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Patil, Madhvi M. and Michael E. Hasselmo.Modulation of inhib-  of intrinsic synaptic transmission allows afferent sensory input
itory synaptic potentials in the piriform corted. Neurophysiol81: to more strongly drive the activity within cortical network
2103-2118, 1999. Intracellular recordings from pyramidal neurons jRodels, setting appropriate dynamics for attention to the ex-
brain slice preparations of the piriform cortex were used to test res_l,ilg:‘mm environment and storage of new information. Cholin-
S%?gic modulation has been shown to enhance long-term poten-

from a computational model about the effects of cholinergic agoni
on inhibitory synaptic potentials induced by stimulation of aﬁererhation of synaptic potentials in the piriform cortex (Hasselmo

fibers in layer la and association/intrinsic fibers in layer Ib. A simpl ) - ; -
model of piriform cortex as an associative memory was used @'d Barkai 1995; Patil et al. 1998), further setting the appro-

analyze how suppression of inhibitory synaptic transmission infliate dynamics for storage of new information.

enced performance of the network. Levels of suppression of excitatoryCholinergic agonists have also been shown to suppress
synaptic transmission were set at levels determined in previous eoked inhibitory synaptic potentials (Haas 1982; Muller and
perimental work. Levels of suppression of inhibitory synaptic trandfisgeld 1986; Pitler and Alger 1992; Valentino and Dingle-
mission were then systematically varied within the model. This moghine 1981). This has been shown in brain slice preparations of
eling work demonstrated that suppression of inhibitory synaptiie hippocampal formation and cultures of neocortex but was
transmission in layer Ib should be stronger than suppression of inhlast hreviously analyzed in piriform cortex. Computational models
itory synaptic transmission in layer la to keep activity levels hig f cortical function can be used to analyze the functional signif-

enough for effective storage. Experimental data showed that perfusion f the choli . . f inhibit tic t
of the cholinergic agonist carbachol caused a significant suppresél nce ot the cholinergiC SUppression o inhibitory Synapc trans-

of inhibitory postsynaptic potentials (IPSPs) in the pyramidal neuroR&ISsion. As described here, computational models of associative
that were induced by stimulation of layer Ib, with a weaker effect ofiemory function in the piriform cortex generated the prediction
IPSPs induced by stimulation of layer la. As previously describetat cholinergic modulation should cause greater suppression of
carbachol also selectively suppressed excitatory postsynaptic potiafbitory synaptic potentials elicited by stimulation of intrinsic
tials (EPSPs) elicited by intrinsic but not afferent fiber stimulatiorand association fibers in layer Ib than inhibitory synaptic poten-
The decrease in amplitude of IPSPs induced by layer Ib stimulatiggls elicited by stimulation of afferent fibers in layer la. This
did not appear to be directly related to the decrease in EPSP amplitgiggiction was tested with physiological recording of inhibitory
induced by layer Ib stimulation. The stimulation necessary to inducgnantic potentials in brain slice preparations of the piriform
neuronal firing with layer la stimulation was reduced in the presen %rtex. Experimental work investigated whether the cholinergic

of carbachol, whereas that necessary to induce neuronal firing w dulati f inhibit i tentials ob din hi
layer Ib stimulation was increased, despite the depolarization igjodulation ot inhibitory synaptic potentials observed in nip-

resting membrane potential. Thus physiological data on cholinerfd@c@mpus appears in the piriform cortex as well and whether this
modulation of inhibitory synaptic potentials in the piriform cortex ignodulation shows the laminar selectivity suggested by the com-
compatible with the functional requirements determined from corputational modeling work.

putational models of piriform cortex associative memory function.

METHODS

INTRODUCTION Mathematical analysis of piriform cortex modeling

T : : Ch simultaneously alters a number of different parameters of
The dynamical interactions of cortical neurons can be alterg rtical neurons. A simple mathematical model of cortical circuits

by a range of modulatory substances, including ACh (f%rel s in understanding the interaction of these modulatory effects. In
review see Hasselmo 1995). ACh has been shown to SUPPHESES model, we assumed that the maximum steady-state activity of
excitatory synaptic transmission in the piriform cortex (Hasxcitatory neurons should remain about the same during changes in
selmo and Bower 1992; Linster et al. 1999; Williams angch levels. The pattern of responsiveness of individual neurons does
Constanti 1988), in the hippocampus (Hasselmo et al. 19%bange during cholinergic modulation (Metherate et al. 1990; Sillito

Valentino and Dingledine 1981; Yamamoto and Kawai 19673nd Kemp 1983), but physiologically realistic changes in cholinergic

and in the neocortex (Hasselmo and Cekic 1996). This effégedulation do not cause a dramatic change in overall activity such as
shows laminar selectivity, with stronger suppression of exci-total absencga of activity. On a fu_nctlonal level, modulatory changes
atory synaptic transmission at synapses between pyrami\‘ifﬁF'd be considerably more useful if they would change the pattern of

cells within a region and weaker suppression at synap%‘a ronal response rather than completely shut off the network or cause it

sing f th H | dB 1992 H ig become overactive. Thus we assume that the level of activity should
arising from other areas (Hasselmo and Bower » MaSSEIARAin within a stable range. Here we evaluated how much modulatory

and Schnell 1994). This selectivity may be of particular funGnange in inhibitory synaptic transmission would be necessary to offset
tional relevance, as demonstrated in computational modelsy@f modulation of excitatory synaptic transmission previously described
cortical function (Hasselmo and Bower 1993; Hasselmo et @l.the piriform cortex (Hasselmo and Bower 1992; Linster et al. 1999).
1992). In the presence of cholinergic modulation, suppressiorThis model focuses on the interaction of populations of excitatory
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units and a population of inhibitory units mediating feedforward anlchear function is used for computing the summed firing rate of the
feedback inhibition. This representation has a considerable advantedpbitory population. The constart represents the afferent input to a
over other neural network models in which excitatory units angopulation of neurons during a period of time. This constant represents
inhibitory units are not represented separately (Amit 1988). Dynamibsth the summed firing rate across a population of mitral cells in the
of the mathematical representation used here were first studieddifactory bulb in spikes/ms as well as the process of synaptic transmission
Wilson and Cowan (1972, 1973). This type of representation was ussafferent fiber synapses in layer la of piriform cortex (in mV/spike). The
to study the dynamics of cortical networks including piriform corteproduct of these values has the necessary value of spikes/ma/
(Hasselmo and Linster 1998a,b; Hasselmo et al. 1997), hippocamppike = mV/ms.
(Hasselmo et al. 1995; Tsodyks et al. 1997), somatosensory cortein these equationsV represents the average strength of excitatory
(Pinto et al. 1996), and visual cortex (Hansel and Sompolinsky 1998ynapses arising from cortical pyramidal cells and synapsing on other
These models leave out many of the details incorporated in compaeitatory neurons. If neuronal output is in spikes/ms, then synaptic
mental biophysical simulations (e.g., Barkai and Hasselmo 19%trength reflects the change in membrane voltage per spike (mV/
Hasselmo and Barkai 1995), such as the Hodgkin-Huxley curresike) because of the membrane conductance change caused by syn-
underlying spike generation, and the passive properties of dendriijatic transmissionH represents the average strength of inhibitory
trees. Thus they are somewhat less constrained with regard to sfigapses arising from cortical inhibitory interneurons and synapsing
intrinsic properties of individual neurons. However, the network dysn pyramidal cellsW' represents the average strength of excitatory
namics of these simplified representations show many qualitatisgnapses arising from cortical pyramidal cells and synapsing on
features in common with spiking network models, including attractamhibitory interneurons. To keep the equations simpler, we left out
dynamics (Fransen and Lansner 1995; Hansel and Sompolinsky 1988ijbitory synapses on inhibitory interneurons, which were included
Pinto et al. 1996), and the results of the analysis presented here shaulprevious work. The simplified system is summarized in Figy. 1
apply to network dynamics in a biophysical simulation. The equilibrium states of networks of this type were evaluated in a
In these models the firing rate of a population of neurons fwevious article (Hasselmo et al. 1995). Here we use those equilibrium
simplified into a continuous firing rate variable, which depends on tlsgates to investigate the relationship between modulation of excitatory
average membrane potential of the population. The firing of a spikedgnaptic transmission and modulation of inhibitory synaptic transmis-
an individual neuron is an all-or-nothing phenomenon, but the spikisipn. Previous experimental work has shown the magnitude of cho-
rate within a population can be seen as a continuous variable, whiittergic suppression of excitatory synaptic potentials in the afferent
is zero when the average membrane potential of the population is waalld intrinsic fiber layers of the piriform cortex (Hasselmo and Bower
below threshold, small when the average membrane potential is ji882). The cholinergic suppression of excitatory synaptic transmis-
above threshold, and large when the average membrane depolarization was modeled in the equations by rescaling the excitatory intrinsic
is large. In the computational simulations described in the next s@onnectiond/N proportional to a unitless suppression variatjeand
tion, we split the population of excitatory neurons into separasealing the excitatory connections from pyramidal cells to interneu-
populations representing components of different odor patterns whiteassW' proportional to a suppression varialgle Given these values,
simulating just one population of inhibitory neurons. For the matheve evaluated how feedforward and feedback inhibition should change
matical analysis described in this section, we focus on the averagekeep the equilibrium activity of the network in the same range of
membrane potential (represented by the variablef one subpopu- values and for the network to remain stable. Modulation of feedfor-
lation of excitatory neurons and the average membrane potentiard inhibitionH, was represented by the varialge, and modula-
(represented by the variabl® of the subpopulation of inhibitory tion of feedback inhibitiorH was represented by the varialag (all
neurons that interacts with these excitatory neurons. (These averaggspression variables range between 0 and 1.0). As described in the
correspond to the membrane potential determined by synaptic inpasuLTs modulation of excitatory synaptic transmission of the sort
and exclude the membrane potential during generation of spikes)described previously (Hasselmo and Bower 1992) was more effec-
Changes in the average membrane potential of the populationtiokly offset by modulation of feedback inhibitory parameters than by
excitatory and inhibitory neurons are described by the followingnodulation of feedforward inhibition.
equations

da/dt= A — ma + Wo[a— 0], — He[h — 6]. Computational modeling

dh/dt= A" — n'h + W ¢[a — 6]. @ The functional significance of different levels of the cholinergic
modulation of inhibitory synaptic potentials was analyzed in a sim-
These equations show the change in average membrane potepliied computational model of the piriform cortex, showing that
(a) of the excitatory population and average membrane potehjiaf( selective cholinergic suppression of feedback but not feedforward
the inhibitory population (in units that correspond to mV from restinghhibition is necessary for effective function. This computational
potential). The constanf multiplied bya represents the passive decaynodel used the same general functional framework as the mathemat-
of membrane potential proportional to the difference from restingal analysis described previously, but instead of a single subpopula-
potential. This constant has units of milliseconds and is the inversetiain of excitatory neurons the computational model split the popula-
the average membrane time constant. In biophysical simulations, tioe of excitatory neurons into several excitatory units representing
membrane time constant is calculated as the product of membraeparate subpopulations of excitatory neurons responding differen-
resistance and capacitance. The summed firing rate of the excitatialy to different components of different odor patterns. Many aspects
population (in spikes/ms) is computed by a threshold linear functi@f cholinergic modulation were analyzed in previous compartmental
[a— 6], of average membrane potential scaled by a summation factophysical simulations of the piriform cortex with spiking neurons
¢. We use a sum of firing rates, not the average firing rate (which woyl8arkai et al. 1994; Hasselmo and Barkai 1995), but this computa-
be <1 spike/ms), because each neuron receives a large numbeti@ial model used the simplified representation of average firing rate
synaptic inputs that are simplified to one input here. These firing rates desscribed previously (Hasselmo et al. 1995; Pinto et al. 1996; Wilson
zero when membrane potential<$d (0 = 8 mV in the accompanying and Cowan 1972). This simplified representation was used previously
simulations). Firing rates take the valéiga — 6) for values>6. Piriform  to analyze cholinergic modulation in region CA3 of the hippocampus.
cortex pyramidal cells do not normally fire above 100 Hz, and within this fact, that previous simulation used selective cholinergic suppres-
range of firing theirf-l curve has a threshold linear shape (Barkai ansion of feedback but not feedforward inhibition, although the full
Hasselmo 1994). For the analysis presented here wk set; therefore range of parameter values was not explored. In the computational
it will not appear in any subsequent equations. The same type of threstsitdulations described in the next section, we split the population of
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Fic. 1. A: simplified network for mathematical analysis. a: average membrane potential of a subpopulation of excitatory
neurons; h: average membrane potential of a population of inhibitory neukonasafferent input from olfactory bulb mitral cells
passing through layer la synapses. This is subdivided into subthreshold ppyt §) and suprathreshold input (I) minus
feedforward inhibition ). ¢; = cholinergic modulation of feedforward inhibitioV = feedback excitatory connections between
pyramidal cells in the network, scaled by cholinergic modulatipgn' = excitatory connections to inhibitory interneuron, scaled
by cholinergic modulatiort,,. . H;,, = inhibitory connections on excitatory neurons, scaled by cholinergic moduletiariThe
passive decay of membrane potential is scaled to the decay parap{eteerse of membrane time constar8).for computational
modeling of associative memory function, we model a network of interacting subpopulations of pyramidal cells and interneurons.
Afferent input patternsA) consist of binary patterns of excitatory input to pyramidal cell populations in the network. The network
contained extensive excitatory feedback connections between interneWgnand connections to and from inhibitory interneu-
rons W' and H). In addition, the network contains cholinergic modulatinregulated by inhibitory units influenced by total
excitatory output in the network.

excitatory neurons into separate populations representing componenfeversal potentials for membrane currents were expressed relative
of different odor patterns while simulating just one population dab the resting potential. ThiS,\pp = 70 MV andEg gan = 0 MV.
inhibitory neurons. Threshold potentials were equivalent for all neurofis= 6,, = 8.0

In this computational model of cortical memory function, individmV. The size of each time step was one-tenth of a millisecond. The
ual odors are represented as different patterns of afferent input agthndard time constant of piriform cortex pyramidal cells-i50 ms
vating specific subpopulations of excitatory neurons (Hasselmo 199B8arkai and Hasselmo 1994). The decay constant was spt-ad.01
Hasselmo and Linster 1998a; Hasselmo et al. 1992, 1995; Linster @@fkhat neurons would have a time constant of 10 ms (unitg are
Hasselmo, 1997). The afferent patterns representing individual odors &g jnverse of 1/10ths of a millisecond). Afferent input was scaled
stored as self-sustained equilibrium states (attractor states) in the netwgyky, o magnitude of the decay constant allowing afferent input to
with a particular pattern of active neurons within the network. Once 80Iarize the neurons to 10.0 mX € 0.1). This can be seen from

r

odor is stored as an attractor state, input that resembles that odor attrf%ﬁ equation showina onlv the effect of afferent inout and passive
state will put the network into the same attractor state. Thus individu £ ed g only the el P P
ayAa = A — na. In the equilibrium statda = 0 anda = A/n.

differences in neuronal activity (caused by changes in odor concentra .
v y 9 noted previouslyA represents the product of the output from

or background odors) can be ignored in favor of deciding on a spect . ; ; .
odor. Within this general framework, ACh can be seen as altering tA&actory bulb mitral cells (in spikes/ms) coming through afferent

sensitivity to external features of the stimulus relative to the interngyNapses (with strength in mv/spike). Théias units spikes/ms
stored representation. As ACh levels are increased in the network, H¥/spike = mv/ms;a = Aln = [mV/msec]x ms = mV. For these
relative influence of afferent input increases, allowing greater sensitiviiinulations, synaptic connectivity took the valuds = 0.0008, and
to variations in the external input. H = 0.0035,H" = —0.0055. Excitatory feedback started at very low
The network used the activation dynamics describecEhy 2 (as Vvalues ¥ = 0.000002) and increased to a maximum strengtWof
difference equations). These activation dynamics differ fiégn 1to  0.00055.
include reversal potentials for excitatory and inhibitory synaptic inputs Additional equations were utilized to simulate the feedback regu-
lation of cholinergic modulation and the modification of excitatory
Ag; = A — ma; + (Eavpa — &) E Wila; — 0]+ recurrent synapses for storage of patterns (Hasselmo et al. 1995).
i Experimental evidence demonstrated that stimulation of cholinergic
— (Ecnen, — ) 2 Halhs — 6.]. inpl_Jt from th_e horiz_onta_l_limb of the diagonal_band_influencg_s syn-
| aptic transmission in piriform cortex, and stimulation of piriform
cortex causes phases of excitation and inhibition in the horizontal limb
Ahe= Al = nhic+ (Eamea = hi) E Wiglay — 6]« (Linster et al. 1997). Here we focus on feedback inhibition of cho-
! linergic modulation. ACh levels were represented/bgnd depended
— (Ecasa, — W) E Hilh — 6,]. (2) on a threshold linear functiow[a — 6], of the average membrane
| potentiala of a population of cholinergic neurons
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Y=V[a- 0], obtained from pyramidal neurons in layer Il of the piriform cortex in
the in vitro slice preparation. Slices 4@@n thick were obtained from
Aa = A, —ma = Hy[h— 6] ()  adult female Sprague-Dawley rats (150—200 gm), by using standard

where 6, is the output threshold for the population of cholinergi®rocedures (Hasselmo and Barka, 1995; Hasselmo and Bower 1992)
neurons in the horizontal limbA,, is tonic input to the cholinergic I accordance with institutional guidelines. The animal was lightly
neuron present at all times during simulations to ensure continudiiesthetized with halothane and decapitated. The brain was rapidly
output in the absence of inhibition, ard, is inhibitory input to removed and placed in chilled oxygenated artificial cerebrospinal fluid
cholinergic neurons from GABAergic neurons activated by piriforfACSF) maintained close to 4°C. Slices were cut in the coronal plane,
cortex pyramidal cells. Simulations used the valdgs= 0.3, 6, = perpendicular to the laminar organization of the piriform cortex, with
8.0, andéh = 8. a vibratome. Once cut, the slices were stored at room temperature in
Excitatory feedback connections were modified according to leafy-chamber containing oxygenated ACSF solution with the following
ing rules dependent on postsynaptic actityand presynaptic activ- CoOmposition (in mM): 124 NaCl, 5 KCl, 1.2 Ki#pO,, 1.3 MgSQ, 2.4
ity &, in keeping with experimental evidence on associative long-teff2Ck, 26 NaHCQ, and 10po-glucose (pH 7.4-7.5).
potentiation in piriform cortex (Patil et al. 1998). Modification de- After 1 h ofincubation at room temperature slices were placed on
pended on cumulative buildup of pre- and postsynaptic variablesd Nylon mesh in a submerged chamber with oxygenated ACSF flow-
and s, which increased with separate dynamics (dependent on I8§ Over the slices at a rate of 1 ml/min. A thermistor, placed just
accumulation constanp and a diffusion constang. This could be below the mesh, monitored and controlled the temperature of the
construed as the buildup of pre- and postsynaptic calcium or activ¥=SF through a temperature regulator circuit maintaining it between
tion of pre- and postsynaptic second messengers such as prc)@nand 34°C. Intracelll_JIar responses to Qlectrlcal stimuli were re-
kinase C. The learning rule also contained synaptic decay proportiof@fded once the pyramidal neurons were impaled. All recorded neu-
to the current strengthV; and pre- or postsynaptic activity (scaledns had a resting membrane potentia-85 mV or more negative.
with the constantso,,. and w,.s) as a representation of long-term The orthodromic stimuli were delivered through a NeuroData
depression (Levy et al. 1990). Each rule had parameters for the oveP44000 stimulator, with two fine unipolar tungsten electrodes, one
modification ratex and the postsynaptic modification threshelgl ~ Positioned in the intrinsic layer and other in the afferent layer. The
The rate of synaptic modification was also scaled to the level Bfain slice preparation is illustrated in Fig. 2. For sharp electrode
cholinergic modulation, as suggested by experiments showing choligcording, the glass micropipette electrodes (resistancé0—180
ergic enhancement of long-term potentiation in piriform cortex (Hadd{2) were filled with 4 M potassium acetate solution. In four neurons
selmo and Barkai 1995; Patil et al. 1998) and hippocampus (Burg&et314 (50 mM) was introduced to block the sodium spikes and the
and Sarvey 1990; Huerta and Lisman 1993). The cumulative learnifi§W-inhibitory postsynaptic potential (IPSP) component to better

rule took the form record the fast-IPSP component. From these four neurons only IPSP
data were recorded; they were not used for threshold firing values.
AW = k(1 = xu)([s = 0]+ — 0pWi)([S = 0u]+ — 0posiViy) IPSPs were primarily recorded by intracellular current injection dur-
As — dla — 0.1, — ing association—afferent fiber stimulation, as shown by Tseng and
S = ola — 6. — Bs Haberly (1988). The fast and slow IPSP components, shown to be
As = ¢[a; — 0], — BS (4) mediated by changes in Cland K" conductances, respectively

c i ¢ df inhibitory int t modifi (ﬂ'seng and Haberly 1988), were measured at time periods correspond-
onnections to and from inhibrtory INterneurons were not modilig Igto the maximum IPSP peaks in control (between 20 and 40 ms for

in these simulations. In most simulations, weights were clipped @ 4 hetween 100 and 140 ms for slow component). The same time
specific values to maintain them within the region of stable attractdlee -ance was used in individual neurons. but it varied slightly over
dynamics. This clipping allowed stable learning for a broader rangetﬂf{a population. Orthodromic thresholds we’re examined by varying the
parameters. . . . strength of the stimulus at certain stimulus durations (0.2, 0.5, 1.5, and
In this computatlonal_ mOdel' a set of blnary Input patterns repre, iy most cells). Input resistance was calculated from the responses
sented the neuronal activity associated with a series of different 0dq[S_ms hyperpolarizing current pulses.
These binary input patterns were stored in the network throughyypsie cell patch recordings for both current clamp and voltage
Hebbian modification of excitatory association connections. The St?:rlémp were carried out with borosilicate glass electrodes, pulled to
age of these patterns was subsequently evaluated by presenting Qe s, electrode resistance o8—12 M. The electrode sblution
portion of the input patterns and determining if the network coul 2d the following composition (in mM): 120 K-gluconate, 10 KCI, 2

complete the missing components of the input patterns. A perqu-a L 2 MgCl, 2 EGTA, 2 K-ATP, 0.2 Na-GTP, 20 HEPES
mance measure based on normalized dot products was used to evaf-: ' 2 ' T ' '

uate the effectiveness of retrieval, as in previous articles (Barkai et al.
1994; Hasselmo et al. 1992). This performance measure increased
with the effective completion of a learned pattern but decreased with

the similarity between the learned pattern and other learned patterns.
In this simulation, the network is first trained on one input pattern Ia
(1010010010) followed by another input pattern with considerable . .
overlap (0101010010), as shown in Fig. 4. In the simulations shown Stimulating Ib
here, high performance occurs when the first pattern is learned prop- electrodes
erly but does not interfere with learning of the second pattern. The 1I
performance measure is very low when no learning occurs and re-
trieval activity is low. The performance measure also goes to low I
values when the first pattern interferes with learning of the second, Recordin
causing the response to the degraded input to contain elements of both 1 d g
the stored patterns. clectrodes
FIG. 2. Brain slice preparation of the piriform cortex, showing location of
Brain slice physiology stimulating electrodes in layer la and layer Ib. Intracellular recordings were

} ) ) obtained from pyramidal cell bodies in layer Il. This allowed analysis of
Intracellular recordings (with sharp electrodes in current-clamgxcitatory and inhibitory synaptic potentials elicited by stimulation through
mode and patch electrodes in current- and voltage-clamp modes) waleetrodes located in either layer la or layer Ib.
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buffered to pH-7.2 with KOH, having an osmolarity of 280 mosmassume that afferent inpitis always strong enough alone to
The solution was filtered before filling the electrodes. An Axobring the average membrane potential above threshold. If there
clamp-2A amplifier was used for recordings, and data acquisition Wa%re no synaptic connections {if = W =H = 0), then the
performed with pClamp 6.4 software and Digidata 1200 i”terfa‘?%uilibrium state would b& = A/m. Because afferent input

board. Data were sampled at 10 or 20 kHz, depending on the natyre: s :
of the responses. Unless otherwise noted, holding potential for vaolt;, lates activity in the network, we make the assumption that

age-clamp recording of synaptic currents wa80 mV. drierent input alon_e can k_)rlng neurons over thresholdVao?
Effects of cholinergic modulation were studied by the introductiofl- TO assist in simplifying the equation, we can split the
of the cholinergic agonist carbachol (carbamylcholine chloride, CCR{rength ofA into a quantity that brings the neurons up to
into the bathing medium at a concentration of BM. To isolate threshold (rearranging the equatiéfm = 6, we obtainA =
IPSPs, excitatory postsynaptic potentials (EPSPs) were blocked with) and an additional quantity<j that goes beyond threshold.
the introduction ofo(—)-2-amino-5-phosphonovaleric acid-APV)  Then we writeA asX + 6. In addition, to include feedforward
at 40 uM and 6-cyano-7-nitroauinoxaline-2,3-dione (CNQX) at 2Qnhibition, we will represent the suprathreshold afferent input
1M into the bath for some cells before the application of CCh. Thgs 5 combination of direct inpliand a feedforward inhibition
drugs were obtained from Research Biochemicals (Natick, MA). Dala e to the direct input (this assumes that feedforward inhib-

were analyzed with two-way ANOVA. Results are quantified as tr“e : .
S ory input cannot cause afferent input to become subthresh-
4
means* SE, and the accepted level for significance Wwas: 0.05 old). ThusA = | — Hgl + mf. This gives us the following

unless otherwise stated). .
( ) equilibrium stateQ

RESULTS HW' 6,
) ) L= Hal 0 =W, +———=+Ho,
Mathematical analysis 0- m _ I Hel +HO s
L o HW aw 0 ©)
As described invetHops, the simplified network allowed m— W+ v n-W+ "y

mathematical analysis of how much modulation of feedforward
and feedback inhibitory synaptic transmission would be nec-By using this equation, we analyzed how cholinergic mod-
essary to offset the previously observed modulation of excitalation of the strength of recurrent excitatidh(represented by
tory synaptic transmission (Hasselmo and Bower 1992). THilke suppression variable,) could be offset by cholinergic
analysis was performed with the network with a single unimodulation of other parameters, allowing the network to main-
representing average membrane potemtiad a subpopulation tain the same value od in the equilibrium state. As noted
of excitatory neurons and a single unit representing averag@viously, the network may change somewhat in level of
membrane potentidl of the population of inhibitory neurons activity during cholinergic modulation but does not become
(see Fig. B). inactive or go into unstable seizure activity. As will be seen in
By using the equations shown ireTHops, we can solve for the following sections, there is a striking qualitative difference
the average membrane potential within a subpopulation iBfhow well modulation of different inhibitory connectionisl (
excitatory neurons when the network is in equilibrium. Thier Hg) can compensate for the activity changes associated with
could correspond to a particular self-sustained memory st&tgppression of excitatory intrinsic connection®)( Thus this
toward which the network evolves (an attractor state), or analysis is relevant even if the goal is only to keep membrane
could simply represent the steady-state response to a particientials and network activity within a general range of
new odor. In either case, the equilibrium can be determined B§lues.
observing the state of the equations when there is no change iln each of the following sections, the relationship between
the value ofa or h, i.e., by setting da/dt dh/dt= 0 (Hasselmo ¢, and one of the other modulation variables is analyzed
et al. 1995). Real biological networks probably only entdgetting other variables equal to one). These sections adbjress
equilibrium states for brief periods, but the network may biée suppression of feedforward inhibitidt (suppressed in
continuously moving toward particular stable equilibriunfproportion to the variabley), 2) the suppression of feedback
states. Equilibrium states can determine the level of networkibition H (suppressed in proportion to the variabjg), and
activity even when there are slow oscillatory changes in pa#) the suppression of the excitatory input to feedback interneu-
ticular parameters (Tsodyks et al. 1997). The valua déiring ronsW’ (suppressed in proportion to the variablg). In each
this equilibrium state is obtained by algebraically solvingdor of these sections, we set the equilibrium state with cholinergic
after setting da/dt= dh/dt = 0 in the equations presented inmodulation equal to the equilibrium state without cholinergic
METHODS. The average excitatory membrane potential durirgodulation, as follows
this equilibrium state will be designated &s

1= cyHyl + cipHB, 1= Hgl + H, @
HW' 6, CroHC, W' HW'
A— Wb, + ; + Ho, ’Y]_CWW+7, ’T]_W+ .
Q= QAeq = HW' (5)
- W+ . . . .
K n' Relationship between recurrent excitation (W) and

. . . feedforward inhibition
As noted inveTHoDs, A = afferent input,W = excitatory ()

connections between pyramidal celfg,= 6,, = threshold of  This section explores how much modulation of feedforward
pyramidal cells and interneuronid, = inhibitory connections inhibition ¢ can compensate for changes in the modulation of
to pyramidal cellsW' =excitatory connections to inhibitory feedback excitatiort,, to maintain approximately the same

interneurons, ang = i’ = inverse time constant of pyramidallevel of average membrane potential during the equilibrium
cells and interneurons. This equation can be simplified if vatate of the network. On an intuitive level, the loss of excitation
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in the network should cause a decrease in activity, but tHRelationship between recurrent excitation (W) and feedback
decrease in activity could be prevented if there is a corresporighibition (H)
ing decrease in inhibition. For example, if a subpopulation of

exci.tatory neurons has a certain activity level in response tQ.giqnwwith changes in the inhibitory synaptic transmissibn
particular odor and we then alter the strength of feedbagiq

o . ; . irising from interneurons activated by feedback from pyrami-
excitation caused by cholinergic modulation, can a changedq| cells. In this case, we change the levels of feedback

feedforward inhibition keep the network activity at approximnipitory transmissiorH according to the modulation param-
mately the same average level? For the moment, the cholifler ¢, while keeping other modulatory parameterscat=
ergic modulation of feedback inhibition and input to internel,,, = 1. By algebraically rearrangingq. 7, we obtain the
rons will be ignored, so we will keeg, = ¢, = 1. We can following relation

then rearrang&q. 7to see how muclt; must change during
changes irt,, to prevent cholinergic modulation from causing
a change in the average level of activi)( Algebraic ma-

nipulation of Eq. 7yields the following relation As in the previous discussion, botf, andc,, must remain
between 0 and 1. We can explore the maximal effect of
o — (G = DAWH HWE) + Hyl(n = W+ HeHW'/m) - o cholinergic suppression of feedback inhibitory transmission if
Hil(n — cuW + HW'/7) we setc, to 0. Whenc;, is 0, it compensates far,, at the

following value
Both c; and ¢, must remain between 0 and 1 because 0 g

represents complete suppression of synaptic transmission, and o - Hon+ I(1-HpyW
1 represents normal levels of transmission. In fact, physiolog- Y HOW + (1 - HW

ically realistic maximal suppression is probably more in the The range of, for which ¢, can compensate is larger than
range ofc,, = 0.3 (Hasselmo and Bower 1992). However, ifhat for whichc, can compensate. As an example, we can use
Eq. § ¢y rapidly must go to 0 to compensate for even Vefihe same parameters from previous research (Hasselmo et al.
small decreases |qN. We can eXplore the maximal effect Of1995) as in the previous Section_ For these paramen"%rsan
cholinergic suppression of feedforward inhibition if we st compensate for values af, between 1.0 and 0.64. (i.ecq,
to 0 (meaning feedforward inhibition is completely suppressefust be set at 0 to compensate égr= 0.64) If | is increased
by cholinergic modulation) and assume thigtapproaches 1.0 greatly, this range decreases, consistent with the change in
(meaning that it is very strong in the absence of cholinergielative influence of afferent versus intrinsic synapses. This
modulation). In this case, whegy is 0O, it compensates fax, suggests that suppression of feedback inhibition in the cortex
at the following value can more effectively compensate for changes in feedback ex-
citation than changes in feedforward inhibition. In the piriform
cortex, where feedback excitation has been shown to be sup-
pressed, this suggests that there should be an accompanying
suppression of feedback inhibition.

Putting specific numerical parameters into this equation
shows that the range af, for which c; can compensate is very Relationship between recurrent excitation (W) and excitatory
small. As an example, we can use parameters from previahgut to feedback interneurons (W

research (Hasselmo et al. 1995) in which stable equilibrium | for ch in th .
states were described witli = 0.016,H = 0.06,W' = 0.0042, We can also compensate for changes in the recurrent exci-

andm = n'= 0.01 (that paper usetl = 0.1, corresponding to tation W with changes in the excitatory inpMY' to interneu-

| = 0.02). The use of these specific numerical parametersi‘?@s mediating feedback inhibition. In this case, we change the

significant because only a certain number of parameters vyi qlael of excitatory input to interneurons according to the mod-

stable equilibrium states that could correspond to memo%tlon parametec,, , settingcy = ¢y, = 1. FromEq. 7, we

states (Hasselmo et al. 1995). For these parameters, as gain the following relation

change the value of, from 1.0 to 0.95, we can keep the Wn
average equilibrium membrane potential in the same range by G =1+ =1 qw
changingc,; from 1.0 to 0.0. However, this only compensates . , )
for a small change in feedback excitation. As feedback exci-We can explore the maximal effect of cholinergic suppres-
tation W is reduced by values af, smaller than 0.95, changesSion of input to feedback interneurons if we sgtto 0. When

We can also compensate for changes in the recurrent exci-

(1= c)I(1— Hy)W + HO(n — c,W)
B HO(n — W)

(10)

Ctp

1y

3 I(n — W+ HW'/n)

c,=1
W HW6

©)

(12

in feedforward inhibition cannot further compensate. Cw is 0, it compensates fax, at the following value
If I is increased greatlyy can compensate for a wider range HW
of values oft,,, but great increases Irare inconsistent with the Cw=1~- (13

. . . = nW
distal termination of afferent synapses on piriform cortex py-

ramidal cells. In summary, modulatiazy of feedforward in-  Changes inc,, can compensate for a very wide range of
hibition H¢ is not an effective means to compensate for modalues ofc,,. In fact, when we use the parameters from
ulation ¢, of recurrent excitationW. This generates the previous research (Hasselmo et al. 1995), we see that changing
prediction that there probably is not a strong effect of cholinhe value ofc,, from 1.0 to 0.365 can compensate for changing
ergic suppression of inhibitory potentials in layer la of théhe value ofc,, from 1.0 to 0.0. Atc,,, = 0.365 the suppression
piriform cortex. of excitatory input to interneurons can compensatecfpr=



MODULATION OF INHIBITION 2109

0.0. Thus smaller changes in modulation of excitatory input t 50
interneurons can compensate for larger changes in modulati
of excitatory input to other pyramidal cells.

When considering this analysis of equilibrium state, we
should consider not only the value of the equilibrium state but
also the stability of this equilibrium state. Mathematical anal-
ysis demonstrates which parameters allow stable self-sustained
equilibrium states. The value af, = 0 is not realistic for
equilibrium states because the equilibrium state becomes un-
stable when the excitatory connection between pyramidal cells 0.0 o 02 03 0.4
(cy X W) drops below the rate of passive membrane potential 120
decayn. On an intuitive level, a network will never be able to 1004 /n
sustain activity if the neurons lose membrane potential more - —a QW-0.0042)
rapidly than feedback excitation can build it up. To maintain Q (W'=.003)
equilibrium with these parameters, the feedback excitation Q(W-.0038)
(cy X W) needs to be larger than the membrane potential decay 3%8223
n = 0.01. This occurs at,, = 0.625, which can be compen- Q(W-.0022)
sated byc,, = 0.762. Only the suppression of excitatory input
to interneurons can compensate for the full range,pfalues
for which the equilibrium remains stable. Thus suppression of 0.0 o 02 03 04
excitatory input to interneurons can be weaker than suppres-
sion of excitatory transmission between pyramidal cells. In
contrast to both the other examples presented previously, th
compensation also does not change for different values of the
afferent input, suggesting that it might be easier to implement.
This suggests that compensation of changes in feedback exci- T e et
tation with changes in feedback inhibition may depend strongly 20 o Q(A-.09, W=0014)
on changes in the excitatory input to inhibitory interneurons
rather than just on changes in the inhibitory transmission from °]
interneurons. Inhibitory synaptic potentials evoked in layer Ib 0
of the piriform cortex in the experiments described here con- 0.0 0.1 02 03 0.4
tain components of botW" andH. Thus the analysis suggests Afferent input A
that we should see a much stronger cholinergic suppression of

inhibitory synaptic potentials in layer Ib than in layer la. Fic. 3.  Effect of modulation on equilibrium state in the network shown in
Fig. 1A. Equilibrium stateQ is shown for different values of excitatory afferent
. . R . input A to the unit representing the excitatory subpopulation. Low valués of
Re'_a“onSh_lp betwe_en depOIarlzatlon of mtemeurong Ghd do not put the average membrane potential a over threshold. This subthreshold
excitatory input to interneurons (W equilibrium state increases linearly, depending only on the decay time constant
. . . of excitatory neurons. When the membrane potential of the excitatory popu-
Cholinergic modulation enhances the frequency of sponigon reaches threshold, the equilibrium state increases dramatically because
neous inhibitory synaptic currents during recordings from py# excitatory feedback in the network, but a further increase in afferent input
ramidal cells in the hippocampus (Behrends and ten Bruggéresults in further linear increases in equilibrium st@teA: increases in the
cate 1993: Pitler and Alger 1992) This frequency increasquoolarizing input to interneurond’ shifts the equilibrium response down-
beli d t, It f direct h. l ic d larizati ard. For subthreshold levels of interneuron inpit € 0.8) only the equi-
elieve _0 _resu rom direct ¢ _0 Inergic aepo _arlza 10N Qlyrium states for suprathreshold values Afare affected, but for supra-
GABAergic interneurons (McQuiston and Madison 1996}reshold levels of interneuron inpud’(> 0.8) the subthreshold response of
which would increase firing rate. This depolarization of intefexcitatory neurons is affected, preventing them from becoming active at low
neurons appears rather paradoxical when combined with M@%’}es ofA. tBr; deﬁfelgses L g;hangz,thi ma%r!ltude and iI{a:}c(r(‘iaselth,e slope
H H e H € supratnresnola response.compination or Increases epolariza-
suppression of evqked |nh|b|tory'potent|al§. Why WOl.Jld t on of interneurons) with decreases\W (suppression of excitatory input to
same substance simultaneously increase inhibition via dirggimeurons) makes the network respond more weakly to weak input (low
depolarization while suppressing total feedback inhibitionalues ofA) but more strongly to strong input (high valuesAjt
The analytic framework presented here provides a possible
explanation of this paradox. Starting wiky. 1, we can ana- excitatory neuron#\. For values ofA’ that cause spontaneous
lyze the effect of depolarization of inhibitory interneurons bgpiking of the interneurons this requires an increased amount of
representing it as a direct depolarizing afferent input to inteafferent inputA to get some response in the excitatory popu-
neuronsA', yielding the following equilibrium state lation. Thus, although there is no change in the threshold value
0, the functional threshold is increased. As shown in Fig,. 3
(14 suppression ofW' will alter the slope of the relationship
between afferent inpua and the equilibrium stat®, resulting
in a steeper slope. As shown in FigC,3combination of direct
As shown in Fig. 3, increases in this direct depolarizatiordepolarization with suppression @' can result in a network
of interneuronsA’” will shift the equilibrium state of the net- that responds less to weak inputs but responds more strongly to
work downward across the full range of values for input to th&tronger afferent input. Thus these two effects could interact to

401

—a— Q(A'=0)
—— Q(A'=.02)

30

20 —a— Q(A=1)
—— Q(A'=.09)
— % Q(A=.08)

—f— Q(A'=.08)

Equilibrium state Q

Equilibrium state Q
°. 8. 8.8 8
HHI

80

60

40 - —a— Q(A'=0)

Equilibrium state Q

I —A'H/m" — Hgl + HO
_ n ff hLg
HW’

’
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make the spontaneous and background activity of the network Insufficient suppression
weaker, while enhancing the response to strong afferent input. NI
of inhibition

101

- ouwI],

- ouwIy,

- SuwI]J,

Computational modeling 1
As described inveTHops, the effect of cholinergic modula- ' ' ' ' ' #1
tion of inhibitory synaptic potentials was also tested in a . .
computational model of associative memory function. In this .
model, the storage of highly overlapping input patterns was
analyzed with different levels of cholinergic modulation of ' ' ' ' ' #2
synaptic transmission. This gives a notion of how cholinergic
modulation affects the overall function of the network. The ' : ' ’ '
model shows that cholinergic suppression of feedback inhibi-
tion is necessary for effective function, whereas the cholinergic
suppression of feedforward inhibition does not have a strong
role in ensuring effective function. In fact, previous simula-
tions of associative memory function used selective cholinergic
suppression of feedback but not feedforward inhibition (Has-
selmo et al. 1995), although the full range of parameter values
was not previously explored.
Figure 4 demonstrates the basic function of the network for
different values of cholinergic modulation of feedback inhibi-
tion H. Each section of the figure shows the activity in a
network of 10 excitatory neurons and 1 inhibitory neuron
during sequential presentation of different patterns of input
(1010010010 and 0101010010). Pattern number one is first 1
presented, followed by a degraded version of that input pattern.
Then a second pattern that overlaps with the first pattern is . ' .
presented, followed by a degraded version of that second
pattern. For each pattern, the activity of the network is shown
during a number of time steps. The width of black lines . .
represents the activity of individual neurons within the net-
work. For insufficient cholinergic suppression of inhibitory .... .
feedback ¢, = 0.6), inhibition is too strong in the network,
and the degraded patterns evoke activity in only two of the . . . deg #2
normal four neurons. For excessive cholinergic suppression of .'..
inhibitory feedback ¢, = 1.0), inhibition is insufficient, and ) .
there is severe interference between highly overlapping stored Excessive suppression
patterns. This'results from the fact that some inhibition is of inhibition
necessary during learning to prevent interference in the net- o o o
work (Hasselmo 1993). Appropriate levels of the cholinergiqf"?' 4. Associative memory function in the network with different levels of
. S . cholinergic suppression of feedback inhibitibh Each section of the figure
s:uppress!on Pf inhibitory feedb{iCkﬂg = 0.8) provides effec- shows the activity across time (plotted vertically) in a network of 10 excitatory
tive function in the model. In this case, the network respondsits (1-10 graphed horizontally, each representing a population of neurons)
to the degraded version of the input patterns with the fudhd 1 inhibitory unit () representing the inhibitory population during sequen-
learned version of those input patterns. tial presenta_tion of differe_nt patterns of inp_ut. For each pattern, the activit_y of
the network is shown during a number of time steps. The width of black lines
represents the activity of individual units within the network. Pattern number
Suppression of feedback inhibitory transmission (H) and 1 s first presented (#1), followed by a degraded version of that input pattern
feedforward inhibition (H) (deg #1). A second pattern that overlaps with the first pattern is then presented
(#2), followed by a degraded version of that second pattern (deg #2). Note that,
; ; ; s hilita e P insufficient cholinergic suppression of inhibitory feedback, inhibition is too
AS S.hO\.Nn In _Flg. oA _suppressmn of feedback Inhlbltorgzronginthe network, gnd thgpdegraded patterns )évoke activity in only 2 of the
transmission i) is more important for good memory perfor-yormal 4 units. For excessive cholinergic suppression of inhibitory feedback,
mance in the model than suppression of feedforward inhibiti@mibition is insufficient, and there is severe interference between highly
(Hg). Simulations were used to evaluate the memory perfaerlapping stored patterns.
mance of the network for a large number of different values of ) o
suppression of inhibitory transmission (the influence of inteplppression of feedforward inhibition does not as strongly
neurons on pyramidal cells) in combination with a large nunipfluence levels of performance. High levels of performance
ber of different values for suppression of feedforward inhibrould be obtained across all values for feedforward inhibition,
tion. As can be seen in the figure, the best performanatihough lower levels of suppression of feedback inhibitory
occurred with high levels of suppression of inhibitory trandransmission were necessary when there was stronger suppres-
mission H), ranging between 65 and 100% suppression (caion of feedforward inhibition. The results from these simula-
responding ta;,, = 0.35-0.0). As can be seen from the graphions suggest that for effective memory performance strong
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suppression of feedback inhibition is more necessary than A
suppression of feedforward inhibition.

—

ooy y 100
TR

(]
Q
Suppression of excitatory input to interneurons’\ahd g T3 UL TTR LU
feedforward inhibition (k) E I "‘ B RRRAR
- . . < “ ‘ ' L\ % suppression
As shown in Fig. B, the effect of suppression of excitatory & 0 ‘“ ‘ ‘ ' NN of excitatory input
input to interneurons is similar to the effect of suppression of ™ “““\““““"/ 2\ to interneur)(/)nsIEW’)
inhibitory transmission, with a somewhat broader range of \“?“{\:\:{:\k\“““’“, S\ )
good performance. Thus good performance can be obtained \““\\‘?g‘,}‘“\‘g‘,.““’t e,
with suppression of excitatory input to interneurowé ) set at \:‘:‘\:\:\:&:9:‘:-:‘:‘:&\%

30% (corresponding t@,, = =0.7). However, this lesser

. ! . . - o
requirement for suppression of excitatory input to interneurons BELLL R LR
ARNNN “‘“
LAWY
A 0 . 100
3 % suppression of
g 1 B feedback inhibition (H)
= : 0
S 0 7o\ 100 % suppression % 1
&‘3 e of feedforward =
e inhibition (Hg) S g
fnwwy = 0 “‘
S, D
Sy
1N W ‘ .
R ik % suppression
oY of excitatory input
heS to interneurons (W)
A ] T\
X LTS 0 - “"‘
CLLELL UL
0 % . ¢ 100 \\“\“\\““““‘"
o suppression of LY uadyl 0
B feedback inhibition (H) ™ s
0 . 100
§ 1 % suppression of
g feedback inhibition (H)
:é 100 % suppression FIG. 6. A: performance of the network across different values of the sup-
= 0 of feedforward pression of feedback inhibitory transmissiod;() and the suppression of
o excitatory input to inhibitory unitsW'). Performance is plotted on tlzeaxis,

inhibition (Hff) varying between 0 and 1. Percentage suppression of inhibitory transmission

between inhibitory units and excitatory units is plotted onstkexis, ranging

from 0 to 100%. Good performance occurs when suppression of either com-
ponent of feedback inhibition is stron®: performance of the network for
highly overlapping patterns. In this case, when suppression of feedback inhi-
bition becomes too strong, then interference between stored patterns causes a
greater decrease in performance, resulting in only a narrow range of effective

performance.
% suppression of 100 only occurs when the suppression of feedforward inhibition is
input to interneurons (W) quite strong. Thus for this parameter there is a greater interac-

Fic. 5. A: performance of the network across different values of the suﬁ'—on between ,the, Igyel of feedforward '“h'b't'Q” and the. level
pression of feedforward inhibitionH;) and the suppression of feedbackOf feedback inhibition, although good function can still be
inhibitory transmission H,,). Performance is plotted on theaxis, varying obtained at all values of feedforward inhibition.
between 0 and 1. Percentage suppression of inhibitory transmission between
inhibitory units and excitatory units is plotted on thexis, ranging from 0 to . . . .

100%. The best performance occurs when suppression of feedback inhibifedppression of excitatory input to interneurons’\anhd

is >65%. Percentage suppression of feedforward inhibition is plotted on thehibitory transmission (H)

y-axis, ranging from 0 to 100%. Good performance occurs for the full range of

values of suppression of feedforward inhibition, although less suppression ofFigure 6A shows the performance of the network for differ-
feedback inhibition is necessary when there is greater suppression of feedatt values of the cholinergic suppression of both components
ward inhibition.B: performance of the network across different values of thg¢ faedback inhibition, the suppression of excitatory input to

suppression of feedforward inhibitioi§) and the suppression of excitatory . t , d th . f inhibit { .
input to interneurons\’). Percentage suppression of connections from excititerneurons\\') and the suppression of inhibitory transmis-

atory neurons to interneurons is plotted onxkexis, ranging from 0 to 100%. Sion from interneurons to excitatory neurons).(As can be
Note that the best performance occurs when suppression of excitatory inpus@en in the figure, effective performance depends on strong
interneurons is>30%. Percentage suppression of feedforward inhibition igygdulation of feedback inhibition, but effective function is
plotted on they-axis, ranging from 0 to 100%. Good performance occurs fo : : - : :

the full range of values of suppression of feedforward inhibition, although Ie%?tamed In t_he model with SUppI’ESSIOI’_I Of. e_lt_her componer_1t of
suppression of input to inhibitory units is necessary when there is greatiS modulation because the feedback inhibition can be entirely
suppression of feedforward inhibition. shut down by either type of suppression. Thus with strong
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suppression of excitatory input to interneurons no suppression A

of inhibitory transmission is necessary, and with strong sup- -76 mV i) resting potential
pression of inhibitory transmission no suppression of excita- -~
tory input is necessary. Intermediate levels of suppression can
provide good performance if they are combined, but this re-
quires>50% suppression of both parameters. Thus, although
decreases in excitatory feedback can be more easily compen-
sated for by suppression of excitatory input to interneurons ﬂ
(W), the actual associative memory function of the network
can be aided by suppression of either component of feedback
inhibition. When network function was tested with highly
overlapping patterns, such as those illustrated in Fig. 4, the 3mV
range of effective function was more narrow. As shown in Fig.

6B, for low values of suppression of inhibition the performance

is low because of insufficient learning of the stored patterns, B
whereas for high levels of suppression of inhibition the per-
formance is low because of interference between the stored
patterns. This demonstrates that effective function is only
obtained when modulation of feedback excitation is associated
with modulation of feedback inhibition with very specific "I
relative values.

-71 mV ii) depolarized potential
-68 mV iii) depolarized potential

50 msec

depolarized potential

Carbachol

Control
3 mV
EXPERIMENTAL DATA
Cholinergic modulation of inhibitory synaptic potentials 50 msec
The resting membrane potential for the pyramidal neurons C resting potential

was typically approximately-72 mV (72.35%= 4.1,n = 40).

At this resting membrane potential IPSPs were not always
prominent, and the cells were depolarized by injection of a
constant DC current to help observation of the inhibitory
synaptic potentials. Inhibitory potentials obtained at different
membrane potentials during stimulation of layer Ib are shown

Control

Carbachol

in Fig. 7A. Depolarization of the neuron membrane potential

allowed observation of the early and late components of the

IPSPs, as can be seen in Figh. Laminar differences in the 3 mV
components of the IPSPs were observed, with the early ClI m
component being more prominent during the stimulation of the 50 msec

association fiber layer (Iayer Ib)’ whereas the late componengle_ 7. A:intracellular excitatory and inhibitory synaptic potentials evoked

was Obser\,/ed, d_uring stimul'ation of bmh the layers'_ AS Shovw stimulating the association fiber layer (layer Ib). Responses are at resting
in Fig. 9A, inhibitory synaptic potentials elicited during stim-membrane potential and at different depolarized membrane potentials induced
ulation of the afferent fiber layer (layer la) rarely evoked by current injection. Both the slow and fast components of the inhibitory
prominent eany inhibitory component. postsynaptic potentials (IPSPs) can be seen in these recordings. The early Cl
o ; mponent of the IPSP is more apparent at depolarized pote®i@fects of
lPS.PS Were more .eaS”y isolated by pharmacologica th-applied carbachol exposure are compared in the superimposed traces at
blocking the EPSPs with-APV and CNQX as shown for Ib gepolarized potentials and indicate a suppression of both the fast and slow
stimulation in Fig. & and for la stimulation in Fig. 94 andB. components of IPSP by the cholinergic agor@tperfusion of carbachol also
This blockade reduced the peak amplitude of the excitat pressed the excitatory postsynaptic potentials (EPSPs) recorded during
component of potentials by 71:4 7.98% @ = 6) for afferent sfimulation of association/intrinsic fibers in layer Ib as compared in the
layer stimulation and 76 9.8% f = 5) for asociation fiber °Veraid traces at resting membrane potential.
stimulation. highly statistically significant® < 0.0007). After washing the
Perfusion of the cholinergic agonist carbachol in the sliaearbachol out of the slice chamber, the IPSP amplitudes recov-
chamber caused a significant suppression of inhibitory synapgied to~60% of their control value. This partial recovery may
potentials elicited by stimulation of association/intrinsic fiberise due to insufficient wash period in some slices because wash
in layer Ib, as shown in FigsBrand 8,A andB. As can be seen takes>45 min. Experiments with pharmacological blockade of
in these figures, carbachol caused suppression of both the eaxgitatory currents further confirmed this evidence for suppres-
and late components of the inhibitory synaptic potential. Thebon of inhibitory currents by carbachol. After postsynaptic
strong suppression of the fast IPSP component made quantiieckade of excitatory potentials, the decrease in the late
tive measurements difficult. Measurement of the slow inhibévoked Ib inhibitory potentials was found to be 61%751.7%
tory synaptic potentials(= 14) recorded with sharp electrode(n = 5). The early evoked Ib inhibitory potentials showed what
techniques revealed that layer Ib inhibitory synaptic potentiedppeared to be total suppression in carbachol. In carbachol
were reduced on average by 7%42.4%. This effect was there was no longer a significant difference from baseline at the
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A tials elicited by stimulation in the two layers is summarized in
Fig. 10. These results are consistent with the computational
model demonstrating that suppression of excitatory transmis-
sion between pyramidal cells (layer Ib) can be more effectively
offset by suppression of feedback inhibition (layer Ib) than by
suppression of feedforward inhibition (layer la).

-— Control Cholinergic effects on synaptic inhibition were also exam-
APV+CNQX+CCh ined by holding membrane potential-aB0 mV in the voltage-
e clamp mode. FigureBshows the decrease in the fast and slow
b m IPSCs after exposure to carbachol in the association layer
T (these currents are shown for different holding potentials in
LmV Fig. 8C). An example of the smaller decrease in layer la IPSCs

is seen in Fig. 9A andB, after the blockade of the EPSCs with

100 ms b-APV and CNQX.

B Control

Cholinergic effect on excitatory synaptic potentials

The effect of carbachol on the height of excitatory synaptic
potentials was also analyzed. Carbachol caused a substantial
decrease in the height of excitatory synaptic potentials elicited
by stimulation of association/intrinsic fibers in layer b while
having a much weaker effect on the height of excitatory syn-

30 pAL A

30 msec

e

Carbachol

Control

lmVL

Fic. 8. A: effect of cholinergic modulation on pharmacologically isolated 100 msec
IPSPs evoked by layer Ib stimulation. The EPSP present in the control
condition trace (Control) is greatly decreased by bath applicatiar(-6}-2- B
amino-5-phosphonovaleric acid and 6-cyano-7-nitroauinoxaline-2,3-dione APV+CNQX
(APV + CNQX). During perfusion of carbachol (APW CNQX + CCh),
both the fast and slow components of the IPSP are suppreBselolinergic
suppression was also demonstrated in the voltage-clamp mode. Stimulation of
layer Ib when the cell was held at60 mV elicited a fast EPSC followed by
fast and slow IPSCs (Control). Perfusion of the slice chamber with carbachol
suppressed both IPSC components (Carbackbl)PSCs evoked at holding

20pA

APV+CNQX+Carbachol

potentials between-70 and —55 mV show the fast and slow inhibitory
components peaking between 20-30 and 130-140 ms after the stimulus was
applied. 20msec

time point of the early component of the inhibitory potential F'¢: 9._ Intracellular excitatory and inhibitory synaptic potentials evoke_d by
P y P y P stimulating the afferent fiber layer (layer la). The fast IPSP component is not

(see Fig. 8\)-_ . prominent as in the case of inhibitory synaptic potential evoked by layer Ib
In comparison, perfusion of carbachol had a weaker effeginulation.A: cholinergic effect on isolated IPSP at rest in the afferent layers

on inhibitory synaptic potentials elicited by stimulation ofs shown by the comparison in the overlapping the traces. The excitatory

; ; ; ; synaptic potential observed in control conditions (Control) is greatly reduced
afferent fibers in Iayer la, as shown in Figh Measurement of by perfusion of glutamatergic receptor antagonists (CNQX\PV). Carba-

the change 'n_ I_PSPS Ina numbe_r of SI_ICBs@( 16) revealed chol does not dramatically alter the remaining synaptic potentials, illustrating
that IPSPs elicited by layer la stimulation were decreased @&t carbachol-induced suppression of both the inhibitory and excitatory syn-
average by 18.5- 3.2%. This effect was just statisticallyaptic components is less than that seen with the association layer stimulation.
significant P < 0.05). This decrease in the IPSPs caused @icholin?rgic supé)res_?rilonlgfsge phacrimgic_ologically isolatedePISPs in the_z

: age-clamp mode. The recorded in the presence of glutamatergic
carbachol wa; four.]d to be present in layer 1a Wh.en IPSPs Wé %agonists alone (CNQX APV) is similar to that observed with the addition
pharmacologically isolated (19:8 8,n = 6) (see Fig. 9Aand  of carbachol (CNQX+ APV + CCh). Carbachol-induced suppression is not
B). The mean effect of carbachol on inhibitory synaptic poteas significant as that in layer Ib.
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% of control on carbachol exposure
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% decrease in layer Ia and Ib evoked
EPSPs and IPSPs

100

80 -

60

40

20

Ib EPSP  Ib-IPSP

storage of new information (Hasselmo et al. 1992). Therefore,
we were interested to directly test whether perfusion of the
cholinergic agonist carbachol makes it easier for afferent input
(layer la stimulation) to cause pyramidal cells to spike while
making it more difficult for intrinsic input (layer Ib stimula-
tion) to cause pyramidal cells to spike. To test this effect, we
obtained strength-duration threshold curves for both layers in
control conditions and during cholinergic modulation.
Perfusion of carbachol caused pyramidal neurons to generate
action potentials more easily in response to stimulation of
afferent input (layer la) than in response to stimulation of
intrinsic input (layer Ib). Figure 12 shows the threshold stim-
ulus strength-duration curves for a pyramidal neuron during la
and Ib orthodromic stimulation. Carbachol exposure decreased
the firing threshold for stimulation of the afferent fiber layer

Ia-EPSP  Ta-IPSP (layer la) in 7 of 10 cells, whereas threshold increased in 3
Fic. 10. Histogram comparing the percent suppression of IPSP amplitugells. For the averages and percent changes presented here, the
(shaded bars) and EPSP amplitudes (solid bars) in the intrinsic/associatitrength of the stimulus at 0.5 ms was used for the calculations.
fiber layer (layer Ib) and in the afferent layer (layer la). The suppression q‘fhe average decrease in threshold for |ayer la stimulation
both IPSPs and EPSPs is greater in the association layer than the afferent layer. the 10 I 282 520 | trast. the firi
Also, in the intrinsic/association fiber layer, suppression of inhibitory pote 1Cross he cells was .270. 1IN contrast, the Tirng

tials is greater than that of the excitatory potentials. threshold for stimulation of the intrinsic fiber layer (layer Ib)

aptic potentials elicited in layer la. This effect was demon-
strated previously with both intracellular and extracellular re-
cording (Hasselmo and Bower 1992). Comparison of EPSPs
was documented at resting membrane potentials. The effect on
layer Ib EPSPs can be seen in FigC. Measurement of the
change in height of EPSPs elicited by layer Ib stimulation in a
number of slicesr{= 17) demonstrated that carbachol caused

a decrease in EPSP height by an average value of 54.1
6.08%. This effect was statistically significai® & 0.0001).
EPSPs recovered te 75% of their control value when carba-
chol was washed from the slice. There may be some interaction
between the decrease in the amplitude of EPSPs and the fast
component of the inhibitory potentials. However, across the - e B e e T I ]
population of individual cells, as seen in Fig.A,the amount -2 0 2 4 6 8 10 12 14
of decrease in layer Ib IPSPs did not seem to be directly related Difference in layer gfpigffe‘zﬁ{’,l)‘mde

to the EPSP decrease, suggesting that these measurements

show effects on two different physiological components of 3 B
transmission, not just an increase in EPSP potentials because of
decreased inhibitory currents. As shown in Fig. 10, the mean
effect on inhibitory synaptic potentials elicited by layer Ib
stimulation was stronger than the mean effect on excitatory
synaptic potentials elicited by layer Ib stimulation.

As demonstrated in a set of previous intracellular recordings,
the decrease in EPSPs elicited by stimulation of afferent fibers
(in layer la) was much smaller than the decrease in EPSPs
elicited by layer Ib stimulation. Across a number of slices<(

18), perfusion of carbachol caused a decrease with an average
value of 13.5% 7.78%. This was still statistically significant

(P < 0.03). As in the associational layer, there seemed no
obvious relation between the decrease in the afferent IPSPs and - 1 | i « 1 I T \

EPSPs, as seen in Fig.B.1 -2 0 2 4 6 8 10 12 14
Difference in layer Ia EPSP amplitude
on carbachol exposure (mV)

3 A

<o — I\‘l
| |

Difference in layer Ib IPSP amplitude
on carbachol exposure (mV)
_
1

Difference in layer Ia IPSP amplitude
on carbachol exposure (mV)

Orthodromic firing threshold decreases in afferent layer and

increases in the association |ayer Fic. 11. Relation between the suppression of IPSP and EPSP amplitudes

caused by carbachol exposure; the amount of decrease in the excitatory
The functional advantage of having stronger suppressionadiffp”mde of each neuron is plotted vs. the corresponding decrease in the

. . e - ~inhibitory amplitude of the same neurofx. across the population of neurons,
excitatory synaptic transmission in Iayer Ib compared Wltﬁ) obvious relation was noted in the carbachol-induced decrease in excitatory

layer la 'iS that it provides a meChf_inism by WhiC.h cholinergghd inhibitory synaptic potentials evoked by stimulating layeBtbdecreases
modulation could allow afferent input to dominate duringn layer la-evoked IPSPs and EPSPs also do not appear to be related.
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synaptic potentials evoked by stimulation of layer la. IPSPs

y ~  Orthodromic threshold stimulation in layer Ib. and IPSCs evoked by stimulation of layer Ib were strongly
X suppressed during perfusion of the cholinergic agonist carba-
6 -0 chol, whereas IPSPs and IPSCs evoked by stimulation of layer
i la were less strongly suppressed. Although cholinergic sup-
< 5 4 pression of evoked IPSPs and IPSCs has been shown in the
§ ‘\ hippocampus (Haas 1982; Pitler and Alger 1992), this effect
ﬁ 40k was not demonstrated in piriform cortex nor was laminar
g \ selectivity of the suppression described previously.
s 3 N
) L Implications of the model
R Carbachol
. L TeS——Contrgl The computational modeling presented here demonstrates the

requirement that activation of cholinergic receptors should have a
stronger effect on intrinsic inhibitory potentials than those acti-
vated by stimulation of the afferent fibers. This prediction arose
from the combination of previous physiological data showing

greater cholinergic suppression of excitatory synaptic transmis-
sion in layer Ib than in layer la (Hasselmo and Bower 1992) and
\ assumptions about the function of excitatory intrinsic connections
15 L N within the piriform cortex. Previous modeling demonstrated that
’ \ cholinergic suppression of excitatory intrinsic connections may be
\\ very important for preventing retrieval of previously stored rep-

resentations from interfering with the storage of new representa-

X N ¢ Control tions (Hasselmo and Schnell 1994; Hasselmo et al. 1992, 1995).
Given the possible functional necessity of the suppression of

excitatory transmission, the network may then need to compen-

S . Carbachol sate for the changes in excitatory transmission through modulation

of inhibitory effects.

In our mathematical analysis, we utilized equations for the

0 ' ‘ ' ' ' ' ’ J interaction of excitatory and inhibitory neurons such as those
0 05 1 15 2 25 3 35 4 analyzed in previous work (Hasselmo et al. 1995; Pinto et al.

Duration in msec 1996; Wilson and Cowan 1972, 1973). In contrast to many ab-

Fic. 12.  Strength-duration curves from a neuron showing the difference gtract mathematical representations of cortical function, these

the orthodromic firing threshold before and after the introduction of carbachelquations have the advantage of explicitly representing separate

These plots show the minimum (threshold) stimulus current strength (in meﬁ?pulations of excitatory and inhibitory neurons, allowing direct
necessary to evoke an intracellularly recorded action potential for differen

durations of stimulation (in ms). ——: minimum values that evoked actioﬁnalySiS O,f mOdu,Iatory effects on inhibition. This will b_e useful
potentials in control conditions (before perfusiony;- : threshold values that for analyzing a wide range of modulatory effects, allowing func-
evoked action potentials during perfusion of carbachokarbachol causes a tional interpretation of a range of specific effects on intrinsic
slight increase in the threshold for eliciting an action potential with stimulati roperties as well as synaptic excitation and inhibition within
in the association fiber (layer IbB: in contrast, carbachol causes a stron? : - .
decrease in the threshold for eliciting an action potential with stimulation in t eortlcal Strucwres' In_th_e mathematical analysis, we made the
afferent fiber layer (layer la). assumption that equilibrium states of the network should be ap-
proximately equal with and without cholinergic modulation. This
increased by an average 23:64.6% in six cells. This differ- would assist in associative memory function, allowing the net-
ential effect appeared despite the common postsynaptic deperk to have activity patterns of approximately equal amplitude
larization of membrane potential during perfusion of carbaluring both encoding and retrieval, aiding in the consistent pro-
chol, which alone should make neurons more responsive agssing of these patterns by subsequent structures. Some changes
both types of stimulation. In these experiments, carbachblactivity were noted during in vivo recording with cholinergic
depolarized the membrane potential by 682.53 mV fy = modulation (Beidenbach 1966; Metherate et al. 1990; Sillito and
15) and increased input resistance from 28.28.14 M() to Kemp 1983). However, those experimental data suggest that
36.7+ 4.03 MQ, an increase 0f-29.6+ 4.57%, o = 16). As neuronal activity is stronger during cholinergic modulation, which
demonstrated in previous studies (Barkai and Hasselmo 19949uld require that effects on inhibition should overcompensate
perfusion of carbachol also decreased the adaptation of pylei-the effects on excitatory transmission (although the cholinergic

0 0.5 1 1.5 2 25 3 3.5 4
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Orthodromic threshold stimulation in layer Ia.
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midal cells. depolarization of neurons and suppression of adaptation adapta-
tion can also contribute to this increased activity). The analysis
DISCUSSION presented here is qualitatively similar even if modulation of inhi-

bition overcompensates for the modulation of excitatory transmis-
The experimental data presented here concur with the sen.
guirement of the computational model that cholinergic modu- In addition to the prediction that modulation of feedforward
lation should more strongly suppress inhibitory synaptic p@hibition is less effective at compensating for reduced excita-
tentials evoked by stimulation of layer Ib than inhibitorytory feedback, the model suggests differences in the effective-
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ness of different components of feedback inhibition in constrongly decreased in the presence of carbachol (because of the
pensating for reduced excitatory feedback. The suppressiordwéct depolarization of pyramidal cell membrane potential),
inhibitory synaptic transmissio (i.e., release of GABA) can whereas the threshold for eliciting an action potential with intrin-
only partly compensate for suppression of excitatory transmsie fiber stimulation (layer Ib) is increased (because of the sup-
sion, whereas the suppression of excitatory input to inhibitopyession of excitatory intrinsic synaptic transmission). These re-
interneurond/V' (i.e., glutamatergic connections from pyramisults support the modeling proposal that cholinergic modulation
dal cells to interneurons) more effectively compensates fallows afferent input to dominate without greatly changing the net
reduction in excitatory feedback across a wider range of valetivity within the network.
ues. This suggests that the cholinergic suppression of inhibi-Whereas these models assume the importance of stable
tory synaptic potentials evoked by layer Ib stimulation may hettractor dynamics in the network, alternative interpretations
more dependent on reduced excitatory input to inhibitory imre possible. For example, one model of piriform cortex pro-
terneurons than on reduced release of the inhibitory transmitperses that sequential cycles of activity allow hierarchical clas-
GABA from interneurons. However, some aspects of our dasdication of odor information (Ambros-Ingerson et al. 1990;
suggest that the effect is not purely due to decreased excitat@manger et al. 1989). These models are not entirely inconsistent
input to interneurons, including) carbachol still suppressedwith the one presented here, in that the afferent connections in
inhibitory potentials elicited during pharmacological blockad#he model presented here could undergo self-organization to
of excitatory currents?) the effects on inhibitory potentials form categories such as those in the Ambros-Ingerson model.
often appeared sooner than the effect on excitatory potentidlae relative strength of inhibition and excitation is very im-
and3) our data show independence of effects on excitatory apdrtant for the function of that previous model as well. In
inhibitory potentials. Further experimental data will be necegarticular, strong excitatory feedback connections could inter-
sary to separately analyze cholinergic effects on excitatdigre with effective formation of categories; therefore it might
input to interneuronsW') and the release of GABA from be important to suppress feedback. At the same time, suppres-
interneurons i) in the piriform cortex. sion of inhibition would become important to allow sufficient
The network simulations of the piriform cortex allow analactivity to underlie formation of new categories. This is con-
ysis of the cholinergic modulation of inhibition in the moresistent with evidence that long-term potentiation occurs in the
specific functional framework of attractor dynamics and asspiiform cortex during cholinergic modulation (Hasselmo and
ciative memory function. This work continues previous worBarkai 1995; Patil et al. 1998) and in behavioral contexts
exploring the storage of patterns of activity in a network withequiring learning (Roman et al. 1987, 1993a,b).
separate populations of excitatory and inhibitory neurons (Has-Other functional interpretations of piriform cortex activity
selmo and Linster 1998b; Hasselmo et al. 1995, 1997). Tliave been developed. For example, the representation of odors
model draws on the assumption that the excitatory recurremas described in terms of limit cycles or chaotic attractors in
connections of the piriform cortex mediate associative memaomyodeling and electroencephalogram work by Freeman and
function, allowing storage of patterns of activity representingthers (Freeman 1975; Freeman et al. 1988; Liljenstrom and
odors, and retrieval of these patterns given incomplete pattétasselmo 1995; Liljenstrom and Wu 1995; Yao and Freeman
cues (Bower 1995; Haberly 1985; Haberly and Bower 1982990). These representations are considerably more complex
Hasselmo and Linster 1998a; Hasselmo et al. 1992; Wilson ahdn the fixed point attractors shown here, but similar princi-
Bower 1988). The distinct modeling of separate populations pfes apply. If a particular dynamical state must represent a
excitatory and inhibitory neurons used in the model presentpdrticular odor stimulus during two very different arousal
here allows detailed analysis of how modulation of inhibitiostates (with different levels of cholinergic modulation), each
could play a role in setting appropriate functional dynamics itholinergic effect on a parameter of cortical function must be
associative memory networks. The exploration of paramemympensated for such that the dynamical state has a consistent
values shown here in Figs. 5 and 6 demonstrates that str@mgl recognizable influence on other cortical regions. Other-
cholinergic suppression of feedback inhibition is necessary fwise, the reduced feedback excitation would cause a very
effective function, whereas effective function is obtained atdifferent dynamical pattern of activity for the same sensory
range of parameters of feedforward inhibition. In fact, previoustimulus during different modulatory states.
published versions of this simulation used selective suppres-The fixed point attractors used here do not differ dramati-
sion of feedback but not feedforward inhibition (Hasselmo eglly in their properties from limit cycle attractors used in other
al. 1995). Models of the olfactory bulb also demonstrated howodels, but limit cycle attractors or sequences of neuronal
modulatory effects on inhibition could play a role in settingctivity are probably a more realistic neuronal representation.
appropriate dynamics for separation and enhancement of otiare we focused on isolated storage and retrieval of single
responses (Linster and Hasselmo 1997). patterns, but the real network must deal with an ongoing
More abstract associative memory models assume networteraction with continuously changing olfactory input and
activity is clamped to the input pattern during learning (Amibehavioral contingencies. It is very likely that crosstemporal
1988). In this model, the internally regulated cholinergic suppreisteritem associations are stored and retrieved in this context.
sion of excitatory feedback combined with suppression of feelh fact, unit recording in piriform cortex during performance of
back inhibition allows the network to preferentially respond moran olfactory discrimination task demonstrates activity to mul-
to afferent input during encoding. In our experimental data, chtiple task components, not just odor sampling (Schoenbaum
linergic modulation also appears to make afferent input the pread Eichenbaum 1995). The compensation of overall activity
dominant influence on neuronal activity. As shown in theould still be relevant to storage of sequences, but there may
strength-duration curves in Fig. 12, the threshold for eliciting adre additional dynamical properties of these influences that will
action potential with afferent fiber stimulation (layer la) idecome clearer with more detailed functional models.
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Relation to previous physiological data which was demonstrated with intracellular recording from in-
terneurons in the hippocampus (McQuiston and Madison 1996;
Our experimental data show that inhibitory synaptic potentigfgeece and Schwartzkroin 1991). This effect appears somewhat
evoked by stimulation of the piriform cortex are suppressed Ipyradoxical with relation to the observed suppression of
cholinergic modulation in a manner similar to the cholinergievoked inhibitory potentials but may be due to a requirement
suppression of evoked inhibitory synaptic potentials in the hifsr lower tonic background activity, with greater response to
pocampus (Haas 1982; Pitler and Alger 1992). The modulationggecific evoked patterns of activity. This could contribute to a
inhibition could be important for offsetting a loss of excitatonchange in “signal-to-noise ratio” similar to that proposed for
transmission in the hippocampus as well because cholinergiftects of noradrenergic modulation. As shown in Fig. 3,
modulation has been shown to suppress excitatory synaptic gepolarized interneurons will result in an overall increase of
tentials in region CA3 and region CAl of the hippocampushibitory tone, decreasing background activity, whereas sup-
(Hasselmo and Schnell 1994; Hasselmo et al. 1995; Hounsgaaression of excitatory input to interneurons will results in less
1978; Valentino and Dingledine 1981). Most of the cholinergifeedback inhibition during activity elicited by afferent input.
effects on inhibitory potentials and currents shown here could be
due to e'thgr a d?‘:r_ea}se in the e>.<C|t'atory syr_1apt|c input to Inter"I'he authors thank Dr. Donald Rannie for help with voltage-clamp record-
neurons or in the inhibitory transmission from interneurons. Howrys.
ever, this study also shows that evoked inhibitory synaptic potenThis research was supported by National Institute of Mental Health Grant
tials and currents recorded in the presence of CNQX and APV & MH-52732. _
suppressed during perfusion of carbachol. This is consistent V\ﬂ}rlﬁfgrrs‘fgs o rgﬁ;%i;eg‘igisgz ,'\goiio??ﬁirgg’z?;pt' of Psychology, Boston
previous studies in hippocampus showing suppression of mono-
synaptic evoked inhibitory currents (Pitler and Alger 1992) armgkceived 10 September 1997; accepted in final form 6 January 1999.
decreased frequency of TTX-insensitive spontaneous inhibitory
currents (Behrends and ten Bruggencate 1993). Suppression of
inhibitory transmission was also demonstrated in cultures of ndtFERENCES
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