‘0’, which we associate with the response

Y. For ease of the formulation of the learning rule we included the

threshold in the weights by adding it as a last component.

Accordingly, the input vector also has an added component, thus

x[<mz1 and w[<mz1. Using this formulation, the output of the

LP is:

y~
1 if wx§0

0 if wxv0

�
: ð25Þ

Assuming that outputs and labels (responses) assume values 0 or

1, the learning rule for the weights and threshold is

wtz1~wtzg: t{yð Þ:x, ð26Þ

with the learning rate g = 0.01, the teacher signal t. We run this

learning rule at most for 1,000 iterations.

The LP is trained based on the representation of the last RBM

in the DBN. The output activation of the DBN’s last layer is

weighted using the weights for the class labels and summed

together. This weighted sum together with the label information is

forwarded to the LP. The LP is trained after the DBN, in

sequence, and only with the stimulus-context combinations that

were also used to train the DBN.

Results

We divide the results section into three parts. The first part

explains the internal representations created in different layers of

the DBN and its interface with the LP. The second part presents

the results of our parameter tuning procedure on performance of

each of the three types of networks: 1. DBN, 2. MLP and 3. DBN

and LP. The third part compares the training of the three types of

networks DBN, MLP, and DBN and LP with 14 or fewer out of

Deep Belief Networks Learn Context
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the 16 data points to study generalization using context

information implicitly contained in our task.

Representations
The DBN extracts features and ‘‘meta’’-features of the original

data within the layers of its network. For our task we chose the

separate input nodes for the stimuli A, B, C, and D and for the

quadrant contexts 1, 2, 3, and 4 (Fig. 2A). In our ‘‘standard’’

configuration these inputs are forwarded to the first layer with 40

hidden variables. Only the nth layer is connected to the outputs X

and Y. When the LP is present in the network this nth layer

connects also to the LP (Fig. 2A–curled bracket). In the DBN, the

first layer extracts features from the inputs (Fig. 2B–layer 1). The

second layer extracts features of these features (Fig. 2B–layer 2)

and the third layer extracts again features of features (Fig. 2B–

layer 3). Taking the cumulative sum of the strongest components

weighted by the output weights for X of the last layer in the DBN

shows a representation according to the input stimulus and

context, here 16 combinations (Fig. 2C). In this representation all

combinations of stimulus and context for X have a high value

(ligher shades) and those for Y have a low value (darker shades in

Fig. 2D and 2F). These values of the weighted sum together with

their class labels (response) X or Y are then used as the input for

the LP. When trained with 14 out of 16 data points, with A1 and

B1 excluded, the LP classifies these two A1 and B1 wrongly as Y

instead of X for the initialization examples shown (Fig. 2E). When

training and testing with all data points all input combinations are

correctly classified (Fig. 2G).

Parameter Tuning
We studied the performance of the three types of networks when

varying parameters of the networks. The free parameters that we

varied were the number of repetitions of the input data points

within each epoch, the number of hidden neurons, and the

number of layers when the DBN was involved. As a measure of

evaluation we use the mean error probability for 50 runs. All

simulations show the performance after we trained the networks

without A1 and B1 and tested with all data points. For the DBN

and MLP everything more than 100 number of repetitions

provides an error probability of 0.125 = 2/16, essentially classify-

ing the response to A1 and B1 in an incorrect manner (Fig. 3A and

3B). Adding the LP to the DBN reduces the error probability

further below this probability of 0.125 (Fig. 3C). For some

initializations of the DBN the LP finds a threshold that separates

both classes X and Y correctly.

A number larger than 10 hidden neurons for the DBN reduces

the error probability to 0.125 (Fig. 3D). Using a number larger

than 50 hidden neurons in the case of the MLP leads to

overtraining, where the network starts to learn the presentation

sequence rather than the data points (Fig. 3E). For the

combination of DBN and LP a number of 20 to 30 hidden

neurons appears optimal (Fig. 3F).

When the DBN is involved we vary the number of layers from

one to six. For only the DBN the error probability is around 0.125

in most cases (except for two layers) (Fig. 3G). When adding the LP

to the DBN network we achieve better results when using more

than one layer in the DBN (Fig. 3H). Essentially, more layers

provide a linear separable representation for the responses (class

labels).

Generalization through Context
Through symmetries of the context provided within each

quadrant and across quadrants, all combinations could be learned

even when only training with a subset of all data. That is, the

network could generalize correct responses to previously untrained

stimuli based on the symmetries of the trained stimuli. In this series

of simulations we systematically exclude two, three, or four data

points from the training set and evaluate the error probability. As

expected the error probability increases when removing more data

points from the training set (Fig. 4B, 4C, and 4D). For the MLP,

removal of some combinations of stimulus and context can be

learned, e.g. A1, A2; A1, C1; or A1, C1, A2, and C2 (Fig. 4C) –

because of the default response of the MLP being correct. Adding

the LP to the DBN helps to improve the error probability

(compare Fig. 4B with 4D). This demonstrates that the symmetries

in the training set allowed generalization to previously unseen

combinations of stimuli and context that could be used as probe

stimuli in a behavioral task.

Discussion

We modeled the double-context task, a highly structured

behavioral task using a set of 16 stimulus-context-response

combinations. While the DBN and MLP could learn the task

without error when all data points (stimulus-context-response

combinations) were used for training, the DBN and MLP failed to

learn all data correctly when two data points were left out from

training. Adding an LP to the DBN reduced the error probability

when training with a subset of all data points, e.g. leaving out two,

three, or four data points. The DBN provides a generalized

representation for the task, which in certain cases can be used by

the LP to correctly classify all input data points as a linear

separable problem.

We could have hand-crafted features to learn the task directly

with an LP, but instead we asked whether DBNs could provide

such features automatically. Modified versions of reinforcement

learning are alternatives to learn the double-context task

[15,17,19,20,21,22]. Here, we selected DBNs for their simplicity,

biologically plausible form, and success in solving many problems

[25].

Similar context tasks probed for brain areas involved in the

acquisition and usage of conceptual knowledge [27,28]. Kumaran

et al. [27] use a weather forecast task: Sun or rain depends on the

object and location or the presence of two specific objects

regardless of their location. Four objects may each appear in one

of three locations (43 = 64 combinations); however, only eight of

these combinations are used for training. In four of them the

spatial location of an object is sufficient to predict the outcome. In

another four the presence of an object pair is sufficient to predict

the outcome. Probes are constructed where object pairs or object

in a certain location determine the response (determined probe

trails) or where object pairs with one object in a certain location

indicate different responses (undetermined probe trials). Para-

hippocampal cortex, amygdala, posterior cingulate cortex (PCC),

ventral striatum, and ventromedial prefrontal cortex (vMPFC)

were correlated with the probability for success in learning the

weather prediction task. The left hippocampus, vMPFC, and PCC

had a positive correlation with the participant’s performance

during probe trials. The activation in the hippocampus, and

vMPFC was significantly greater for determined probe trails than

for undetermined probe trials. This data suggests that vMPFC is

involved in the acquisition of conceptual knowledge. Our double-

context task did not distinguish between determined and

undetermined probe trails; instead the outcome was always

dependent upon quadrant context and stimulus. Thus, our task

only included determined probe trails. Our modeling work does

not yet make any statements about the specific brain areas that are

involved nor does it use any anatomical or physiological
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information about specific brain areas. From preliminary simula-

tions performed with the MLP and DBN presented here, we found

the networks were able to learn the weather prediction task.

We also tested a variant of our double context task for

incremental training. In this variant we added a set of four more

stimuli E, F, G, and H. Each of these stimuli can appear in one of

four quadrant contexts 1, 2, 3, or 4 forming the same rules as

stimuli A, B, C, and D (see Fig. 1a). In the incremental training

procedure we learned the original 16 data points and then the

added 16 data points. In the non-incremental training procedure

we learned all 32 data points at once. For a medium range of

repetitions (.100 and #200) incremental training has a lower

error rate than non-incremental learning, learning all responses

from the 2nd set while the non-incremental training predicts these

responses form the 2nd set at chance level. However, for a larger

number of repetitions (.200) the non-incremental training has a

lower error probability. In this case, the incremental training

‘‘unlearns’’ the 1st set after learning the 2nd set. Thus, incremental

training is not profitable in our modified double-context task when

using the DBN and LP.

Badre et al. [28] in their task ask for an abstract label 1, 2, or 3

as response, which depends on the shape, orientation, or a colored

frame surrounding a presented figure. Two sets of three object

shapes, which can appear in three orientations and are surrounded

by one of two colored frames, are used to define the stimuli

(2636362 = 36 combinations). Their study focused on the

learning of hierarchical rules. In one setting the learned rule is

flat; an association between shape, orientation, color, and response

has to be learned. In another setting the rule is hierarchical where

the color indicates if the shape or orientation information

determines the response. During learning, rostro-caudal frontal

brain regions were activated. Teasing apart the learning of flat and

hierarchical rules shows an early activation in pre-premotor

cortex. Again, our modeling work does not address specific

activation patterns of specific brain regions. Our task included

hierarchical knowledge in terms of the quadrant (Fig. 1A) and in

terms of a rule switch, but such knowledge never determined the

response directly. From preliminary simulations we know that the

DBN and MLP presented here can also learn the orientation task.

For both tasks [27,28], the authors report performance in

correct responses over trials which reaches ceiling performance

Figure 2. Shows the network architecture for the Deep Belief Network (DBN) combined with the Linear Perceptron (LP) together
with the internal representations of these networks. (A) Network architecture of an N-layer DBN. (B) Internal representation for a 3-layer DBN
when probing with the 16 stimulus-context combinations or data points. (C) Cumulative and weighted sum of the 16 strongest weights for the
output node X of the DBN. (D) A rescaled version of the 16th tile, which shows that all data points that map to class X have high values (brighter) and
those data points that map to class Y have low values (darker). (E) Inputs to the LP. The threshold for classification is denoted as bold, vertical line
when trained without A1 and B1 and (G) when trained with all data.
doi:10.1371/journal.pone.0093250.g002
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after a moderate number of trials (40–360). Thus, the authors of

[27,28] conclude that there is fast learning of conceptual

knowledge. In contrast, our proposed networks take many more

trials for learning — 2,800 instead of 40–360. Thus, for our task

we advocate a slow learning process, as has been reported for

memory consolidation [29,30].

This research can be extended in a number of ways. First, our

past work modeling psychological memory systems in reinforce-

ment learning [14,31,32] introduced state spaces with similar sets

of symmetries as in the present task, suggesting a DBN might also

improve performance in those tasks. A second and more general

way to extend this research is to study the learning of the location

and context as well. Here we focused on the learning and

generalization of the double-context task when training with

incomplete stimuli. In an advanced variant of the double-context

task one might also learn context and stimuli, and especially their

difference. For instance, one possibility is to work with visual

representations (like [27,28]) and have the network extract and

separate stimulus and context.

In summary our results show that DBNs can be a powerful tool

to be combined with simpler learning techniques like the LP to

provide representations that generalize using only a subset of all

data points to a correct classification of all data points. This

provides a potential means of understanding the neural represen-

tations that could allow generalizations based on symmetries in

behavioral tasks consisting of specific combinations of stimulus and

context with correct responses.

Figure 3. Simulation results for parameter tuning. In all simulations the default parameters if not varied are 200 repetitions, 40
hidden neurons, and 3 layers. We report the histogram (mean) and bars (standard error) for the error probability using 50 runs. (A–C) Error
probability for the Deep Belief Network (DBN), Multi-Layer Perceptron (MLP), and DBN combined with a Linear Perceptron (LP) when varying the
number of repetitions, (D–E) or when varying the number of hidden neurons, or (G and H) when varying the number of layers. In the last case only
the DBN and DBN with LP are included because we used always two layers for the MLP.
doi:10.1371/journal.pone.0093250.g003
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