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Abstract

Boundary vector cells in entorhinal cortex fire when a rat is in locations at a specific distance from walls of an environment.
This firing may originate from memory of the barrier location combined with path integration, or the firing may depend
upon the apparent visual input image stream. The modeling work presented here investigates the role of optic flow, the
apparent change of patterns of light on the retina, as input for boundary vector cell firing. Analytical spherical flow is used
by a template model to segment walls from the ground, to estimate self-motion and the distance and allocentric direction
of walls, and to detect drop-offs. Distance estimates of walls in an empty circular or rectangular box have a mean error of
less than or equal to two centimeters. Integrating these estimates into a visually driven boundary vector cell model leads to
the firing patterns characteristic for boundary vector cells. This suggests that optic flow can influence the firing of boundary
vector cells.
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Introduction

Populations of neurons within the entorhinal cortex and

subiculum have firing patterns that depend upon the distance

and angle of boundaries in the environment, such as barrier walls.

Neurons with this pattern of firing are referred to as boundary

vector cells (BVCs) [1–3] or border cells [4]. The definition of

BVCs includes that of border cells. Border cells specifically fire at a

short distance to the wall whereas BVCs fire at a short or long

distance to the wall. More general BVCs have a tuning for

different wall distances. Boundary vector cells were initially

proposed based on observations of changes in the firing location

of hippocampal place cells caused by changes in the location of

barrier walls surrounding the environment [1,5]. The initial

proposal of BVCs was extended in detailed computational models

that explicitly predicted the pattern of firing of BVCs that could, in

turn, generate the firing pattern of hippocampal place cells [2,5,6].

The predictions of these BVC models have been supported by

recent experimental data clearly showing neural firing patterns

similar to proposed BVCs in the subiculum [2,3] and the

entorhinal cortex [4,7].

The firing fields of BVCs at a distance from the walls (Lever

et al., 2009) cannot be explained by proximal cues such as those

provided by the whisker system. At least three alternative cues

could provide the information for distant firing, and these cues are

not mutually exclusive. The first possibility is that distance

estimates could be retrieved from memory in combination with

sensorimotor path integration. This would require the memoriza-

tion of the entire environment, especially its boundaries. Infor-

mation about the spatial location of a boundary would be

combined with the current spatial position and head direction to

estimate distance and direction of that boundary. The current

position and head direction of the rat would be estimated from

temporally integrated sensorimotor signals. The second possibility

is that multiple visual cues on the wall could be used by rats to

estimate the normal of the surface and its distance based on the

feature’s relative size on the projection, requiring knowledge of the

absolute size of the feature. However, typical rat experiments lack

the presence of distinct visual features, e.g. wallpapers that could

be used to estimate the distance of the wall. Therefore, this

possibility seems unlikely. A third possibility is the use of optic flow,

the varying patterns of light on the retina while the rat is moving.

Optic flow could be used for distance and direction estimation of

walls based on the following two assumptions: (i) walls are

orthogonal to the ground; and (ii) these walls have piecewise

smooth surfaces. In this article, we test this ‘‘flow-influence’’

hypothesis by simulating a rat’s trajectory in a circular or square

box while estimating the distance and direction of walls from optic

flow and integrating these estimates into a model of BVC firing. A

priori it is unclear if distance and direction estimates extracted

from optic flow are accurate enough to support the firing of BVCs.

We demonstrate that these estimates are sufficiently accurate, even

for drop offs that lack an orthogonal wall.

Further evidence for our flow-influence hypothesis is provided

by the rat brain structures processing visual image motion. For

instance, neurons in primary visual cortex are sensitive to visual

motion [8]. These neurons are tuned for orientation, spatial

frequency, and temporal frequency of gratings [9]. Another
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example is a hierarchy of visual processing identified in rats based

on anatomical differences of brain structure. This hierarchy could

have similar functions compared to the hierarchy found in

primates [10] which is thought to extract properties of optic flow

necessary for estimating self-motion [11–14]. An alternative

pathway that has been explicitly pointed out in the processing of

large-field optic flow could go from the retina to the accessory

optic system [15] and from there to the hippocampal formation

[16]. The latter connection has been described for pigeons. We

test this optic flow processing hypothesis and demonstrate that a

template model can interpret optic flow patterns and decompose

them into variables of self-motion, distance, and direction

estimates of walls.

A sketch of our model is shown in Figure 1. We assume a

simulated rat is running in a box, Figure 1a. While the rat is running

it samples optic flow patterns from the floor and walls. Sampling is

from a wide visual field, as shown in Figure 1a. To model this wide

field of view we use a spherical camera model, of which a side-view

is shown in Figure 1b. The rat’s eyeball is elevated above the ground

and is moving in the forward direction, in this example. During this

self-motion, sample points of the ground will have an angular

displacement in the spherical camera model. The idea of our model

is to match all the angular displacements that occur within the visual

field by flow templates. These flow templates contain parameters of

self-motion, ground, and wall planes, depicted by the three boxes in

Figure 1c. Templates of ground and wall are constructed for a

specific known head direction and tilt angle of the head, as well as

for unknown self-motion parameters. The tilt is the angle between

the optical axis and ground. The sensed flow is compared against all

of these templates for parameterized self-motion, ground, and wall

configurations. In a cascade of steps that detect maximum activity,

the model extracts parameters of self-motion and planar surfaces.

First, all templates for the ground and wall are compared and a wall-

ground segmentation is achieved by selecting the maximum

responding template (no. 1 in Figure 1c). Note that the wall and

ground template space also contains the parameters of self-motion.

Second, the ground flow is used with outputs from the self-motion

templates to estimate the self-motion parameters (no. 2 in Figure 1c).

Third, the distance and allocentric direction of walls is computed

from the wall flow and the parameters of self-motion (no. 3 in

Figure 1c). The distance and direction estimates are passed along to

the existing BVC model proposed by Burgess [5,6,17]. A sketch of

the BVC model is given in Figure 1d. The BVC model uses the

allocentric direction of a wall together with its distance. Model cells

construct a tuning for allocentric direction and distance along the

normal direction of the wall. In sum, our modeling work suggests

that distance and direction estimates are extracted from optic flow

and shows that when these estimates are then fed into the previously

developed BVC model this can explain the characteristic firing of

BVC cells as measured experimentally [3].

We make several assumptions to focus our modeling effort on

the estimation of self-motion, distance and direction from optic

flow. First, the visual field, across a full range of angles extending

240u horizontally and 120u vertically, is simulated using a

spherical camera model that describes the flow of individual

features of the visual scene by temporal changes of the azimuth

and the elevation angle of these features (see Figure 1a and 1b).

Second, the simulation computes the analytical spherical flow of

visual features in a virtual environment instead of estimating flow

from an image stream. Third, if the rat is in a rectangular or

circular box the walls are orthogonal to the ground. Fourth, we

assume that the rat leverages different mechanisms to segment

walls from the ground versus detecting drop-offs. Fifth, the model

builds upon template cells that are tuned to optic flow that is

generated by a combination of self-motion and an environment;

and the environment is modeled as smooth surfaces for ground

and walls. Tuning for self-motion has been found for neurons in

macaque monkeys’ area MST [11–14]. This finding motivated

template models of self-motion estimation in macaque monkeys

[18–21].

Several aspects distinguish our model from previously published

template models. In our model, self-motion is restricted to

curvilinear motions: These are translational motions along the

optical axis combined with rotations around the vertical axis (yaw-

rotations). Our template model uses a spherical camera model that

helps to account for effects in large visual fields in contrast to a

pinhole camera that is restricted to a 180u visual field. Another

difference from existing template models is the introduction of

templates that are tuned to the combination of self-motion and

smooth surfaces modeling walls or ground. This extended tuning

allows not only for the estimation of self-motion but also for the

estimation of the distance of these surfaces. We make no

assumption with respect to the shape of the box, e.g. it could be

square, rectangular, or circular. Note that the introduction of

multiple models for ground and wall surfaces also requires the

segmentation of flow into these separate surfaces. For instance, a

rectangular box consists of a ground plane surrounded by planar

walls whereas each individual optic flow sample has to be

identified as either originating from ground or wall. Given

analytical flow for a spherical camera model, the flow that is

induced by linear or rotational motion of a wall can be

distinguished from flow that is induced by the same motion of

the ground. Thus, segmentation in our model is achieved by

deciding whether the wall or ground flow template fits better to the

sensed flow vector. Our model provides several extensions to

existing template models and is motivated by the need to test

whether physiological findings of boundary vector cell firing can

be explained by using optic flow as a distal cue.

Results

We organize our results into four sections. First, we start with

the generation of simulated rat trajectories based on the velocity

statistics of recorded rat trajectories. These simulated trajectories

Author Summary

Over the past few decades a variety of cells in hippocam-
pal structures have been analyzed and their function has
been identified. Head direction cells indicate the world-
centered direction of the animals head like a compass.
Place cells fire in locations associated with visual, auditory,
or olfactory cues. Grid cells fill open space like a carpet
with their mosaic of firing. Boundary vector cells fire, if a
boundary that cannot be passed by the animal appears at
a certain distance and world-centered direction. All these
cells are players in the navigation game; however, their
interaction and linkage to sensory systems like vision and
memory is not fully understood. Our model analyzes a
potential link between the visual system and boundary
vector cells. As part of the visual system, we model optic
flow that is available to rats. Optic flow is defined as
change of lightness patterns on the retina and contains
information about self-motion and environment. This optic
flow is used in our model to estimate the distance and
direction of boundaries. Our model simulations suggest a
link between optic flow and the firing of boundary vector
cells.

Modeling Boundary Vector Cell Firing
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are used to generate the analytical spherical flow representing the

flow that would occur on the rat retina: This flow is then provided

as input to our template model. In the second section, we show

examples of the wall-ground segmentation and detection of drop-

offs with our template model. Third, examples for the estimation

of distance and direction of walls are shown, together with the

error statistics of distance estimates for an entire simulated rat

trajectory. In the fourth section we link our template model to the

BVC model and show the resulting firing of model cells compared

against data [3].

Simulated rat trajectories that model rat locomotion
Our aim is to simulate the rat’s body movement in an

environment similar to the one used in the study of Lever et al.

[3]. Therefore, we computed the movement statistics of available

rat trajectories in circular [22] and square boxes [23]. Linear

velocities are fit by a Rayleigh distribution and rotational velocities

by a normal distribution. Values of these fits are reported in

Table 1. For these values we generated rat trajectories that

matched these velocity distributions. Values of the match are

reported again in Table 1.

For the generation of rat trajectories we combined a determin-

istic algorithm with a random component. We randomly generate

a linear or rotational velocity that follows a Rayleigh or normal

distribution, respectively. As the deterministic component we

calculate a rotation that turns the rat to continue to walk parallel

to the wall. This turn happens only if the rat is closer than 2 cm to

the wall and its head direction is smaller than 90u with respect to

the normal vector of the wall. Figure 2 contains the pseudo-code

for this method.

Figure 3 shows characteristics of our simulated rat trajectories.

The Panel 3a shows the Rayleigh distribution of linear velocity (or

speed) and Panel 3b shows the normal distribution of rotational

velocity for the data for a rat in a circular box. Panels 3c and 3d

show fragments of the first minute and of the first five minutes of

the simulated trajectory. The second row, Panels 3e–3h, shows the

same properties for simulated trajectories in a square box.

Wall-ground segmentation and drop-off detection
Before the distance of walls can be estimated, flow samples of

walls have to be segmented from flow samples of the ground. This

is accomplished in the first stage of our model, see Figure 1c.

Examples of the segmentation are shown in Figure 4c for a circular

box and Figure 4g for a square box.

In case of drop-offs our model employs a different mechanism

by detecting the flow transition from large to small magnitude.

Figure 1. Distance and allocentric direction of walls are encoded in the firing of boundary vector cells. Here we use a model to
determine if these cells could be influenced by optic flow. a) Shows a rat in a box estimating the distance and allocentric direction of a wall from the
sensed patterns of light on its retina. b) If the rat moves its eye, e.g. by a forward body motion, these sensed patterns of light shift on the surface of
the eyeball. This shift can be described as an angular displacement. c) Schematic drawing of the proposed template model. This model sets up flow
templates for parameters of self-motion in combination with parameters of planes either describing ground or wall. In a cascade of estimation steps
(max-operations) the self-motion and parameters that describe ground and walls are estimated by looking for the best match between flow
templates and sensed input flow. d) We use a box with an arbitrary outline (gray shading) to display the variables used in the boundary vector cell
model. These variables are the cell’s preferred allocentric direction Wi and preferred distance Di and the estimated allocentric direction a and
estimated distance d. All distances are measured with respect to the wall’s surface normal.
doi:10.1371/journal.pcbi.1002553.g001

Modeling Boundary Vector Cell Firing
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Examples of this detection are shown in Figure 4d for a circular

box and Figure 4h for a square box. Note that in these examples

the drop-off, indicated by the red dots, is not completely detected.

The detection shows gaps where the flow differences are not large

enough to be picked up by our mechanism. However, these gaps

appear for very distant points of the ground-plane and will not

directly influence steering for the rat. In contrast, drop-offs that are

close to the rat generate large flow differences that are picked up

by our model mechanism and which are potential threats for the

rat.

Estimation of wall distances, irrespective of their surface
Instead of modeling specific surface types, like curved and

planar, we approximate arbitrary surfaces locally by planes. This

allows us to use the same model for curved walls of a circular box

or planar walls of a square box. Figure 5 shows examples of

distance estimates. For instance, in Figure 5a distances are

depicted by the magenta colored arrows that closely match up

with the boundary of the box. The Panel 5d shows values of the

2D matching function when comparing the sensed flow to flow

templates for walls of a certain allocentric direction and distance.

The normalized match value is encoded in gray-values whereas

black encodes a low match and white encodes a high match. In the

example of Figure 5d (circular environment) the maximum is at

<80u to the right and 20 cm distance. This maximum together

with all responses that are within a 70% range of the maximum

are displayed in Figure 5a by magenta arrows. Further examples

are shown in the 2nd and 3rd column of Figure 5. Note that wall

distances are estimated for both curved and planar walls with the

same mechanism, as shown in the examples in Figure 5a–c.

Our template model allows for the estimation of distance and

direction to multiple walls. In Figure 5b and 5c distances to two

Table 1. Matching statistics of recorded and simulated rat trajectories.

Reference Files Environment(a)
Rayleigh distribution
b (cm/sec)

Normal distribution

m (6/sec)

Normal distribution

s (6/sec)

Hafting et al.
2005

Hafting_Fig2c_Trial1, Hafting_Fig2c_Trial2,
rat_10925

Circular, diameter 180 cm 16.99 22.48 350.58

Ours ‘CircularCage.mat’ Circular, diameter 79 cm 16.44 0.31 355.35

Sargolini et al.
2006

11084-03020501_t2c1, 11084-03020501_t2c2,
11084-10030502_t1c1, 11084-10030502_t1c2,
11084-10030502_t1c6, 11084-10030502_t3c7,
11084-10030502_t4c1, 11138-11040509_t5c1,
11207-11060502_t6c2, 11207-11060502_t6c3,
11207-11060502_t6c4, 11207-11060502_t6c5,
11207-16060501_t7c1, 11207-21060503_t8c1,
11207-27060501_t1c3, 11343-08120502_t8c2

Square length 50 cm 13.25 0.62 337.93

Ours ‘SquareCage.mat’ Square length 62 cm 13.02 20.03 330.12

Ours ‘SquareCageWithWall.mat’ Square length 62 cm 12.95 1.89 331.07

(a)Note that the dimensions of the boxes are quite different due to the different sized boxes used in different labs and experiments.
doi:10.1371/journal.pcbi.1002553.t001

Figure 2. Shows the pseudo-code for the generation of simulated rat trajectories.
doi:10.1371/journal.pcbi.1002553.g002

Modeling Boundary Vector Cell Firing
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walls are estimated. These are represented by their individual

matching high intensity regions in Figure 5e and 5f. For instance,

for the square box in Figure 5b, high intensity regions appear in

Figure 5e at 0u and 90u allocentric direction representing the left

and upper wall, respectively. In case of the curved wall in

Figure 5a, each segment of the wall is represented by a wall-model.

High matching values appear around 80u allocentric direction in

Figure 5d. This shows that our model generalizes to non-planar

walls.

In addition to these examples of single distance estimates, we

evaluated the distance error systematically for each sample point

of our simulated rat trajectories of approximately 20 min

duration that include 60,000 sample points for the 50 Hz

sampling frequency. We compute the mean distance error for

each location, computed for all distance estimates made at that

location. Note, that this error measure is, mostly, independent of

the actual distance to the wall since all positions provide at least

two different distances to walls, excluding the center in the

circular box or square box. Here, we assume larger distance

estimates for the center and smaller ones for areas close to the

wall as our model tends to estimate distance to closer walls rather

than farther walls. For the circular box, the mean error is largest

in its center; see Figure 5g. For the square box the mean distance

error is approximately homogenous and smaller, with a value of

about one centimeter; see Figure 5h. For the square box with an

intrinsic wall the mean distance error has a maximum of 6 cm,

occurring at the inner side of the narrow passages at each end of

the intrinsic wall; see Figure 5i. Next, we will integrate these

distance estimates for allocentric directions into the boundary

vector cell model.

Boundary vector cells might be influenced by optic flow
Optic flow could be one cue to support firing of boundary

vector cells (BVCs) that fire for walls being present at a specific

distance and allocentric direction. Distant firing distinguishes

BVCs from border cells [4]. So far, our template model provides

distance and direction estimates of walls, given the allocentric head

direction which we assume is available, e.g., from the head

direction cell system. The head direction cell system encodes the

head direction in an allocentric representation [24]. In our model

simulation we assume the head direction and position given by

ground-truth values for every sample point. We use the ground-

truth head direction to estimate the wall direction in allocentric

angular coordinates. Ground-truth positions are used to spatially

register the firing of cells in the model. In the corresponding

experiment of rats foraging in a box this ground-truth location is

given by tracking the rat’s position reconstructed from video

recording of a light-emitting diode attached to the rat. Ground-

truth position values are not provided to our template model of

brain mechanisms for the estimation of self-motion or wall

distances. When the model produces inconsistent distance

estimates, the plotting of these estimates in relationship to

ground-truth position appears as noisy plots of firing. Such firing

lacks the consistent tuning properties for allocentric direction and

distance toward the wall that is characteristic of data on the firing

of boundary vector cells [3].

We compare the data of recordings of BVCs [3] and simulations

of the BVC model [5] based on ground-truth input to our visually

driven model of BVCs. Figure 6a shows the square box used for

this simulation together with the occupancy of the simulated rat in

this box. Figure 6b shows the firing of the BVC model when

supplied with ground truth input. Figure 6c shows experimental

data from recordings of recorded BVCs and Figure 6d shows our

visually driven BVC model based on optic flow input. The firing

fields of our visually driven BVC model are more restricted in

location than the experimental data or the firing of the original

BVC model that uses ground-truth input. In the original BVC

model only four distance and direction values are used to update

the firing of a model cell. For our visually driven BVC model more

than four distance and direction estimates are used to update the

firing of a model cell, see e.g., the number of magenta arrows in

Figure 5a–c. Because there are more estimates incorporated into

the visually driven BVC model its firing fields appear more

restricted compared to those of the original BVC model.

Simulations and data for a circular box are shown in Figure 6e–

g. Again, our simulated firing fields appear more localized than the

Figure 3. Replication of the velocity statistics of recorded rat trajectories using simulated rat trajectories. a) The linear velocities of the
rat’s body motion are fitted by a Rayleigh distribution. b) The yaw-rotational velocities are fitted by a normal distribution. c) Shows the first minute of
the simulated rat trajectory and d) the first five minutes of the same trajectory in a circular box (79 cm diameter). The panels e) and f) show the fits
for linear and rotational velocity for a simulation in a squared box (62 cm662 cm). The first minute and the first five minutes of the simulated
trajectory are shown in g) and h), respectively.
doi:10.1371/journal.pcbi.1002553.g003

Modeling Boundary Vector Cell Firing
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firing of recorded cells. Our model assumes analytically defined

flow. However, in case of flow detected from an image sequence,

distance estimates could be more erroneous leading to the firing

observed in recorded data.

Aside from using a square and circular box we provide

additional simulations with a wall inserted inside of the square

box and in another simulation we removed all walls to model a

platform. Figure 7b shows the BVC firing of our simulation and 7c

the corresponding experimental data. The important observation

from this simulation is that the BVC firing in the model is not tied

to a specific wall of allocentric direction and distance but to any

wall of an allocentric direction and distance. In our simulation,

firing appears also next to the inserted wall. In the same way our

model cells would adapt to wall changes in the environment as

shown in another experiment which involved nesting two boxes, a

small one in a bigger one. After some time the smaller box is

quickly removed in that experiment. Then firing of BVC shifts its

absolute position in the larger box to resemble the same distant

tuning that it had in the small box [7]. Our model would produce

results consistent with this experiment.

Figure 4. Examples of wall-ground segmentation and drop-off detection by our model. a) Depicts a circular box of diameter 79 cm and a
50 cm high wall with the camera at x0~20cm, y0~3:5cm, z0~15cm, with orientation Q~230 , and self-motion vz~19cm=sec and vy~250=sec. b)
Shows the same circular box with walls removed to simulate a platform. c) Wall-ground segmentation estimated by our model based on the
analytical flow shown as black arrows in a). d) Drop-off detection based on the flow discontinuities. Note that distant boundary locations are not
detected, but these usually do not play a role for behavior. e) Shows a square box 62 cm662 cm with a 50 cm high wall. f) Shows the same box as in
e) with walls removed. g) Estimated wall-ground segmentation for the square box. h) Detected drop-off at close distance. In all examples the camera
had the same position, orientation, and self-motion as mentioned in a). All boxes are described by a triangular mesh.
doi:10.1371/journal.pcbi.1002553.g004

Modeling Boundary Vector Cell Firing
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For a platform, the drop-off is detected as a local discontinuity

in flow direction and speed. Once the elevation of the drop-off is

determined, it is converted into a distance estimate. All distance

estimates are fed into the BVC model with their response values.

Figure 7e shows the simulation results and 7f the corresponding

experimental data. As in previous cases, the BVC in the model is

more clearly restricted in location compared to experimental data.

This greater restriction in location might differ if the optic flow

signal were detected from visual input instead of analytically

defined flow that is used in the simulation. In particular, flow

detected from visual input would be noisier, and this would

influence the accuracy of detection of flow discontinuities.

Discussion

This paper presents a template model for scene-segmentation

and the estimation of geometric properties of the environment,

namely the distance and allocentric direction of walls and drop-

offs. Distance estimates of our model in empty boxes are accurate

within a two-centimeter-range; for a square box with an inserted

Figure 5. Examples and error statistics for the allocentric direction and distance estimation of walls for different boxes. a) Top-view
of a circular box with diameter 79 cm and 50 cm high walls. The rat’s position is x0~20cm, y0~3:5cm, z0~15cm and the camera coordinate system
has the orientation Q~230 in the xz-plane depicted by the red and green arrows. b) Top-view of the same configuration as in a) for a square box with
62 cm662 cm with 50 cm high walls. c) An additional wall has been added inside the square box of b) and the rat’s position changed to be x0~0cm,
y0~3:5cm, z0~{15cm and orientation Q~1050. In all cases the camera moved by the linear velocity vz~19cm=sec and the rotational yaw-velocity
vy~250=sec. d) Match values for distance and allocentric direction of walls in the circular environment (shown in a) provided by our template model.
Low match values are encoded by black and high match values by white. e) Shows the match values for the square box (shown in b) with same
encoding as used in d). Multiple separate regions of high intensity with their peak encode multiple walls as shown in this example. f) Match values for
the box with interior wall (shown in c). In the last row the mean distance errors over all estimates from 20 min long simulated rat trajectories are
shown depending on the position of the rat. g) Distance errors for the circular and square box h) both range within two centimeters. i) For the box
with interior wall the mean distance error ranges within six centimeters.
doi:10.1371/journal.pcbi.1002553.g005

Modeling Boundary Vector Cell Firing
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intrinsic wall the error is higher at locations at the inner edge of

the narrow passages created at either end of the intrinsic wall.

When these distance and direction estimates are integrated into

the boundary vector cell model [2,5,6], the typical firing patterns

found in experimental data on boundary vector cells can be

observed.

Template models for the estimation of ego-motion have been

used mainly as a model for self-motion estimation in primates [18–

21,25]. All these models used a pinhole camera model. In contrast,

here we used a spherical camera model to simulate the large visual

field of rats. Existing template models account for general self-

motion sometimes restricted by visual fixation, which allows the

translational motion to be compensated by a rotation in order to

keep a single point stationary in the visual field [19]. No previously

published template model provides a link to estimate environ-

mental variables such as distance toward walls. Thus, our model is

novel for defining an extended template space and for combining

this with voting that allows for the estimation of multiple walls. An

advantage of such a voting technique is the more robust estimation

and compact description of the surrounding environment in

contrast to reconstructing a depth map with variable depths for

every single flow vector as suggested by others, e.g. by Perrone &

Stone [19].

Most studies on firing properties of hippocampal structures in

rats focus on visual cues in general, e.g. a cue card, but not on

optic flow as such. For instance, visual cues influence the

orientation and firing location of hippocampal place cells [26–

28]. In neurophysiological recording data on place and head

direction cell firing, landmark cues have been shown to dominate

over idiothetic cues (e.g. path integration of self-motion informa-

tion) if the mismatch between cues is smaller than 45u. Above 45u
mismatch, the hippocampal representation of place cell firing

reorganizes and head direction cell firing is dominated by

idiothetic cues [28]. When deprived from vision and audition

the majority of place cells (11 out of 15) lose their spatially

consistent firing. Instead their firing pattern rotates with the

associated arm of a multi-armed maze [29]. Entorhinal lesions had

a similar effect to vision deprivation. Sixteen out of 17 place cells

Figure 6. Boundary vector cell (BVC) responses (rate maps) for a square (top) and circular (bottom) box for the model and from
data. a) Shows the square box and the occupancy that is high at edges for the simulated rat trajectory. b) Rate maps for the BVC model using
ground-truth distance and direction of walls. For the model we used eight allocentric directions ranging from east, east-north, north, … to south-east
combined with the three distance tunings 2 cm, 10 cm, and 25 cm. High firing is encoded as red color and low as blue color. This color encoding is
the same for all plots showing firing rate maps. White numbers are the individual scaling parameters for each plot similar to the firing rate scaling
used for plotting the experimental data. c) Example of recorded BVCs. These firing maps have been redrawn from Lever et al, J. of Neurosci. 29, 2009
from their Figure 3 on page 9774 [3]. The numbers in black denote the firing rate of the cells. d) The BVC model receives estimates about allocentric
direction and distance from our template model. e) Shows the circular box and occupancy of the simulated trajectory. f) Shows the rate maps of the
BVC model that uses distance and direction estimates of our template model. g) Data from recorded BVCs [3].
doi:10.1371/journal.pcbi.1002553.g006
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lost their spatially consistent firing [30]. Grid cells rotate their

firing with visual landmark cues [22]. Combining results from the

lesion and sensory deprivation study suggests a role of visual and

auditory sensory signals in spatially consistent firing. However,

none of the existing studies focused on optic flow as the only cue

for spatially consistent firing.

Although visual input provides a rich set of information, other

cues might be important for BVC firing, as well. Vestibular

information and visual motion influences hippocampal place cell

firing [31]. Vestibular inputs are used to find a path back to the

home location, especially in the dark [32]. Head direction cells are

regulated by the vestibular system [33]. In blind rats place cell

firing occurs and in four out of 15 cells the firing is spatially

consistent [32]. The consistent firing in four cells provides

evidence for the use of idiothetic cues such as path integration

in order to maintain a stable representation of the self in the

environment model [34; page 466]. Idiothetic cues like path

integration and external cues like landmarks interact to regulate

place field firing in rats on a running track foraging while cues are

brought into mismatch by spatially shifting the goal location [35].

These various examples show that cues other than vision are

important to maintain the firing of place cells.

Three alternative technical solutions are possible for the

segmentation of walls from ground, and subsequently the

estimation of self-motion and environment variables. These are:

RANSAC [36], m-functions [37], or the expectation maximization

(EM) algorithm [38]. RANSAC could be based on a model for

flow of the ground while treating flow samples from walls as

outliers assuming that the majority of flow samples originate from

the ground. Once the segmentation is achieved all the points

identified as outliers can be used to estimate the distance and

direction of walls. An integration of Equations (3) and (4) into

convex m-functions leads to a non-linear optimization problem.

An embedding into the EM algorithm with Gaussian mixture

models leads again to a non-linear optimization. Overall, the

segmentation of walls from ground is a challenging and

computationally expensive task.

For real-life images the quality of flow based segmentation

depends largely on the quality of the detected flow and the

dissimilarity between flow templates or flow vectors at the drop-off.

Since we do not know the quality of detected flow for real-life

images we study simulated noise superimposed on the analytically

defined flow. Examples with additive Gaussian noise in each

component of the flow with a signal-to-noise ratio of approxi-

mately 70 dB leads to larger errors in distance and direction

estimates (see Figure S1). A major source for this error is

insufficient segmentation. Since the segmentation is based on local

information, a single flow vector, it is strongly influenced by noise.

This could be compensated by adding a neighborhood function

into the process of segmentation that assumes neighboring points

belong to the same planar model, either wall or ground. Another

problem is a close similarity between flow templates if matching a

noisy input flow. Therefore, the dissimilarity or ‘‘distance’’

between templates should be maximized in the sense of the

proposed matching functions in order to match noisy input flow to

the correct flow template. For drop-offs the dissimilarity between

flows at the drop-off versus everywhere else in the flow field

matters. If discontinuities within the flow due to noise become too

large false detections happen. This can be only compensated for

with context information, e.g. providing extended curve models

for the drop-off in the spherical camera model that could be fitted

as an entire curve ranging from 2120u to +120u azimuth angle for

Figure 7. Boundary vector cell (BVC) responses in a box with an additional interior wall and for a platform. a) Square box with an
additional interior wall and the occupancy of the simulated rat trajectory. b) Simulation of the BVC model using estimates from our template model.
The tuning of model cells is the same as in Figure 6. c) Data of recorded BVC. Note that model and recorded BVCs respond to any wall of a certain
distance and allocentric direction and not only, e.g. to the exterior walls of a box. d) Circular platform together with the occupancy of the simulated
rat trajectory. For reasons of comparison we use the same trajectory as in the simulation with a circular box. e) Shows the rate map of model BVC
supplied with estimates about distance and direction of walls. f) Data from recorded cells. Firing maps of BVC have been redrawn from Lever et al, J.
of Neurosci. 29, 2009 from their Figure 3 on page 9774 [3].
doi:10.1371/journal.pcbi.1002553.g007

Modeling Boundary Vector Cell Firing

PLoS Computational Biology | www.ploscompbiol.org 9 June 2012 | Volume 8 | Issue 6 | e1002553



the parameterization of our spherical camera model. So far, these

extensions have not been realized in the current model and are the

subject of future work.

Further properties of our model are the logarithm used in the

matching function and the model’s capability to incorporate tilt

angles. Choosing a logarithmic sampling and the logarithm of

motion speeds to compare input flow vectors and template flow

vectors makes sense for a first-person perspective from an

ecological and behavioral point of view. Typically, objects’

distances that are far do not have to be represented with a high

sampling, e.g. of centimeter-precision, because they are not

reachable or are not potential obstacles. A logarithmic sampling

of distance values also has an effect on the comparison between

flow vectors of different distance. For optic flow generated by

translational self-motion the length of flow vectors is inversely

proportional to the distance of a sample point in 3D space. By

transforming these distances using a logarithm we put more

emphasis on short flow vectors that relate to points that are close to

the rat. Figure S2 shows a comparison between a matching

function that uses the logarithm of the speed and their difference

or only the difference of speeds without the logarithm. In both

cases the speeds are computed from the input flow vectors and

template flow vectors. The matching that includes the logarithm

appears clearer over the entire range of depths compared to

directly using the difference of speeds. Note that the speed

difference that does not involve the logarithm can be adjusted only

to accommodate a small depth range with clear tuning. This

concept of using a logarithmic sampling and logarithmic scale to

compare speeds could be used even more broadly by mechanisms

that afford an ecological solution, e.g. if only a limited small

number of samples are available.

Another property of our model is the incorporation of non-zero

tilt angles. In such configurations the optical axis is not parallel to

the ground. The normal vector that describes the wall or ground

becomes dependent on the head direction. In our model this head

direction is assumed to be given, e.g. by the vestibular cues

captured by the head direction cell system, as is the tilt angle (see

also Figure 1c). Then our model constructs flow templates for this

given tilt and head direction. Simulation results for BVC firing

look similar to the ones of Figure 5 and 6 as shown in Figure S3;

Table 2. Parameters of the models and their values used in the simulations.

Description of parameter Identifier and value

Spherical camera model

Horizontal field of view 240u

Vertical field of view 120u

Eye-height above ground 3.5 cm

Horizontal resolution 80 samples or 400 samplesa

Vertical resolution 40 samples or 200 samplesa

Minimum distance to samples 0 cm

Maximum distance to samples 1000 cm

Template model

Standard deviation for ground samples sground~100=sec

Standard deviation for wall samples swall~10=sec

Interval for linear velocities vz,j[f2,:::60cm=secg

Samples for linear velocities j~1:::581

Standard deviation for rotational velocity sv~250=sec

Interval for rotational velocities vy,k[f{45000,:::45000=secg

Samples for rotational velocities k~1:::451

Standard deviation for speed tuning used for walls ss~0:10=sec

Standard deviation for direction tuning used for walls sd~100

Offset for direction tuning of walls d~0:05

Interval for walls’ angles al[f{1800,:::1800g
Samples for walls’ angles l~1:::181

Interval for walls’ distancesb dm[f0:5,:::220cmg
Samples for walls’ distances m~1:::81

Boundary vector cell model

Standard deviation of distance tuning sD(Di)~(Di=bz1):sD0

Parameters of distance-dependent tuning b~183cm, sD0
~12cm

Samples for distances Di[f2, 10, 25cmg
Standard deviation of angular tuning sW~300

Allocentric direction samples Wi[f00, 450, :::,3150g

aWe use the latter increased sampling for the simulation with drop-offs only to increase the sampling of distances that is coupled to the number of elevations.
bThe interval is sampled at a logarithmic scale.
doi:10.1371/journal.pcbi.1002553.t002
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however, distance errors at large distances are slightly increased.

Note that for the positive 30u tilt more flow samples originate from

the ground which could give an explanation for the increase in the

measured distance error. This is especially the case at large

distances to the wall. These two properties of our model, the

logarithm of speeds used in the matching function and the non-

zero tilt angle that introduces a dependency on head direction, are

important for the distance estimation and generalization to other

configurations of varying tilt.

Our current model has several limitations. So far, our model

responds only to visible walls and drop-offs; however, place cells

that may be driven by BVCs also respond in the presence of

transparent walls [26]. Furthermore, this model does not work in

the dark since our model relies on optic flow, the changes of light

patterns on the retina. Another limitation of our model is the

restriction of self-motion to curvilinear path motion. Such motions

exclude pitch and roll rotations and translational motions that are

not parallel to the ground. These limitations could be relaxed by

modeling more degrees of freedom in the template model.

However, such an extension will increase the number of flow

templates. Furthermore, it remains unclear if detecting the

separation between ground and wall is still possible for such an

extended model in the way it is possible for curvilinear motion.

Another restriction of our model is the assumption about

analytical, noise-free flow. In reality, flow has to be estimated

from light changes and flow estimates would contain errors. To

address these limitations future work could include other systems,

such as distance estimates from binocular vision, a landmark

system along with a triangulation strategy, sensorimotor integra-

tion and memory to operate in the dark, or the suggested

neighborhood function to improve segmentation given noisy,

detected flow.

Information about self-motion and environment structure that is

extracted by our model from optic flow could be useful for other

cell types as well. Grid cells can be generated by temporally

integrated linear and rotational velocities that are estimated from

optic flow [39]. Such integration allows for a reasonable estimate

of the rat’s position in the environment for a short duration, less

than a minute with a temporal sampling frequency of 50 Hz.

Optic flow can provide the information about short paths and,

thus, has the potential to contribute to the place cell firing, a firing

tied to specific allocentric spatial location in the environment. The

integration of rotational yaw velocities can provide a head-

direction signal, again for the time frame of about a minute.

Furthermore, there may be an indirect effect as boundary vector

cells might influence the firing of grid cells and place cells. Recent

studies suggest that BVCs may function as an independent system

from grid cells, as inactivation of the medial septum with muscimol

causes a loss of grid cell spatial periodicity with sparing of some

cells that look like BVCs, and sparing of the spatial firing response

of place cells [40,41]. Thus, optic flow may provide input to cell

populations in entorhinal cortex, subiculum, and hippocampus.

Following our ‘‘flow-influence’’ hypothesis our model would

predict cells with sensitivity to large flow fields. However, instead

of in hippocampal or related areas, we assume this sensitivity to

exist in sensory related areas, such as the primary visual area or

higher level visual cortical areas or the accessory optic system. In

primates these sensitivities have been found in area MT and

MSTd [11–14]. The spatially integrative behavior of cells can be

tested by using motion stimuli of different retinal size while

measuring the response from our hypothetical motion cells. Then

there should be an effect on firing rate coupled to retinal stimulus

size. Furthermore, the ‘‘flow-influence’’ hypothesis for BVC is

supported by our modeling work. An experiment testing this

hypothesis would record BVCs from subiculum while the animal is

passively watching the visual input of a simulated trajectory. To

only provide optic flow cues the displayed stimulus would consist

of a random dot texture as used in virtual environment setups for

humans and should be compared with performance when viewing

a display that consists mainly of object outlines that provide visual

cues other than optic flow [42]. This passive watching setup should

be compared to the freely moving animal while recording from the

same BVC – this might be difficult to achieve but testing of virtual

environments with stationary animals has been done [43]. Our

modeling work would predict that BVC firing will be observed

during the passive watching setup; however, we assume it would

be nosier, due to the lack of other cues and the prediction that

multimodal sensory cues are usually integrated by BVCs during

normal behavior.

Model

We divide the explanation of our template model into the

following steps: First, we define the spherical image flow model for

curvilinear self-motion. In the second step, flow templates are

defined for a ground-plane and planar walls. Third, tuning or

matching functions for the comparison between input flow and

template flow are defined. Then we summarize all computational

steps in an algorithm. Fourth, to interpret and visualize the

representation of our template model we define a read-out

method. Fifth, a description for the integration of estimated

distance and direction values into the boundary vector cell model

is given. Parameters of the spherical camera model, template

model, and boundary vector cell model are summarized in

Table 2.

Spherical image flow model
The spherical image flow model for instantaneous motion

through a rigid stationary environment is [44,45]:
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where h denotes the azimuth angle and w the elevation angle.

Azimuth is measured from the z-axis pointing forward along the

optical axis in the xz-plane. Elevation is measured from z9-axis in

the yz9-plane where z9 denotes the z-axis that is rotated by the

azimuth angle. This definition uses a left-handed coordinate

system. The 3D linear velocity ~vv~(vx, vy, vz)t and the 3D

rotational velocity ~vv~(vx, vy, vz)t cause temporal changes for

azimuth _hh and elevation _ww assuming a differential motion model

that neglects higher order temporal differences, like accelerations

[46,47]. The super-index ‘t’ denotes the vector-transpose. The

distance D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2zY 2zZ2
p

is the length toward a 3D sample

point P~(X ,Y ,Z)t in Cartesian coordinates.

In the simulations we assume that the rat is moving tangent to

the recorded trajectory in the 2D plane. This assumption reduces

the six degrees of freedom of the model to two degrees of freedom:

The linear velocity vz along the optical axis (z-axis) and the

rotational velocity vy around the y-axis (yaw-rotation). Thus,

Equation 1 reduces to a model of visual image motion for

curvilinear self-motion:

ð1Þ
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In this Equation 2 the distance variable D(h,w) is very general and

can be different for every image location defined by the azimuth

angle h and elevation angle w. To constrain this variable further,

we define a model of a ground plane and planar walls. Figure 8

visualizes this simplified spherical flow model with only two

degrees of freedom together with the definition of the camera

system.

Flow template for a ground-plane
In Hessian normal form a plane is described by its unit normal

vector (nx,ny,nz) and distance d . This distance is measured along

the normal. Plugging the plane definition into the projection

function for the spherical camera model defined in azimuth angle

and elevation angle results in the definition of the 3D point

distance:

D(h,w)~d=(nx sin h cos wzny sin wznz cos h cos w) ð3Þ

For a ground-plane with ~nng~(0, 1, 0) for zero-tilt c = 0 and

distance d~h as eye-height above the ground this ground-plane

model simplifies to D(h,w)~h=sin w. For a tilt angle c?0 the

normal vector is given by~nng,c~ {sin Q sin c, cos c, {cos Q sin cð Þ
which depends now also on the allocentric camera or head

direction Q. This normal vector ~nng,c can be computed, e.g., by

using Rodrigues rotation equation and rotating the normal vector

(0, 1, 0) around the axis ({cos Q, 0, sin Q).

Flow templates for planar walls
The depth function for planar walls assumes a wall to be defined

by the normal (0, 0, 1) that is rotated according to the allocentric

direction Q of the rat’s head which results in

~nnw~(sin(Q{a), 0, cos(Q{a)) with the angle a being the allo-

centric direction of the wall. For a tilt angle c?0 the wall’s normal

vector is described by
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For this definition the order of rotations is crucial: First, we rotate

for the wall’s direction a, second for the tilt angle c, and third by

the allocentric direction of the rat’s head Q.

The distance function from Equation (3) with the corresponding

normal vectors is plugged into Equation (2) to define the template

flows for curvilinear self-motions defined by vz and vy. This results

in the constrained flow equation:
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Figure 8. Drawing of the spherical camera model and an analytical flow vector
_~PP~PP that arises if the entire model is moving by the

linear velocity vz and rotating around the y-axis by vy. For this paper we use the left-handed-coordinate system with the x-axis X 0 pointing to

the right, the y-axis Y 0 pointing upward, and the z-axis Z0 pointing forward. The location ~PP is described by the angles h and w together with its

distance D from the origin. Our spherical model describes the flow vector
_~PP~PP by its angular, temporal differentials _hh and _ww - not depicted in the

drawing for clarity.
doi:10.1371/journal.pcbi.1002553.g008

ð4Þ
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For the normal vector (nx,ny,nz) the corresponding model for a

ground-plane or wall-plane is plugged in. Tuning functions are

employed to compare single flow vectors of the template flows

against its corresponding vectors of the input flow. These tuning

functions are described next.

Optimizations and tuning functions of the template
model

Input flow is defined as
_̂
y
I

y
Î

y
I

y
I

~(
_̂
hĥhh,

_̂
wŵww) and is compared against the

template flow for walls
_~yy~yy~( _hh(vz,vy,Q,d,a), _ww(vz,vy,Q,d,a)) or

_~yy~yy~( _hh(vz,vy,Q), _ww(vz,vy,Q)), the template flow for the ground-

plane where the latter two parameters of distance and angle are

dropped. Our first goal is to segment the flows into samples from

ground or wall. To derive a flow constraint that is independent of

the rotational velocity vy but depends on the distances D, we

multiply the Equation (5) by the vector ~bb\~ {bw, bh

� �
. This

provides the following tuning functions for segmentation. First, the

tuning function for potential sample points of the ground-plane is:

fground,l(vz,j)~exp({
(
_̂
~yy~yy~̂yy~yyl
~bb\l {~aal

~bb\l vz,j=h)2

2:s2
ground

): ð6Þ

Second, the tuning function for potential sample points of walls

is defined by:

fwall,l(ai,dj)~exp({
(
_̂
~yy~yy~̂yy~yyl
~bb\l {~aal(ai)~bb

\
l �vvz=dj)

2

2:s2
wall

): ð7Þ

In this tuning function we use the mean velocity �vvz~
1
m

Pm
j~1

vz,j that

is computed over all m velocity samples. For the wall-ground

segmentation we use the following decisions to define the set of

wall samples W~ l : fwall,lwfground,l

� �
and the set of ground

samples G~ l : fwall,lvfground,l

� �
.

Then we continue with the ground samples to estimate the

linear velocity of the rat by using the tuning function:

fmatch,vz (vz,j)~
1

Gk k
X
l[G

fground,l(vz,j): ð8Þ

This function in Equation (8) defines matches between the input

flow and the template flows for the linear velocity samples vz,j .

Matches are computed over all samples that have been identified

to originate from the ground. This provides the overall similarity

between the input flow and a template flow.

Next, we compute the rotational velocity from ground samples.

For this computation we use the following tuning function which

computes the Euclidean distance between input flow and template

flow:

fmatch,vy (vy,j)~
1

Gk k
X
l[G

exp({
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In this Equation (9), v̂vz is the estimated linear velocity from

Equation (8), e.g. v̂vz~arg maxj fres,vz (vz,j).

In the last step we estimate wall distances for a given allocentric

direction and use the already estimated linear and rotational

velocity from Equation (8) and (9). For this distance and direction

estimation we use the tuning function as defined by Perrone [18].

Note, this function has not been used for any of the previous

problems due to optimizing for the rotational velocity in Equations

(6)–(8) which uses a constraint that is independent of rotational

velocities and in Equation (9) because the rotational velocity is

independent of the depth and, thus, a more elaborate log-distance

tuning as suggested by Perrone [18] for the length of flow vectors is

not necessary. But now, since we estimate the distance of walls this

distance tuning is crucial. Perrone’s tuning model starts with a

transformation of flow vectors from Cartesian into polar coordi-

nates, whereas the radius is associated with the speed of an image

location. In this polar representation the matching function is

defined as:

fmatch,a,d (ai, dj)~
1

Wk k
X
l[W

exp({

(log2
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:(exp({
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){d)=(1{d):

ð10Þ

The Equation (10) combines the log-speed tuning, the first factor,

with the direction tuning, the second factor, by multiplication. The

angular difference in Equation (10) is denoted by : , :ð Þ. This

assumes that the two tunings for motion speed and direction are

independent [18]. The already estimated linear velocity v̂vz and

rotational velocity v̂vy are used to define self-motion specific flow

templates in Equation (10).

Our extended model can be summarized into the following four

steps. First, we compute a wall-ground segmentation by using the

tuning functions from Equation (6) and (7). The segmentation is

determined by whether a flow vector fits better to a ground

template vector from Equation (6) or a wall template vector from

Equation (7) while sampling all possible linear velocities in

Equation (6) and all possible allocentric directions and possible

distances for a wall in Equation (7). Therefore, the segmentation is

computed without knowing the parameters of self-motion. But

once the segmentation into wall-ground is known we use ground

samples to estimate linear and rotational velocity in step two and

three, respectively. For estimating linear velocity we use the tuning

function from Equation (8) and for rotational velocity the tuning

function from Equation (9). In the fourth step, we estimate

distance and allocentric direction of walls using the known

segmentation, linear, and rotational velocity. A pseudo-code of

the algorithm is provided in the Figure 9.

So far, we have not described how velocities, distances, and

directions are estimated given the activity from evaluating the

residual functions in Equation (8), (9), and (10). Such a description

follows.

Read-out of matching functions
The matching functions in Equation (8), (9), and (10) depend on

different stimulus parameters. For instance, the function of

Equation (8) depends on linear velocity samples, whereas the

function of Equation (10) depends on distance and direction of walls.

Our read-out distinguishes between 1D and 2D functions. For a 1D

function our read-out method uses a weighted sum with two percent

of all argument values that are centered on the maximum. For the

2D match function of Equation (10) we use a different method. Our
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read-out mechanism selects all matches with their value being

within the 70% range with respect to the maximum match. These

match values together with their respective arguments, in the above

example the linear velocities, are passed along to the distance error

calculation or BVC model. The calculation of distance errors takes

the direction arguments and computes the ground-truth distance for

this direction. Then this ground-truth distance is subtracted from

the estimate. The absolute value is computed for this difference to

define the distance error.

If the boundary vector cell model is the next stage, arguments

about distance and max read-out directions are passed together

with their activation. Distance and direction are integrated into

the existing BVC model and we weigh each BVC activity by the

match value provided by our template model. This is described in

Figure 9. Shows the pseudo-code for wall-ground segmentation, and estimation of self-motion, distance, and direction of walls. The
constructor ‘‘MatrixValueLinear(min,max,num)’’ provides a linear equidistant sampling between ‘‘min’’ and ‘‘max’’ of ‘‘num’’ samples. In
contrast, the constructor ‘‘MatrixValuesLog(min,max,num)’’ implements a logarithmic sampling between ‘‘min’’ and ‘‘max’’ with ‘‘num’’
samples. The function ‘‘matchGround’’ implements Equation (6) and ‘‘matchWall’’ implements Equation (7). Both functions are used to compute a
wall-ground segmentation. The linear velocity is estimated using Equation (8). Further, ‘‘matchRotation’’ implements Equation (9) and
‘‘matchSpeedDirection’’ implements Equation (10). The readout functions ‘‘readout1D’’ and ‘‘readout2D’’ are defined in Code-box 3.
doi:10.1371/journal.pcbi.1002553.g009

Figure 10. Shows pseudo-code for the interpretation of match values.
doi:10.1371/journal.pcbi.1002553.g010
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more detail next. A pseudo-code of the 1D and 2D readout

method is given in Figure 10.

Integration of wall’s direction and distance estimates into
the boundary vector cell model

The boundary vector cell (BVC) model was described in detail

elsewhere [5,6,17]. Here, we only repeat the main model equation

to show how our estimated variables are integrated. The distance

dj with its allocentric direction aj of a wall leads to the activation:

gi(Di,Wi)~
X

j

exp({
(dj{Di)

2

2:s2
D(Di)

):exp({
(aj{Wi)

2

2:s2
W

)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
original model

: fmatch,d,a(dj ,aj)=
X

k

fmatch,d,a(dk,ak)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
match value

ð11Þ

We assume the i-th BVC is tuned to the distance Di and the

allocentric direction Wi. Normalized match values of the template

model are included in the firing of a BVC. These match values are

the third factor of the product in Equation (11). The indices k and j

range over all read out activations from our model that are above

70% of the maximum activity. Parameter values for this Equation

(11) and all other equations are reported in Table 2.

Detection of drop-offs
Drop-offs are detected with a center-surround filter applied to

the speeds of the flow field. This detection method assumes that

the azimuth and elevation angles are arranged on a regular sample

grid that is associated with pixels. In our model example we use

400 horizontal samples and 200 vertical samples. To detect the

flow discontinuity at the drop-off we apply a center-surround filter

kernel to the length of the flow vectors and detect its maximum

response. Formally, this is expressed by:

Q̂Q(h)~arg maxQ S(h,Q) � Gcen{S(h,Q) � Gsurf g: ð12Þ

In some cases of small flow discontinuities at the transition from

flow at the horizon to the flow of the background this detection

does not provide valid values indicated by a small maximum

response, see also the pseudo-code in Figure 11.

The detected elevation angle of the drop-off is then converted

into a distance estimate assuming the eye-height h, tilt angle c, and

head direction Q are known:

d~h:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sin Q sin czk sin h cos ŵw)2z({cos czk sin ŵw)2

z(cos Q sin czk cos h cos ŵw)2

vuut with

k~1=({sin w sin c sin h cos Q̂Qzcos c sin Q̂Q{cos w sin c cos h cos Q̂Q):

ð13Þ

Supporting Information

Figure S1 Examples of wall-ground segmentations, distance,

and direction estimation of walls for analytical flow superimposed

with additive, independent Gaussian noise. Flow with noise is

defined as _hh, _ww
	 


z Nh,Nw

� �
with Nh and NQ drawn from a

normal distribution with zero mean and sn as standard deviation.

This type of noise strongly influences the quality of the

segmentation and, thus, influences the other estimations based

on this segmentation. In both examples the rat is positioned at

x0 = 20 cm, y0 = 3.5 cm, z0 = 15 cm, has the head direction

Q = 23u, and the self-motion vz = 19 cm/sec and vy = 25u/sec. a)

Square box with the coordinate system. The distance estimates are

indicted by magenta arrows. b) Spherical flow field with noise

(sn = 5u/sec) and wall-ground segmentation. c) 2D match values as

calculated from samples that are indicated as originating from a

wall, these are the blue dots in b). Low match values are encoded

by low intensity and high match values by a high intensity, see also

the inset with the color code. d–g) 1D match values for the linear

and rotational self-motion and the direction and distance of walls.

The latter two curves are computed as the maximum response

from the 2D match value function of c), whereas the maximum is

computed for the dimension not shown. The estimated self-motion

is vz,est = 19 cm/sec and vy,est = 24u/sec and the mean distance

error is 1.15 cm with a standard deviation of 0.52 cm. h) Circular

box with coordinate system and distance estimates of the wall

depicted by the magenta arrows. i) Spherical flow with noise

(sn = 15u/sec) and wall-ground segmentation for this circular box.

j) 2D match values. k–n) Match value functions for velocities of

the camera and direction and distance of walls. The estimated self-

motion is vz,est = 19 cm/sec and vy,est = 25u/sec and the mean

distance error is 3.03 cm with a standard deviation of 1.29 cm.

The distance error in the circular cage is higher due to the

assumption about a planar approximation for each segment of the

curved wall.

(TIF)

Figure S2 Taking the logarithm of the speeds of input and

template flow vectors as the argument for a Gaussian function

provides a ‘‘sharper’’ tuning compared to taking only the

difference of speeds without the logarithm. a) Shows the spherical

flow field and the detected wall-ground segmentation. b) 2D

match values for the matching using the log-speed difference

Figure 11. Shows pseudo-code for the method that detects drop-offs.
doi:10.1371/journal.pcbi.1002553.g011
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shows three clearly distinctive high intensity regions. These are

better visible in the break-down into 1D curves c) for the wall’s

direction taking the maximum of all distances and d) the wall’s

distance taking the maximum of all directions. The mean error in

distance estimates is 2.76 cm with a standard deviation of 1.81 cm.

e) 2D match values for the matching using the speed difference

without applying the logarithm. Compared to b) the matching

occurs fuzzy, also visible in the break-down in the matching for f)
the walls’ directions and g) the walls’ distances. In this case the

mean distance error is 3.74 cm with a standard deviation of

3.85 cm and, thus, higher than in b). This example uses a

rectangular box 250 cm6280 cm with 50 cm high walls and the

rat’s position is x0 = 0 cm, y0 = 3.5 cm, z0 = 10 cm with the head

direction Q = 15u.
(TIF)

Figure S3 A tilt angle of 30u, that is the angle between the

optical axes compared to the horizontal parallel to the ground,

does no change firing fields qualitatively; however, the error at

larger distances is larger compared to a zero tilt angle. a)

Simulated BVC firing for a square box with distance and direction

estimates for walls provided from our template model. b) Mean

distance error in the two-centimeter range. c) Simulated BVC

firing for the same square box as in a) but with an additional

intrinsic wall. Firing appears at any wall of a specific distance and

allocentric direction the cell is tuned for. d) Mean distance error in

the range of zero to six centimeters. e) Simulated BVC firing for a

circular box. f) Mean distance error in the two-centimeter range.

(TIF)
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