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Patil, Madhvi M. and Michael E. Hasselmo.Modulation of inhib-
itory synaptic potentials in the piriform cortex.J. Neurophysiol.81:
2103–2118, 1999. Intracellular recordings from pyramidal neurons in
brain slice preparations of the piriform cortex were used to test results
from a computational model about the effects of cholinergic agonists
on inhibitory synaptic potentials induced by stimulation of afferent
fibers in layer Ia and association/intrinsic fibers in layer Ib. A simple
model of piriform cortex as an associative memory was used to
analyze how suppression of inhibitory synaptic transmission influ-
enced performance of the network. Levels of suppression of excitatory
synaptic transmission were set at levels determined in previous ex-
perimental work. Levels of suppression of inhibitory synaptic trans-
mission were then systematically varied within the model. This mod-
eling work demonstrated that suppression of inhibitory synaptic
transmission in layer Ib should be stronger than suppression of inhib-
itory synaptic transmission in layer Ia to keep activity levels high
enough for effective storage. Experimental data showed that perfusion
of the cholinergic agonist carbachol caused a significant suppression
of inhibitory postsynaptic potentials (IPSPs) in the pyramidal neurons
that were induced by stimulation of layer Ib, with a weaker effect on
IPSPs induced by stimulation of layer Ia. As previously described,
carbachol also selectively suppressed excitatory postsynaptic poten-
tials (EPSPs) elicited by intrinsic but not afferent fiber stimulation.
The decrease in amplitude of IPSPs induced by layer Ib stimulation
did not appear to be directly related to the decrease in EPSP amplitude
induced by layer Ib stimulation. The stimulation necessary to induce
neuronal firing with layer Ia stimulation was reduced in the presence
of carbachol, whereas that necessary to induce neuronal firing with
layer Ib stimulation was increased, despite the depolarization of
resting membrane potential. Thus physiological data on cholinergic
modulation of inhibitory synaptic potentials in the piriform cortex is
compatible with the functional requirements determined from com-
putational models of piriform cortex associative memory function.

I N T R O D U C T I O N

The dynamical interactions of cortical neurons can be altered
by a range of modulatory substances, including ACh (for
review see Hasselmo 1995). ACh has been shown to suppress
excitatory synaptic transmission in the piriform cortex (Has-
selmo and Bower 1992; Linster et al. 1999; Williams and
Constanti 1988), in the hippocampus (Hasselmo et al. 1995;
Valentino and Dingledine 1981; Yamamoto and Kawai 1967),
and in the neocortex (Hasselmo and Cekic 1996). This effect
shows laminar selectivity, with stronger suppression of excit-
atory synaptic transmission at synapses between pyramidal
cells within a region and weaker suppression at synapses
arising from other areas (Hasselmo and Bower 1992; Hasselmo
and Schnell 1994). This selectivity may be of particular func-
tional relevance, as demonstrated in computational models of
cortical function (Hasselmo and Bower 1993; Hasselmo et al.
1992). In the presence of cholinergic modulation, suppression

of intrinsic synaptic transmission allows afferent sensory input
to more strongly drive the activity within cortical network
models, setting appropriate dynamics for attention to the ex-
ternal environment and storage of new information. Cholin-
ergic modulation has been shown to enhance long-term poten-
tiation of synaptic potentials in the piriform cortex (Hasselmo
and Barkai 1995; Patil et al. 1998), further setting the appro-
priate dynamics for storage of new information.

Cholinergic agonists have also been shown to suppress
evoked inhibitory synaptic potentials (Haas 1982; Muller and
Misgeld 1986; Pitler and Alger 1992; Valentino and Dingle-
dine 1981). This has been shown in brain slice preparations of
the hippocampal formation and cultures of neocortex but was
not previously analyzed in piriform cortex. Computational models
of cortical function can be used to analyze the functional signif-
icance of the cholinergic suppression of inhibitory synaptic trans-
mission. As described here, computational models of associative
memory function in the piriform cortex generated the prediction
that cholinergic modulation should cause greater suppression of
inhibitory synaptic potentials elicited by stimulation of intrinsic
and association fibers in layer Ib than inhibitory synaptic poten-
tials elicited by stimulation of afferent fibers in layer Ia. This
prediction was tested with physiological recording of inhibitory
synaptic potentials in brain slice preparations of the piriform
cortex. Experimental work investigated whether the cholinergic
modulation of inhibitory synaptic potentials observed in hip-
pocampus appears in the piriform cortex as well and whether this
modulation shows the laminar selectivity suggested by the com-
putational modeling work.

M E T H O D S

Mathematical analysis of piriform cortex modeling

ACh simultaneously alters a number of different parameters of
cortical neurons. A simple mathematical model of cortical circuits
helps in understanding the interaction of these modulatory effects. In
this model, we assumed that the maximum steady-state activity of
excitatory neurons should remain about the same during changes in
ACh levels. The pattern of responsiveness of individual neurons does
change during cholinergic modulation (Metherate et al. 1990; Sillito
and Kemp 1983), but physiologically realistic changes in cholinergic
modulation do not cause a dramatic change in overall activity such as
a total absence of activity. On a functional level, modulatory changes
would be considerably more useful if they would change the pattern of
neuronal response rather than completely shut off the network or cause it
to become overactive. Thus we assume that the level of activity should
remain within a stable range. Here we evaluated how much modulatory
change in inhibitory synaptic transmission would be necessary to offset
the modulation of excitatory synaptic transmission previously described
in the piriform cortex (Hasselmo and Bower 1992; Linster et al. 1999).

This model focuses on the interaction of populations of excitatory
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units and a population of inhibitory units mediating feedforward and
feedback inhibition. This representation has a considerable advantage
over other neural network models in which excitatory units and
inhibitory units are not represented separately (Amit 1988). Dynamics
of the mathematical representation used here were first studied by
Wilson and Cowan (1972, 1973). This type of representation was used
to study the dynamics of cortical networks including piriform cortex
(Hasselmo and Linster 1998a,b; Hasselmo et al. 1997), hippocampus
(Hasselmo et al. 1995; Tsodyks et al. 1997), somatosensory cortex
(Pinto et al. 1996), and visual cortex (Hansel and Sompolinsky 1998).
These models leave out many of the details incorporated in compart-
mental biophysical simulations (e.g., Barkai and Hasselmo 1994;
Hasselmo and Barkai 1995), such as the Hodgkin-Huxley current
underlying spike generation, and the passive properties of dendritic
trees. Thus they are somewhat less constrained with regard to the
intrinsic properties of individual neurons. However, the network dy-
namics of these simplified representations show many qualitative
features in common with spiking network models, including attractor
dynamics (Fransen and Lansner 1995; Hansel and Sompolinsky 1998;
Pinto et al. 1996), and the results of the analysis presented here should
apply to network dynamics in a biophysical simulation.

In these models the firing rate of a population of neurons is
simplified into a continuous firing rate variable, which depends on the
average membrane potential of the population. The firing of a spike in
an individual neuron is an all-or-nothing phenomenon, but the spiking
rate within a population can be seen as a continuous variable, which
is zero when the average membrane potential of the population is well
below threshold, small when the average membrane potential is just
above threshold, and large when the average membrane depolarization
is large. In the computational simulations described in the next sec-
tion, we split the population of excitatory neurons into separate
populations representing components of different odor patterns while
simulating just one population of inhibitory neurons. For the mathe-
matical analysis described in this section, we focus on the average
membrane potential (represented by the variablea) of one subpopu-
lation of excitatory neurons and the average membrane potential
(represented by the variableh) of the subpopulation of inhibitory
neurons that interacts with these excitatory neurons. (These averages
correspond to the membrane potential determined by synaptic input
and exclude the membrane potential during generation of spikes).

Changes in the average membrane potential of the population of
excitatory and inhibitory neurons are described by the following
equations

da/dt5 A 2 ha 1 Wf[a 2 u]1 2 Hf[h 2 u]1

dh/dt5 A9 2 h9h 1 W9f[a 2 u]1 (1)

These equations show the change in average membrane potential
(a) of the excitatory population and average membrane potential (h) of
the inhibitory population (in units that correspond to mV from resting
potential). The constanth multiplied bya represents the passive decay
of membrane potential proportional to the difference from resting
potential. This constant has units of milliseconds and is the inverse of
the average membrane time constant. In biophysical simulations, the
membrane time constant is calculated as the product of membrane
resistance and capacitance. The summed firing rate of the excitatory
population (in spikes/ms) is computed by a threshold linear function
[a 2 u]1 of average membrane potential scaled by a summation factor
f. We use a sum of firing rates, not the average firing rate (which would
be ,1 spike/ms), because each neuron receives a large number of
synaptic inputs that are simplified to one input here. These firing rates are
zero when membrane potential is,u (u 5 8 mV in the accompanying
simulations). Firing rates take the valuef(a 2 u) for values.u. Piriform
cortex pyramidal cells do not normally fire above 100 Hz, and within this
range of firing theirf-I curve has a threshold linear shape (Barkai and
Hasselmo 1994). For the analysis presented here we setf 5 1; therefore
it will not appear in any subsequent equations. The same type of threshold

linear function is used for computing the summed firing rate of the
inhibitory population. The constantA represents the afferent input to a
population of neurons during a period of time. This constant represents
both the summed firing rate across a population of mitral cells in the
olfactory bulb in spikes/ms as well as the process of synaptic transmission
at afferent fiber synapses in layer Ia of piriform cortex (in mV/spike). The
product of these values has the necessary value of spikes/ms3 mV/
spike5 mV/ms.

In these equations,W represents the average strength of excitatory
synapses arising from cortical pyramidal cells and synapsing on other
excitatory neurons. If neuronal output is in spikes/ms, then synaptic
strength reflects the change in membrane voltage per spike (mV/
spike) because of the membrane conductance change caused by syn-
aptic transmission.H represents the average strength of inhibitory
synapses arising from cortical inhibitory interneurons and synapsing
on pyramidal cells.W9 represents the average strength of excitatory
synapses arising from cortical pyramidal cells and synapsing on
inhibitory interneurons. To keep the equations simpler, we left out
inhibitory synapses on inhibitory interneurons, which were included
in previous work. The simplified system is summarized in Fig. 1A.

The equilibrium states of networks of this type were evaluated in a
previous article (Hasselmo et al. 1995). Here we use those equilibrium
states to investigate the relationship between modulation of excitatory
synaptic transmission and modulation of inhibitory synaptic transmis-
sion. Previous experimental work has shown the magnitude of cho-
linergic suppression of excitatory synaptic potentials in the afferent
and intrinsic fiber layers of the piriform cortex (Hasselmo and Bower
1992). The cholinergic suppression of excitatory synaptic transmis-
sion was modeled in the equations by rescaling the excitatory intrinsic
connectionsW proportional to a unitless suppression variablecw and
scaling the excitatory connections from pyramidal cells to interneu-
ronsW9 proportional to a suppression variablecw9 Given these values,
we evaluated how feedforward and feedback inhibition should change
to keep the equilibrium activity of the network in the same range of
values and for the network to remain stable. Modulation of feedfor-
ward inhibitionHff was represented by the variablecff , and modula-
tion of feedback inhibitionH was represented by the variablecfb (all
suppression variables range between 0 and 1.0). As described in the
RESULTS, modulation of excitatory synaptic transmission of the sort
described previously (Hasselmo and Bower 1992) was more effec-
tively offset by modulation of feedback inhibitory parameters than by
modulation of feedforward inhibition.

Computational modeling

The functional significance of different levels of the cholinergic
modulation of inhibitory synaptic potentials was analyzed in a sim-
plified computational model of the piriform cortex, showing that
selective cholinergic suppression of feedback but not feedforward
inhibition is necessary for effective function. This computational
model used the same general functional framework as the mathemat-
ical analysis described previously, but instead of a single subpopula-
tion of excitatory neurons the computational model split the popula-
tion of excitatory neurons into several excitatory units representing
separate subpopulations of excitatory neurons responding differen-
tially to different components of different odor patterns. Many aspects
of cholinergic modulation were analyzed in previous compartmental
biophysical simulations of the piriform cortex with spiking neurons
(Barkai et al. 1994; Hasselmo and Barkai 1995), but this computa-
tional model used the simplified representation of average firing rate
described previously (Hasselmo et al. 1995; Pinto et al. 1996; Wilson
and Cowan 1972). This simplified representation was used previously
to analyze cholinergic modulation in region CA3 of the hippocampus.
In fact, that previous simulation used selective cholinergic suppres-
sion of feedback but not feedforward inhibition, although the full
range of parameter values was not explored. In the computational
simulations described in the next section, we split the population of
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excitatory neurons into separate populations representing components
of different odor patterns while simulating just one population of
inhibitory neurons.

In this computational model of cortical memory function, individ-
ual odors are represented as different patterns of afferent input acti-
vating specific subpopulations of excitatory neurons (Hasselmo 1995;
Hasselmo and Linster 1998a; Hasselmo et al. 1992, 1995; Linster and
Hasselmo, 1997). The afferent patterns representing individual odors are
stored as self-sustained equilibrium states (attractor states) in the network,
with a particular pattern of active neurons within the network. Once an
odor is stored as an attractor state, input that resembles that odor attractor
state will put the network into the same attractor state. Thus individual
differences in neuronal activity (caused by changes in odor concentration
or background odors) can be ignored in favor of deciding on a specific
odor. Within this general framework, ACh can be seen as altering the
sensitivity to external features of the stimulus relative to the internal
stored representation. As ACh levels are increased in the network, the
relative influence of afferent input increases, allowing greater sensitivity
to variations in the external input.

The network used the activation dynamics described byEq. 2 (as
difference equations). These activation dynamics differ fromEq. 1 to
include reversal potentials for excitatory and inhibitory synaptic inputs

Dai 5 Ai 2 hai 1 (EAMPA 2 ai) (
j

Wij [aj 2 ua]1

2 (EGABAA
2 ai) (

l

Hil [hl 2 uh]1

Dhk 5 A9k 2 hhk 1 (EAMPA 2 hk) (
j

W9kj[aj 2 ua]1

2 (EGABAA
2 hk) (

l

H9kl[hl 2 uh]1 (2)

Reversal potentials for membrane currents were expressed relative
to the resting potential. ThusEAMPA 5 70 mV andEGABAA 5 0 mV.
Threshold potentials were equivalent for all neurons:ua 5 uh 5 8.0
mV. The size of each time step was one-tenth of a millisecond. The
standard time constant of piriform cortex pyramidal cells is;10 ms
(Barkai and Hasselmo 1994). The decay constant was set ath 5 0.01
so that neurons would have a time constant of 10 ms (units ofh are
in the inverse of 1/10ths of a millisecond). Afferent input was scaled
to the magnitude of the decay constant allowing afferent input to
depolarize the neurons to 10.0 mV (A 5 0.1). This can be seen from
the equation showing only the effect of afferent input and passive
decayDa 5 A 2 ha. In the equilibrium stateDa 5 0 anda 5 A/h.
As noted previously,A represents the product of the output from
olfactory bulb mitral cells (in spikes/ms) coming through afferent
synapses (with strength in mV/spike). ThusA has units spikes/ms3
mV/spike5 mV/ms;a 5 A/h 5 [mV/msec]3 ms5 mV. For these
simulations, synaptic connectivity took the valuesW9 5 0.0008, and
H 5 0.0035,H9 5 20.0055. Excitatory feedback started at very low
values (W 5 0.000002) and increased to a maximum strength ofW 5
0.00055.

Additional equations were utilized to simulate the feedback regu-
lation of cholinergic modulation and the modification of excitatory
recurrent synapses for storage of patterns (Hasselmo et al. 1995).
Experimental evidence demonstrated that stimulation of cholinergic
input from the horizontal limb of the diagonal band influences syn-
aptic transmission in piriform cortex, and stimulation of piriform
cortex causes phases of excitation and inhibition in the horizontal limb
(Linster et al. 1997). Here we focus on feedback inhibition of cho-
linergic modulation. ACh levels were represented byc and depended
on a threshold linear functionC[a 2 u]1 of the average membrane
potentiala of a population of cholinergic neurons

FIG. 1. A: simplified network for mathematical analysis. a: average membrane potential of a subpopulation of excitatory
neurons; h: average membrane potential of a population of inhibitory neurons.A 5 afferent input from olfactory bulb mitral cells
passing through layer Ia synapses. This is subdivided into subthreshold input (h 3 u) and suprathreshold input (I) minus
feedforward inhibition (Hff). cff 5 cholinergic modulation of feedforward inhibition.W5 feedback excitatory connections between
pyramidal cells in the network, scaled by cholinergic modulationcw. W9 5 excitatory connections to inhibitory interneuron, scaled
by cholinergic modulationcw’ . Hint 5 inhibitory connections on excitatory neurons, scaled by cholinergic modulationcf b . The
passive decay of membrane potential is scaled to the decay parameterh (inverse of membrane time constant).B: for computational
modeling of associative memory function, we model a network of interacting subpopulations of pyramidal cells and interneurons.
Afferent input patterns (A) consist of binary patterns of excitatory input to pyramidal cell populations in the network. The network
contained extensive excitatory feedback connections between interneurons (Wij) and connections to and from inhibitory interneu-
rons (W9 and H). In addition, the network contains cholinergic modulationC regulated by inhibitory units influenced by total
excitatory output in the network.
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c 5 C[a 2 ua]1

Da 5 Ac 2 ha 2 Hc[h 2 uh]1 (3)

where ua is the output threshold for the population of cholinergic
neurons in the horizontal limb,Ac is tonic input to the cholinergic
neuron present at all times during simulations to ensure continuous
output in the absence of inhibition, andHc is inhibitory input to
cholinergic neurons from GABAergic neurons activated by piriform
cortex pyramidal cells. Simulations used the valuesAc 5 0.3, ua 5
8.0, anduh 5 8.

Excitatory feedback connections were modified according to learn-
ing rules dependent on postsynaptic activityai and presynaptic activ-
ity aj, in keeping with experimental evidence on associative long-term
potentiation in piriform cortex (Patil et al. 1998). Modification de-
pended on cumulative buildup of pre- and postsynaptic variablessi

and sj, which increased with separate dynamics (dependent on an
accumulation constantf and a diffusion constantb. This could be
construed as the buildup of pre- and postsynaptic calcium or activa-
tion of pre- and postsynaptic second messengers such as protein
kinase C. The learning rule also contained synaptic decay proportional
to the current strengthWij and pre- or postsynaptic activity (scaled
with the constantsvpre and vpost) as a representation of long-term
depression (Levy et al. 1990). Each rule had parameters for the overall
modification ratek and the postsynaptic modification thresholduw.
The rate of synaptic modification was also scaled to the level of
cholinergic modulation, as suggested by experiments showing cholin-
ergic enhancement of long-term potentiation in piriform cortex (Has-
selmo and Barkai 1995; Patil et al. 1998) and hippocampus (Burgard
and Sarvey 1990; Huerta and Lisman 1993). The cumulative learning
rule took the form

DWij 5 k(1 2 xwc)([si 2 uw]1 2 vpreWij)([sj 2 uw]1 2 vpostWij)

Dsi 5 f[ai 2 ua]1 2 bsi

Dsj 5 f[aj 2 ua]1 2 bsj (4)

Connections to and from inhibitory interneurons were not modified
in these simulations. In most simulations, weights were clipped at
specific values to maintain them within the region of stable attractor
dynamics. This clipping allowed stable learning for a broader range of
parameters.

In this computational model, a set of binary input patterns repre-
sented the neuronal activity associated with a series of different odors.
These binary input patterns were stored in the network through
Hebbian modification of excitatory association connections. The stor-
age of these patterns was subsequently evaluated by presenting one
portion of the input patterns and determining if the network could
complete the missing components of the input patterns. A perfor-
mance measure based on normalized dot products was used to eval-
uate the effectiveness of retrieval, as in previous articles (Barkai et al.
1994; Hasselmo et al. 1992). This performance measure increased
with the effective completion of a learned pattern but decreased with
the similarity between the learned pattern and other learned patterns.
In this simulation, the network is first trained on one input pattern
(1010010010) followed by another input pattern with considerable
overlap (0101010010), as shown in Fig. 4. In the simulations shown
here, high performance occurs when the first pattern is learned prop-
erly but does not interfere with learning of the second pattern. The
performance measure is very low when no learning occurs and re-
trieval activity is low. The performance measure also goes to low
values when the first pattern interferes with learning of the second,
causing the response to the degraded input to contain elements of both
the stored patterns.

Brain slice physiology

Intracellular recordings (with sharp electrodes in current-clamp
mode and patch electrodes in current- and voltage-clamp modes) were

obtained from pyramidal neurons in layer II of the piriform cortex in
the in vitro slice preparation. Slices 400mm thick were obtained from
adult female Sprague-Dawley rats (150–200 gm), by using standard
procedures (Hasselmo and Barka, 1995; Hasselmo and Bower 1992)
in accordance with institutional guidelines. The animal was lightly
anesthetized with halothane and decapitated. The brain was rapidly
removed and placed in chilled oxygenated artificial cerebrospinal fluid
(ACSF) maintained close to 4°C. Slices were cut in the coronal plane,
perpendicular to the laminar organization of the piriform cortex, with
a vibratome. Once cut, the slices were stored at room temperature in
a chamber containing oxygenated ACSF solution with the following
composition (in mM): 124 NaCl, 5 KCl, 1.2 KH2PO4, 1.3 MgSO4, 2.4
CaCl2, 26 NaHCO3, and 10D-glucose (pH 7.4–7.5).

After 1 h of incubation at room temperature slices were placed on
a nylon mesh in a submerged chamber with oxygenated ACSF flow-
ing over the slices at a rate of 1 ml/min. A thermistor, placed just
below the mesh, monitored and controlled the temperature of the
ACSF through a temperature regulator circuit maintaining it between
33 and 34°C. Intracellular responses to electrical stimuli were re-
corded once the pyramidal neurons were impaled. All recorded neu-
rons had a resting membrane potential of265 mV or more negative.

The orthodromic stimuli were delivered through a NeuroData
PG4000 stimulator, with two fine unipolar tungsten electrodes, one
positioned in the intrinsic layer and other in the afferent layer. The
brain slice preparation is illustrated in Fig. 2. For sharp electrode
recording, the glass micropipette electrodes (resistance5 70–180
MV) were filled with 4 M potassium acetate solution. In four neurons
QX314 (50 mM) was introduced to block the sodium spikes and the
slow-inhibitory postsynaptic potential (IPSP) component to better
record the fast-IPSP component. From these four neurons only IPSP
data were recorded; they were not used for threshold firing values.
IPSPs were primarily recorded by intracellular current injection dur-
ing association–afferent fiber stimulation, as shown by Tseng and
Haberly (1988). The fast and slow IPSP components, shown to be
mediated by changes in Cl2 and K1 conductances, respectively
(Tseng and Haberly 1988), were measured at time periods correspond-
ing to the maximum IPSP peaks in control (between 20 and 40 ms for
fast and between 100 and 140 ms for slow component). The same time
reference was used in individual neurons, but it varied slightly over
the population. Orthodromic thresholds were examined by varying the
strength of the stimulus at certain stimulus durations (0.2, 0.5, 1.5, and
3 ms in most cells). Input resistance was calculated from the responses
to 200-ms hyperpolarizing current pulses.

Whole cell patch recordings for both current clamp and voltage
clamp were carried out with borosilicate glass electrodes, pulled to
give an electrode resistance of;8–12 MV. The electrode solution
had the following composition (in mM): 120 K-gluconate, 10 KCl, 2
CaCl2, 2 MgCl2, 2 EGTA, 2 K-ATP, 0.2 Na-GTP, 20 HEPES,

FIG. 2. Brain slice preparation of the piriform cortex, showing location of
stimulating electrodes in layer Ia and layer Ib. Intracellular recordings were
obtained from pyramidal cell bodies in layer II. This allowed analysis of
excitatory and inhibitory synaptic potentials elicited by stimulation through
electrodes located in either layer Ia or layer Ib.
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buffered to pH-7.2 with KOH, having an osmolarity of 280 mosm.
The solution was filtered before filling the electrodes. An Axo-
clamp-2A amplifier was used for recordings, and data acquisition was
performed with pClamp 6.4 software and Digidata 1200 interface
board. Data were sampled at 10 or 20 kHz, depending on the nature
of the responses. Unless otherwise noted, holding potential for volt-
age-clamp recording of synaptic currents was260 mV.

Effects of cholinergic modulation were studied by the introduction
of the cholinergic agonist carbachol (carbamylcholine chloride, CCh)
into the bathing medium at a concentration of 50mM. To isolate
IPSPs, excitatory postsynaptic potentials (EPSPs) were blocked with
the introduction ofD(2)-2-amino-5-phosphonovaleric acid (D-APV)
at 40 mM and 6-cyano-7-nitroauinoxaline-2,3-dione (CNQX) at 20
mM into the bath for some cells before the application of CCh. The
drugs were obtained from Research Biochemicals (Natick, MA). Data
were analyzed with two-way ANOVA. Results are quantified as the
means6 SE, and the accepted level for significance wasP , 0.05
(unless otherwise stated).

R E S U L T S

Mathematical analysis

As described inMETHODS, the simplified network allowed
mathematical analysis of how much modulation of feedforward
and feedback inhibitory synaptic transmission would be nec-
essary to offset the previously observed modulation of excita-
tory synaptic transmission (Hasselmo and Bower 1992). This
analysis was performed with the network with a single unit
representing average membrane potentiala of a subpopulation
of excitatory neurons and a single unit representing average
membrane potentialh of the population of inhibitory neurons
(see Fig. 1A).

By using the equations shown inMETHODS, we can solve for
the average membrane potential within a subpopulation of
excitatory neurons when the network is in equilibrium. This
could correspond to a particular self-sustained memory state
toward which the network evolves (an attractor state), or it
could simply represent the steady-state response to a particular
new odor. In either case, the equilibrium can be determined by
observing the state of the equations when there is no change in
the value ofa or h, i.e., by setting da/dt5 dh/dt5 0 (Hasselmo
et al. 1995). Real biological networks probably only enter
equilibrium states for brief periods, but the network may be
continuously moving toward particular stable equilibrium
states. Equilibrium states can determine the level of network
activity even when there are slow oscillatory changes in par-
ticular parameters (Tsodyks et al. 1997). The value ofa during
this equilibrium state is obtained by algebraically solving fora
after setting da/dt5 dh/dt 5 0 in the equations presented in
METHODS. The average excitatory membrane potential during
this equilibrium state will be designated asQ.

Q 5 aeq 5

A 2 Wua 1
HW9ua

h9
1 Huh

h 2 W 1
HW9

h9

(5)

As noted inMETHODS, A 5 afferent input,W 5 excitatory
connections between pyramidal cells,ua 5 uh 5 threshold of
pyramidal cells and interneurons,H 5 inhibitory connections
to pyramidal cells,W9 5excitatory connections to inhibitory
interneurons, andh 5 h9 5 inverse time constant of pyramidal
cells and interneurons. This equation can be simplified if we

assume that afferent inputA is always strong enough alone to
bring the average membrane potential above threshold. If there
were no synaptic connections (ifW 5 W9 5H 5 0), then the
equilibrium state would beQ 5 A/h. Because afferent input
initiates activity in the network, we make the assumption that
afferent input alone can bring neurons over threshold, soA/h .
u. To assist in simplifying the equation, we can split the
strength ofA into a quantity that brings the neurons up to
threshold (rearranging the equationA/h 5 u, we obtainA 5
hu) and an additional quantity (X) that goes beyond threshold.
Then we writeA asX 1 hu. In addition, to include feedforward
inhibition, we will represent the suprathreshold afferent inputX
as a combination of direct inputI and a feedforward inhibition
scaled to the direct input (this assumes that feedforward inhib-
itory input cannot cause afferent input to become subthresh-
old). ThusA 5 I 2 Hff I 1 hu. This gives us the following
equilibrium stateQ

Q 5

I 2 Hff I 1 hu 2 Wua 1
HW9ua

h9
1 Huh

h 2 W 1
HW9

h9

5
I 2 Hff I 1 Huh

h 2 W 1
HW9

h9

1 u (6)

By using this equation, we analyzed how cholinergic mod-
ulation of the strength of recurrent excitationW (represented by
the suppression variablecw) could be offset by cholinergic
modulation of other parameters, allowing the network to main-
tain the same value ofa in the equilibrium state. As noted
previously, the network may change somewhat in level of
activity during cholinergic modulation but does not become
inactive or go into unstable seizure activity. As will be seen in
the following sections, there is a striking qualitative difference
in how well modulation of different inhibitory connections (H
or Hff) can compensate for the activity changes associated with
suppression of excitatory intrinsic connections (W). Thus this
analysis is relevant even if the goal is only to keep membrane
potentials and network activity within a general range of
values.

In each of the following sections, the relationship between
cw and one of the other modulation variables is analyzed
(setting other variables equal to one). These sections address1)
the suppression of feedforward inhibitionHff (suppressed in
proportion to the variablecff), 2) the suppression of feedback
inhibition H (suppressed in proportion to the variablecfb), and
3) the suppression of the excitatory input to feedback interneu-
ronsW9 (suppressed in proportion to the variablecw9). In each
of these sections, we set the equilibrium state with cholinergic
modulation equal to the equilibrium state without cholinergic
modulation, as follows

Q 5
I 2 cff Hff I 1 cf bHuh

h 2 cwW 1
cf b Hcw9W9

h9

1 u 5
I 2 Hff I 1 Huh

h 2 W 1
HW9

h9

1 u (7)

Relationship between recurrent excitation (W) and
feedforward inhibition (Hff)

This section explores how much modulation of feedforward
inhibition cff can compensate for changes in the modulation of
feedback excitationcw to maintain approximately the same
level of average membrane potential during the equilibrium
state of the network. On an intuitive level, the loss of excitation

2107MODULATION OF INHIBITION



in the network should cause a decrease in activity, but this
decrease in activity could be prevented if there is a correspond-
ing decrease in inhibition. For example, if a subpopulation of
excitatory neurons has a certain activity level in response to a
particular odor and we then alter the strength of feedback
excitation caused by cholinergic modulation, can a change in
feedforward inhibition keep the network activity at approxi-
mately the same average level? For the moment, the cholin-
ergic modulation of feedback inhibition and input to interneu-
rons will be ignored, so we will keepcfb 5 cW9 5 1. We can
then rearrangeEq. 7 to see how muchcff must change during
changes incw to prevent cholinergic modulation from causing
a change in the average level of activity (Q). Algebraic ma-
nipulation ofEq. 7yields the following relation

cff 5
(cw 2 1)(IW 1 HWu) 1 Hff I (h 2 cwW 1 Hff HW9/h)

Hff I (h 2 cwW 1 HW9/h)
(8)

Both cff and cw must remain between 0 and 1 because 0
represents complete suppression of synaptic transmission, and
1 represents normal levels of transmission. In fact, physiolog-
ically realistic maximal suppression is probably more in the
range ofcw 5 0.3 (Hasselmo and Bower 1992). However, in
Eq. 8, cff rapidly must go to 0 to compensate for even very
small decreases incw . We can explore the maximal effect of
cholinergic suppression of feedforward inhibition if we setcff

to 0 (meaning feedforward inhibition is completely suppressed
by cholinergic modulation) and assume thatHff approaches 1.0
(meaning that it is very strong in the absence of cholinergic
modulation). In this case, whencff is 0, it compensates forcw

at the following value

cw 5 1 2
I (h 2 W 1 HW9/h)

HWu
(9)

Putting specific numerical parameters into this equation
shows that the range ofcw for whichcff can compensate is very
small. As an example, we can use parameters from previous
research (Hasselmo et al. 1995) in which stable equilibrium
states were described withW5 0.016,H 5 0.06,W9 5 0.0042,
andh 5 h95 0.01 (that paper usedA 5 0.1, corresponding to
I 5 0.02). The use of these specific numerical parameters is
significant because only a certain number of parameters yield
stable equilibrium states that could correspond to memory
states (Hasselmo et al. 1995). For these parameters, as we
change the value ofcw from 1.0 to 0.95, we can keep the
average equilibrium membrane potential in the same range by
changingcff from 1.0 to 0.0. However, this only compensates
for a small change in feedback excitation. As feedback exci-
tationW is reduced by values ofcw smaller than 0.95, changes
in feedforward inhibition cannot further compensate.

If I is increased greatly,cff can compensate for a wider range
of values ofcw, but great increases inI are inconsistent with the
distal termination of afferent synapses on piriform cortex py-
ramidal cells. In summary, modulationcff of feedforward in-
hibition Hff is not an effective means to compensate for mod-
ulation cw of recurrent excitationW. This generates the
prediction that there probably is not a strong effect of cholin-
ergic suppression of inhibitory potentials in layer Ia of the
piriform cortex.

Relationship between recurrent excitation (W) and feedback
inhibition (H)

We can also compensate for changes in the recurrent exci-
tationWwith changes in the inhibitory synaptic transmissionH
arising from interneurons activated by feedback from pyrami-
dal cells. In this case, we change the levels of feedback
inhibitory transmissionH according to the modulation param-
eter cfb while keeping other modulatory parameters atcff 5
cW9 5 1. By algebraically rearrangingEq. 7, we obtain the
following relation

cfb 5
(1 2 cw)I (1 2 Hff)W 1 Hu(h 2 cwW)

Hu(h 2 W)
(10)

As in the previous discussion, bothcfb andcw must remain
between 0 and 1. We can explore the maximal effect of
cholinergic suppression of feedback inhibitory transmission if
we setcfb to 0. Whencfb is 0, it compensates forcw at the
following value

cw 5
Huh 1 I (1 2 Hff)W

HuW 1 I (1 2 Hff)W
(11)

The range ofcw for which cfb can compensate is larger than
that for whichcff can compensate. As an example, we can use
the same parameters from previous research (Hasselmo et al.
1995) as in the previous section. For these parameters,cfb can
compensate for values ofcw between 1.0 and 0.64. (i.e.,cfb
must be set at 0 to compensate forcw 5 0.64) If I is increased
greatly, this range decreases, consistent with the change in
relative influence of afferent versus intrinsic synapses. This
suggests that suppression of feedback inhibition in the cortex
can more effectively compensate for changes in feedback ex-
citation than changes in feedforward inhibition. In the piriform
cortex, where feedback excitation has been shown to be sup-
pressed, this suggests that there should be an accompanying
suppression of feedback inhibition.

Relationship between recurrent excitation (W) and excitatory
input to feedback interneurons (W9)

We can also compensate for changes in the recurrent exci-
tation W with changes in the excitatory inputW9 to interneu-
rons mediating feedback inhibition. In this case, we change the
level of excitatory input to interneurons according to the mod-
ulation parametercw9 , settingcff 5 cfb 5 1. FromEq. 7, we
obtain the following relation

cw9 5 1 1 (cw 2 1)
Wh

HW9
(12)

We can explore the maximal effect of cholinergic suppres-
sion of input to feedback interneurons if we setcw9 to 0. When
cw9 is 0, it compensates forcw at the following value

cw 5 1 2
HW9

hW
(13)

Changes incw9 can compensate for a very wide range of
values of cw . In fact, when we use the parameters from
previous research (Hasselmo et al. 1995), we see that changing
the value ofcw9 from 1.0 to 0.365 can compensate for changing
the value ofcw from 1.0 to 0.0. Atcw9 5 0.365 the suppression
of excitatory input to interneurons can compensate forcw 5
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0.0. Thus smaller changes in modulation of excitatory input to
interneurons can compensate for larger changes in modulation
of excitatory input to other pyramidal cells.

When considering this analysis of equilibrium state, we
should consider not only the value of the equilibrium state but
also the stability of this equilibrium state. Mathematical anal-
ysis demonstrates which parameters allow stable self-sustained
equilibrium states. The value ofcw 5 0 is not realistic for
equilibrium states because the equilibrium state becomes un-
stable when the excitatory connection between pyramidal cells
(cw 3 W) drops below the rate of passive membrane potential
decayh. On an intuitive level, a network will never be able to
sustain activity if the neurons lose membrane potential more
rapidly than feedback excitation can build it up. To maintain
equilibrium with these parameters, the feedback excitation
(cw 3 W) needs to be larger than the membrane potential decay
h 5 0.01. This occurs atcw 5 0.625, which can be compen-
sated bycw9 5 0.762. Only the suppression of excitatory input
to interneurons can compensate for the full range ofcw values
for which the equilibrium remains stable. Thus suppression of
excitatory input to interneurons can be weaker than suppres-
sion of excitatory transmission between pyramidal cells. In
contrast to both the other examples presented previously, this
compensation also does not change for different values of the
afferent inputI, suggesting that it might be easier to implement.
This suggests that compensation of changes in feedback exci-
tation with changes in feedback inhibition may depend strongly
on changes in the excitatory input to inhibitory interneurons
rather than just on changes in the inhibitory transmission from
interneurons. Inhibitory synaptic potentials evoked in layer Ib
of the piriform cortex in the experiments described here con-
tain components of bothW9 andH. Thus the analysis suggests
that we should see a much stronger cholinergic suppression of
inhibitory synaptic potentials in layer Ib than in layer Ia.

Relationship between depolarization of interneurons (A9) and
excitatory input to interneurons (W9)

Cholinergic modulation enhances the frequency of sponta-
neous inhibitory synaptic currents during recordings from py-
ramidal cells in the hippocampus (Behrends and ten Bruggen-
cate 1993; Pitler and Alger 1992). This frequency increase is
believed to result from direct cholinergic depolarization of
GABAergic interneurons (McQuiston and Madison 1996),
which would increase firing rate. This depolarization of inter-
neurons appears rather paradoxical when combined with the
suppression of evoked inhibitory potentials. Why would the
same substance simultaneously increase inhibition via direct
depolarization while suppressing total feedback inhibition?
The analytic framework presented here provides a possible
explanation of this paradox. Starting withEq. 1, we can ana-
lyze the effect of depolarization of inhibitory interneurons by
representing it as a direct depolarizing afferent input to inter-
neuronsA9, yielding the following equilibrium state

Q 5
I 2 A9H/h9 2 Hff I 1 Huh

h 2 W 1
HW9

h9

1 u (14)

As shown in Fig. 3A, increases in this direct depolarization
of interneuronsA9 will shift the equilibrium state of the net-
work downward across the full range of values for input to the

excitatory neuronsA. For values ofA9 that cause spontaneous
spiking of the interneurons this requires an increased amount of
afferent inputA to get some response in the excitatory popu-
lation. Thus, although there is no change in the threshold value
u, the functional threshold is increased. As shown in Fig. 3B,
suppression ofW9 will alter the slope of the relationship
between afferent inputA and the equilibrium stateQ, resulting
in a steeper slope. As shown in Fig. 3C, combination of direct
depolarization with suppression ofW9 can result in a network
that responds less to weak inputs but responds more strongly to
stronger afferent input. Thus these two effects could interact to

FIG. 3. Effect of modulation on equilibrium state in the network shown in
Fig. 1A. Equilibrium stateQ is shown for different values of excitatory afferent
input A to the unit representing the excitatory subpopulation. Low values ofA
do not put the average membrane potential a over threshold. This subthreshold
equilibrium state increases linearly, depending only on the decay time constant
of excitatory neurons. When the membrane potential of the excitatory popu-
lation reaches threshold, the equilibrium state increases dramatically because
of excitatory feedback in the network, but a further increase in afferent input
A results in further linear increases in equilibrium stateQ. A: increases in the
depolarizing input to interneuronsA9 shifts the equilibrium response down-
ward. For subthreshold levels of interneuron input (A9 , 0.8) only the equi-
librium states for suprathreshold values ofA are affected, but for supra-
threshold levels of interneuron input (A9 . 0.8) the subthreshold response of
excitatory neurons is affected, preventing them from becoming active at low
values ofA. B: decreases inW9 change the magnitude and increase the slope
of the suprathreshold response.C: combination of increases inA9 (depolariza-
tion of interneurons) with decreases inW9 (suppression of excitatory input to
interneurons) makes the network respond more weakly to weak input (low
values ofA) but more strongly to strong input (high values ofA).
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make the spontaneous and background activity of the network
weaker, while enhancing the response to strong afferent input.

Computational modeling

As described inMETHODS, the effect of cholinergic modula-
tion of inhibitory synaptic potentials was also tested in a
computational model of associative memory function. In this
model, the storage of highly overlapping input patterns was
analyzed with different levels of cholinergic modulation of
synaptic transmission. This gives a notion of how cholinergic
modulation affects the overall function of the network. The
model shows that cholinergic suppression of feedback inhibi-
tion is necessary for effective function, whereas the cholinergic
suppression of feedforward inhibition does not have a strong
role in ensuring effective function. In fact, previous simula-
tions of associative memory function used selective cholinergic
suppression of feedback but not feedforward inhibition (Has-
selmo et al. 1995), although the full range of parameter values
was not previously explored.

Figure 4 demonstrates the basic function of the network for
different values of cholinergic modulation of feedback inhibi-
tion H. Each section of the figure shows the activity in a
network of 10 excitatory neurons and 1 inhibitory neuron
during sequential presentation of different patterns of input
(1010010010 and 0101010010). Pattern number one is first
presented, followed by a degraded version of that input pattern.
Then a second pattern that overlaps with the first pattern is
presented, followed by a degraded version of that second
pattern. For each pattern, the activity of the network is shown
during a number of time steps. The width of black lines
represents the activity of individual neurons within the net-
work. For insufficient cholinergic suppression of inhibitory
feedback (cf b 5 0.6), inhibition is too strong in the network,
and the degraded patterns evoke activity in only two of the
normal four neurons. For excessive cholinergic suppression of
inhibitory feedback (cf b 5 1.0), inhibition is insufficient, and
there is severe interference between highly overlapping stored
patterns. This results from the fact that some inhibition is
necessary during learning to prevent interference in the net-
work (Hasselmo 1993). Appropriate levels of the cholinergic
suppression of inhibitory feedback (cfb 5 0.8) provides effec-
tive function in the model. In this case, the network responds
to the degraded version of the input patterns with the full
learned version of those input patterns.

Suppression of feedback inhibitory transmission (H) and
feedforward inhibition (Hff)

As shown in Fig. 5A suppression of feedback inhibitory
transmission (H) is more important for good memory perfor-
mance in the model than suppression of feedforward inhibition
(Hff). Simulations were used to evaluate the memory perfor-
mance of the network for a large number of different values of
suppression of inhibitory transmission (the influence of inter-
neurons on pyramidal cells) in combination with a large num-
ber of different values for suppression of feedforward inhibi-
tion. As can be seen in the figure, the best performance
occurred with high levels of suppression of inhibitory trans-
mission (H), ranging between 65 and 100% suppression (cor-
responding tocf b 5 0.35–0.0). As can be seen from the graph,

suppression of feedforward inhibition does not as strongly
influence levels of performance. High levels of performance
could be obtained across all values for feedforward inhibition,
although lower levels of suppression of feedback inhibitory
transmission were necessary when there was stronger suppres-
sion of feedforward inhibition. The results from these simula-
tions suggest that for effective memory performance strong

FIG. 4. Associative memory function in the network with different levels of
cholinergic suppression of feedback inhibitionH. Each section of the figure
shows the activity across time (plotted vertically) in a network of 10 excitatory
units (1–10 graphed horizontally, each representing a population of neurons)
and 1 inhibitory unit (I) representing the inhibitory population during sequen-
tial presentation of different patterns of input. For each pattern, the activity of
the network is shown during a number of time steps. The width of black lines
represents the activity of individual units within the network. Pattern number
1 is first presented (#1), followed by a degraded version of that input pattern
(deg #1). A second pattern that overlaps with the first pattern is then presented
(#2), followed by a degraded version of that second pattern (deg #2). Note that,
for insufficient cholinergic suppression of inhibitory feedback, inhibition is too
strong in the network, and the degraded patterns evoke activity in only 2 of the
normal 4 units. For excessive cholinergic suppression of inhibitory feedback,
inhibition is insufficient, and there is severe interference between highly
overlapping stored patterns.
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suppression of feedback inhibition is more necessary than
suppression of feedforward inhibition.

Suppression of excitatory input to interneurons (W9) and
feedforward inhibition (Hff)

As shown in Fig. 5B, the effect of suppression of excitatory
input to interneurons is similar to the effect of suppression of
inhibitory transmission, with a somewhat broader range of
good performance. Thus good performance can be obtained
with suppression of excitatory input to interneurons (W9) set at
30% (corresponding tocw9 5 #0.7). However, this lesser
requirement for suppression of excitatory input to interneurons

only occurs when the suppression of feedforward inhibition is
quite strong. Thus for this parameter there is a greater interac-
tion between the level of feedforward inhibition and the level
of feedback inhibition, although good function can still be
obtained at all values of feedforward inhibition.

Suppression of excitatory input to interneurons (W9) and
inhibitory transmission (H)

Figure 6A shows the performance of the network for differ-
ent values of the cholinergic suppression of both components
of feedback inhibition, the suppression of excitatory input to
interneurons (W9) and the suppression of inhibitory transmis-
sion from interneurons to excitatory neurons (H). As can be
seen in the figure, effective performance depends on strong
modulation of feedback inhibition, but effective function is
obtained in the model with suppression of either component of
this modulation because the feedback inhibition can be entirely
shut down by either type of suppression. Thus with strong

FIG. 5. A: performance of the network across different values of the sup-
pression of feedforward inhibition (Hff) and the suppression of feedback
inhibitory transmission (Hf b). Performance is plotted on thez-axis, varying
between 0 and 1. Percentage suppression of inhibitory transmission between
inhibitory units and excitatory units is plotted on thex-axis, ranging from 0 to
100%. The best performance occurs when suppression of feedback inhibition
is .65%. Percentage suppression of feedforward inhibition is plotted on the
y-axis, ranging from 0 to 100%. Good performance occurs for the full range of
values of suppression of feedforward inhibition, although less suppression of
feedback inhibition is necessary when there is greater suppression of feedfor-
ward inhibition.B: performance of the network across different values of the
suppression of feedforward inhibition (Hff) and the suppression of excitatory
input to interneurons (W9). Percentage suppression of connections from excit-
atory neurons to interneurons is plotted on thex-axis, ranging from 0 to 100%.
Note that the best performance occurs when suppression of excitatory input to
interneurons is.30%. Percentage suppression of feedforward inhibition is
plotted on they-axis, ranging from 0 to 100%. Good performance occurs for
the full range of values of suppression of feedforward inhibition, although less
suppression of input to inhibitory units is necessary when there is greater
suppression of feedforward inhibition.

FIG. 6. A: performance of the network across different values of the sup-
pression of feedback inhibitory transmission (Hf b) and the suppression of
excitatory input to inhibitory units (W9). Performance is plotted on thez-axis,
varying between 0 and 1. Percentage suppression of inhibitory transmission
between inhibitory units and excitatory units is plotted on thex-axis, ranging
from 0 to 100%. Good performance occurs when suppression of either com-
ponent of feedback inhibition is strong.B: performance of the network for
highly overlapping patterns. In this case, when suppression of feedback inhi-
bition becomes too strong, then interference between stored patterns causes a
greater decrease in performance, resulting in only a narrow range of effective
performance.
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suppression of excitatory input to interneurons no suppression
of inhibitory transmission is necessary, and with strong sup-
pression of inhibitory transmission no suppression of excita-
tory input is necessary. Intermediate levels of suppression can
provide good performance if they are combined, but this re-
quires.50% suppression of both parameters. Thus, although
decreases in excitatory feedback can be more easily compen-
sated for by suppression of excitatory input to interneurons
(W9), the actual associative memory function of the network
can be aided by suppression of either component of feedback
inhibition. When network function was tested with highly
overlapping patterns, such as those illustrated in Fig. 4, the
range of effective function was more narrow. As shown in Fig.
6B, for low values of suppression of inhibition the performance
is low because of insufficient learning of the stored patterns,
whereas for high levels of suppression of inhibition the per-
formance is low because of interference between the stored
patterns. This demonstrates that effective function is only
obtained when modulation of feedback excitation is associated
with modulation of feedback inhibition with very specific
relative values.

E X P E R I M E N T A L D A T A

Cholinergic modulation of inhibitory synaptic potentials

The resting membrane potential for the pyramidal neurons
was typically approximately272 mV (72.356 4.1, n 5 40).
At this resting membrane potential IPSPs were not always
prominent, and the cells were depolarized by injection of a
constant DC current to help observation of the inhibitory
synaptic potentials. Inhibitory potentials obtained at different
membrane potentials during stimulation of layer Ib are shown
in Fig. 7A. Depolarization of the neuron membrane potential
allowed observation of the early and late components of the
IPSPs, as can be seen in Fig. 7A. Laminar differences in the
components of the IPSPs were observed, with the early Cl2

component being more prominent during the stimulation of the
association fiber layer (layer Ib), whereas the late component
was observed during stimulation of both the layers. As shown
in Fig. 9A, inhibitory synaptic potentials elicited during stim-
ulation of the afferent fiber layer (layer Ia) rarely evoked a
prominent early inhibitory component.

IPSPs were more easily isolated by pharmacologically
blocking the EPSPs withD-APV and CNQX as shown for Ib
stimulation in Fig. 8A and for Ia stimulation in Fig. 9,A andB.
This blockade reduced the peak amplitude of the excitatory
component of potentials by 71.46 7.98% (n 5 6) for afferent
layer stimulation and 766 9.8% (n 5 5) for asociation fiber
stimulation.

Perfusion of the cholinergic agonist carbachol in the slice
chamber caused a significant suppression of inhibitory synaptic
potentials elicited by stimulation of association/intrinsic fibers
in layer Ib, as shown in Figs. 7B and 8,A andB. As can be seen
in these figures, carbachol caused suppression of both the early
and late components of the inhibitory synaptic potential. The
strong suppression of the fast IPSP component made quantita-
tive measurements difficult. Measurement of the slow inhibi-
tory synaptic potentials (n 5 14) recorded with sharp electrode
techniques revealed that layer Ib inhibitory synaptic potentials
were reduced on average by 79.46 2.4%. This effect was

highly statistically significant (P , 0.0007). After washing the
carbachol out of the slice chamber, the IPSP amplitudes recov-
ered to;60% of their control value. This partial recovery may
be due to insufficient wash period in some slices because wash
takes.45 min. Experiments with pharmacological blockade of
excitatory currents further confirmed this evidence for suppres-
sion of inhibitory currents by carbachol. After postsynaptic
blockade of excitatory potentials, the decrease in the late
evoked Ib inhibitory potentials was found to be 61.756 4.7%
(n 5 5). The early evoked Ib inhibitory potentials showed what
appeared to be total suppression in carbachol. In carbachol
there was no longer a significant difference from baseline at the

FIG. 7. A: intracellular excitatory and inhibitory synaptic potentials evoked
by stimulating the association fiber layer (layer Ib). Responses are at resting
membrane potential and at different depolarized membrane potentials induced
by current injection. Both the slow and fast components of the inhibitory
postsynaptic potentials (IPSPs) can be seen in these recordings. The early Cl2

component of the IPSP is more apparent at depolarized potentials.B: effects of
bath-applied carbachol exposure are compared in the superimposed traces at
depolarized potentials and indicate a suppression of both the fast and slow
components of IPSP by the cholinergic agonist.C: perfusion of carbachol also
suppressed the excitatory postsynaptic potentials (EPSPs) recorded during
stimulation of association/intrinsic fibers in layer Ib as compared in the
overlaid traces at resting membrane potential.
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time point of the early component of the inhibitory potential
(see Fig. 8A).

In comparison, perfusion of carbachol had a weaker effect
on inhibitory synaptic potentials elicited by stimulation of
afferent fibers in layer Ia, as shown in Fig. 9A. Measurement of
the change in IPSPs in a number of slices (n 5 16) revealed
that IPSPs elicited by layer Ia stimulation were decreased on
average by 18.56 3.2%. This effect was just statistically
significant (P , 0.05). This decrease in the IPSPs caused by
carbachol was found to be present in layer Ia when IPSPs were
pharmacologically isolated (19.86 8, n 5 6) (see Fig. 9,A and
B). The mean effect of carbachol on inhibitory synaptic poten-

tials elicited by stimulation in the two layers is summarized in
Fig. 10. These results are consistent with the computational
model demonstrating that suppression of excitatory transmis-
sion between pyramidal cells (layer Ib) can be more effectively
offset by suppression of feedback inhibition (layer Ib) than by
suppression of feedforward inhibition (layer Ia).

Cholinergic effects on synaptic inhibition were also exam-
ined by holding membrane potential at260 mV in the voltage-
clamp mode. Figure 8B shows the decrease in the fast and slow
IPSCs after exposure to carbachol in the association layer
(these currents are shown for different holding potentials in
Fig. 8C). An example of the smaller decrease in layer Ia IPSCs
is seen in Fig. 9,A andB, after the blockade of the EPSCs with
D-APV and CNQX.

Cholinergic effect on excitatory synaptic potentials

The effect of carbachol on the height of excitatory synaptic
potentials was also analyzed. Carbachol caused a substantial
decrease in the height of excitatory synaptic potentials elicited
by stimulation of association/intrinsic fibers in layer Ib while
having a much weaker effect on the height of excitatory syn-

FIG. 9. Intracellular excitatory and inhibitory synaptic potentials evoked by
stimulating the afferent fiber layer (layer Ia). The fast IPSP component is not
prominent as in the case of inhibitory synaptic potential evoked by layer Ib
stimulation.A: cholinergic effect on isolated IPSP at rest in the afferent layers
is shown by the comparison in the overlapping the traces. The excitatory
synaptic potential observed in control conditions (Control) is greatly reduced
by perfusion of glutamatergic receptor antagonists (CNQX1 APV). Carba-
chol does not dramatically alter the remaining synaptic potentials, illustrating
that carbachol-induced suppression of both the inhibitory and excitatory syn-
aptic components is less than that seen with the association layer stimulation.
B: cholinergic suppression of the pharmacologically isolated IPSPs in the
voltage-clamp mode. The IPSC recorded in the presence of glutamatergic
antagonists alone (CNQX1 APV) is similar to that observed with the addition
of carbachol (CNQX1 APV 1 CCh). Carbachol-induced suppression is not
as significant as that in layer Ib.

FIG. 8. A: effect of cholinergic modulation on pharmacologically isolated
IPSPs evoked by layer Ib stimulation. The EPSP present in the control
condition trace (Control) is greatly decreased by bath application ofD(2)-2-
amino-5-phosphonovaleric acid and 6-cyano-7-nitroauinoxaline-2,3-dione
(APV 1 CNQX). During perfusion of carbachol (APV1 CNQX 1 CCh),
both the fast and slow components of the IPSP are suppressed.B: cholinergic
suppression was also demonstrated in the voltage-clamp mode. Stimulation of
layer Ib when the cell was held at260 mV elicited a fast EPSC followed by
fast and slow IPSCs (Control). Perfusion of the slice chamber with carbachol
suppressed both IPSC components (Carbachol).C: IPSCs evoked at holding
potentials between270 and 255 mV show the fast and slow inhibitory
components peaking between 20–30 and 130–140 ms after the stimulus was
applied.
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aptic potentials elicited in layer Ia. This effect was demon-
strated previously with both intracellular and extracellular re-
cording (Hasselmo and Bower 1992). Comparison of EPSPs
was documented at resting membrane potentials. The effect on
layer Ib EPSPs can be seen in Fig. 7C. Measurement of the
change in height of EPSPs elicited by layer Ib stimulation in a
number of slices (n 5 17) demonstrated that carbachol caused
a decrease in EPSP height by an average value of 54.16
6.08%. This effect was statistically significant (P , 0.0001).
EPSPs recovered to;75% of their control value when carba-
chol was washed from the slice. There may be some interaction
between the decrease in the amplitude of EPSPs and the fast
component of the inhibitory potentials. However, across the
population of individual cells, as seen in Fig. 11A, the amount
of decrease in layer Ib IPSPs did not seem to be directly related
to the EPSP decrease, suggesting that these measurements
show effects on two different physiological components of
transmission, not just an increase in EPSP potentials because of
decreased inhibitory currents. As shown in Fig. 10, the mean
effect on inhibitory synaptic potentials elicited by layer Ib
stimulation was stronger than the mean effect on excitatory
synaptic potentials elicited by layer Ib stimulation.

As demonstrated in a set of previous intracellular recordings,
the decrease in EPSPs elicited by stimulation of afferent fibers
(in layer Ia) was much smaller than the decrease in EPSPs
elicited by layer Ib stimulation. Across a number of slices (n 5
18), perfusion of carbachol caused a decrease with an average
value of 13.56 7.78%. This was still statistically significant
(P , 0.03). As in the associational layer, there seemed no
obvious relation between the decrease in the afferent IPSPs and
EPSPs, as seen in Fig. 11B.

Orthodromic firing threshold decreases in afferent layer and
increases in the association layer

The functional advantage of having stronger suppression of
excitatory synaptic transmission in layer Ib compared with
layer Ia is that it provides a mechanism by which cholinergic
modulation could allow afferent input to dominate during

storage of new information (Hasselmo et al. 1992). Therefore,
we were interested to directly test whether perfusion of the
cholinergic agonist carbachol makes it easier for afferent input
(layer Ia stimulation) to cause pyramidal cells to spike while
making it more difficult for intrinsic input (layer Ib stimula-
tion) to cause pyramidal cells to spike. To test this effect, we
obtained strength-duration threshold curves for both layers in
control conditions and during cholinergic modulation.

Perfusion of carbachol caused pyramidal neurons to generate
action potentials more easily in response to stimulation of
afferent input (layer Ia) than in response to stimulation of
intrinsic input (layer Ib). Figure 12 shows the threshold stim-
ulus strength-duration curves for a pyramidal neuron during Ia
and Ib orthodromic stimulation. Carbachol exposure decreased
the firing threshold for stimulation of the afferent fiber layer
(layer Ia) in 7 of 10 cells, whereas threshold increased in 3
cells. For the averages and percent changes presented here, the
strength of the stimulus at 0.5 ms was used for the calculations.
The average decrease in threshold for layer Ia stimulation
across the 10 cells was 28.26 5.2%. In contrast, the firing
threshold for stimulation of the intrinsic fiber layer (layer Ib)

FIG. 11. Relation between the suppression of IPSP and EPSP amplitudes
caused by carbachol exposure; the amount of decrease in the excitatory
amplitude of each neuron is plotted vs. the corresponding decrease in the
inhibitory amplitude of the same neuron.A: across the population of neurons,
no obvious relation was noted in the carbachol-induced decrease in excitatory
and inhibitory synaptic potentials evoked by stimulating layer Ib.B: decreases
in layer Ia-evoked IPSPs and EPSPs also do not appear to be related.

FIG. 10. Histogram comparing the percent suppression of IPSP amplitude
(shaded bars) and EPSP amplitudes (solid bars) in the intrinsic/association
fiber layer (layer Ib) and in the afferent layer (layer Ia). The suppression of
both IPSPs and EPSPs is greater in the association layer than the afferent layer.
Also, in the intrinsic/association fiber layer, suppression of inhibitory poten-
tials is greater than that of the excitatory potentials.
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increased by an average 23.66 4.6% in six cells. This differ-
ential effect appeared despite the common postsynaptic depo-
larization of membrane potential during perfusion of carba-
chol, which alone should make neurons more responsive to
both types of stimulation. In these experiments, carbachol
depolarized the membrane potential by 6.376 2.53 mV (n 5
15) and increased input resistance from 28.26 8.14 MV to
36.76 4.03 MV, an increase of;29.66 4.57%, (n 5 16). As
demonstrated in previous studies (Barkai and Hasselmo 1994),
perfusion of carbachol also decreased the adaptation of pyra-
midal cells.

D I S C U S S I O N

The experimental data presented here concur with the re-
quirement of the computational model that cholinergic modu-
lation should more strongly suppress inhibitory synaptic po-
tentials evoked by stimulation of layer Ib than inhibitory

synaptic potentials evoked by stimulation of layer Ia. IPSPs
and IPSCs evoked by stimulation of layer Ib were strongly
suppressed during perfusion of the cholinergic agonist carba-
chol, whereas IPSPs and IPSCs evoked by stimulation of layer
Ia were less strongly suppressed. Although cholinergic sup-
pression of evoked IPSPs and IPSCs has been shown in the
hippocampus (Haas 1982; Pitler and Alger 1992), this effect
was not demonstrated in piriform cortex nor was laminar
selectivity of the suppression described previously.

Implications of the model

The computational modeling presented here demonstrates the
requirement that activation of cholinergic receptors should have a
stronger effect on intrinsic inhibitory potentials than those acti-
vated by stimulation of the afferent fibers. This prediction arose
from the combination of previous physiological data showing
greater cholinergic suppression of excitatory synaptic transmis-
sion in layer Ib than in layer Ia (Hasselmo and Bower 1992) and
assumptions about the function of excitatory intrinsic connections
within the piriform cortex. Previous modeling demonstrated that
cholinergic suppression of excitatory intrinsic connections may be
very important for preventing retrieval of previously stored rep-
resentations from interfering with the storage of new representa-
tions (Hasselmo and Schnell 1994; Hasselmo et al. 1992, 1995).
Given the possible functional necessity of the suppression of
excitatory transmission, the network may then need to compen-
sate for the changes in excitatory transmission through modulation
of inhibitory effects.

In our mathematical analysis, we utilized equations for the
interaction of excitatory and inhibitory neurons such as those
analyzed in previous work (Hasselmo et al. 1995; Pinto et al.
1996; Wilson and Cowan 1972, 1973). In contrast to many ab-
stract mathematical representations of cortical function, these
equations have the advantage of explicitly representing separate
populations of excitatory and inhibitory neurons, allowing direct
analysis of modulatory effects on inhibition. This will be useful
for analyzing a wide range of modulatory effects, allowing func-
tional interpretation of a range of specific effects on intrinsic
properties as well as synaptic excitation and inhibition within
cortical structures. In the mathematical analysis, we made the
assumption that equilibrium states of the network should be ap-
proximately equal with and without cholinergic modulation. This
would assist in associative memory function, allowing the net-
work to have activity patterns of approximately equal amplitude
during both encoding and retrieval, aiding in the consistent pro-
cessing of these patterns by subsequent structures. Some changes
in activity were noted during in vivo recording with cholinergic
modulation (Beidenbach 1966; Metherate et al. 1990; Sillito and
Kemp 1983). However, those experimental data suggest that
neuronal activity is stronger during cholinergic modulation, which
would require that effects on inhibition should overcompensate
for the effects on excitatory transmission (although the cholinergic
depolarization of neurons and suppression of adaptation adapta-
tion can also contribute to this increased activity). The analysis
presented here is qualitatively similar even if modulation of inhi-
bition overcompensates for the modulation of excitatory transmis-
sion.

In addition to the prediction that modulation of feedforward
inhibition is less effective at compensating for reduced excita-
tory feedback, the model suggests differences in the effective-

FIG. 12. Strength-duration curves from a neuron showing the difference in
the orthodromic firing threshold before and after the introduction of carbachol.
These plots show the minimum (threshold) stimulus current strength (in mA)
necessary to evoke an intracellularly recorded action potential for different
durations of stimulation (in ms). ——: minimum values that evoked action
potentials in control conditions (before perfusion);- - - : threshold values that
evoked action potentials during perfusion of carbachol.A: carbachol causes a
slight increase in the threshold for eliciting an action potential with stimulation
in the association fiber (layer Ib).B: in contrast, carbachol causes a strong
decrease in the threshold for eliciting an action potential with stimulation in the
afferent fiber layer (layer Ia).
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ness of different components of feedback inhibition in com-
pensating for reduced excitatory feedback. The suppression of
inhibitory synaptic transmissionH (i.e., release of GABA) can
only partly compensate for suppression of excitatory transmis-
sion, whereas the suppression of excitatory input to inhibitory
interneuronsW9 (i.e., glutamatergic connections from pyrami-
dal cells to interneurons) more effectively compensates for
reduction in excitatory feedback across a wider range of val-
ues. This suggests that the cholinergic suppression of inhibi-
tory synaptic potentials evoked by layer Ib stimulation may be
more dependent on reduced excitatory input to inhibitory in-
terneurons than on reduced release of the inhibitory transmitter
GABA from interneurons. However, some aspects of our data
suggest that the effect is not purely due to decreased excitatory
input to interneurons, including1) carbachol still suppressed
inhibitory potentials elicited during pharmacological blockade
of excitatory currents,2) the effects on inhibitory potentials
often appeared sooner than the effect on excitatory potentials,
and3) our data show independence of effects on excitatory and
inhibitory potentials. Further experimental data will be neces-
sary to separately analyze cholinergic effects on excitatory
input to interneurons (W9) and the release of GABA from
interneurons (H) in the piriform cortex.

The network simulations of the piriform cortex allow anal-
ysis of the cholinergic modulation of inhibition in the more
specific functional framework of attractor dynamics and asso-
ciative memory function. This work continues previous work
exploring the storage of patterns of activity in a network with
separate populations of excitatory and inhibitory neurons (Has-
selmo and Linster 1998b; Hasselmo et al. 1995, 1997). This
model draws on the assumption that the excitatory recurrent
connections of the piriform cortex mediate associative memory
function, allowing storage of patterns of activity representing
odors, and retrieval of these patterns given incomplete pattern
cues (Bower 1995; Haberly 1985; Haberly and Bower 1989;
Hasselmo and Linster 1998a; Hasselmo et al. 1992; Wilson and
Bower 1988). The distinct modeling of separate populations of
excitatory and inhibitory neurons used in the model presented
here allows detailed analysis of how modulation of inhibition
could play a role in setting appropriate functional dynamics in
associative memory networks. The exploration of parameter
values shown here in Figs. 5 and 6 demonstrates that strong
cholinergic suppression of feedback inhibition is necessary for
effective function, whereas effective function is obtained at a
range of parameters of feedforward inhibition. In fact, previous
published versions of this simulation used selective suppres-
sion of feedback but not feedforward inhibition (Hasselmo et
al. 1995). Models of the olfactory bulb also demonstrated how
modulatory effects on inhibition could play a role in setting
appropriate dynamics for separation and enhancement of odor
responses (Linster and Hasselmo 1997).

More abstract associative memory models assume network
activity is clamped to the input pattern during learning (Amit
1988). In this model, the internally regulated cholinergic suppres-
sion of excitatory feedback combined with suppression of feed-
back inhibition allows the network to preferentially respond more
to afferent input during encoding. In our experimental data, cho-
linergic modulation also appears to make afferent input the pre-
dominant influence on neuronal activity. As shown in the
strength-duration curves in Fig. 12, the threshold for eliciting an
action potential with afferent fiber stimulation (layer Ia) is

strongly decreased in the presence of carbachol (because of the
direct depolarization of pyramidal cell membrane potential),
whereas the threshold for eliciting an action potential with intrin-
sic fiber stimulation (layer Ib) is increased (because of the sup-
pression of excitatory intrinsic synaptic transmission). These re-
sults support the modeling proposal that cholinergic modulation
allows afferent input to dominate without greatly changing the net
activity within the network.

Whereas these models assume the importance of stable
attractor dynamics in the network, alternative interpretations
are possible. For example, one model of piriform cortex pro-
poses that sequential cycles of activity allow hierarchical clas-
sification of odor information (Ambros-Ingerson et al. 1990;
Granger et al. 1989). These models are not entirely inconsistent
with the one presented here, in that the afferent connections in
the model presented here could undergo self-organization to
form categories such as those in the Ambros-Ingerson model.
The relative strength of inhibition and excitation is very im-
portant for the function of that previous model as well. In
particular, strong excitatory feedback connections could inter-
fere with effective formation of categories; therefore it might
be important to suppress feedback. At the same time, suppres-
sion of inhibition would become important to allow sufficient
activity to underlie formation of new categories. This is con-
sistent with evidence that long-term potentiation occurs in the
piriform cortex during cholinergic modulation (Hasselmo and
Barkai 1995; Patil et al. 1998) and in behavioral contexts
requiring learning (Roman et al. 1987, 1993a,b).

Other functional interpretations of piriform cortex activity
have been developed. For example, the representation of odors
was described in terms of limit cycles or chaotic attractors in
modeling and electroencephalogram work by Freeman and
others (Freeman 1975; Freeman et al. 1988; Liljenstrom and
Hasselmo 1995; Liljenstrom and Wu 1995; Yao and Freeman
1990). These representations are considerably more complex
than the fixed point attractors shown here, but similar princi-
ples apply. If a particular dynamical state must represent a
particular odor stimulus during two very different arousal
states (with different levels of cholinergic modulation), each
cholinergic effect on a parameter of cortical function must be
compensated for such that the dynamical state has a consistent
and recognizable influence on other cortical regions. Other-
wise, the reduced feedback excitation would cause a very
different dynamical pattern of activity for the same sensory
stimulus during different modulatory states.

The fixed point attractors used here do not differ dramati-
cally in their properties from limit cycle attractors used in other
models, but limit cycle attractors or sequences of neuronal
activity are probably a more realistic neuronal representation.
Here we focused on isolated storage and retrieval of single
patterns, but the real network must deal with an ongoing
interaction with continuously changing olfactory input and
behavioral contingencies. It is very likely that crosstemporal
interitem associations are stored and retrieved in this context.
In fact, unit recording in piriform cortex during performance of
an olfactory discrimination task demonstrates activity to mul-
tiple task components, not just odor sampling (Schoenbaum
and Eichenbaum 1995). The compensation of overall activity
would still be relevant to storage of sequences, but there may
be additional dynamical properties of these influences that will
become clearer with more detailed functional models.
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Relation to previous physiological data

Our experimental data show that inhibitory synaptic potentials
evoked by stimulation of the piriform cortex are suppressed by
cholinergic modulation in a manner similar to the cholinergic
suppression of evoked inhibitory synaptic potentials in the hip-
pocampus (Haas 1982; Pitler and Alger 1992). The modulation of
inhibition could be important for offsetting a loss of excitatory
transmission in the hippocampus as well because cholinergic
modulation has been shown to suppress excitatory synaptic po-
tentials in region CA3 and region CA1 of the hippocampus
(Hasselmo and Schnell 1994; Hasselmo et al. 1995; Hounsgaard
1978; Valentino and Dingledine 1981). Most of the cholinergic
effects on inhibitory potentials and currents shown here could be
due to either a decrease in the excitatory synaptic input to inter-
neurons or in the inhibitory transmission from interneurons. How-
ever, this study also shows that evoked inhibitory synaptic poten-
tials and currents recorded in the presence of CNQX and APV are
suppressed during perfusion of carbachol. This is consistent with
previous studies in hippocampus showing suppression of mono-
synaptic evoked inhibitory currents (Pitler and Alger 1992) and
decreased frequency of TTX-insensitive spontaneous inhibitory
currents (Behrends and ten Bruggencate 1993). Suppression of
inhibitory transmission was also demonstrated in cultures of neo-
cortical neurons (Kimura and Baughman 1997). This suggests that
the reduction in evoked inhibitory synaptic potentials is not just
due to a reduction in the excitatory input to interneurons.

Here we show cholinergic suppression of both the fast and
slow components of inhibitory synaptic potentials. Previous
work on inhibitory synaptic potentials in the hippocampus
reported an effect on both the fast and slow components (Pitler
and Alger 1992), although the bulk of previously presented
data concerned the fast GABAA-mediated inhibitory poten-
tials. Other studies analyzed cholinergic modulation of fast and
slow inhibitory potentials in a more detailed manner (Muller
and Misgeld 1989). In our data, the fast inhibitory synaptic
potentials are much more prominent with stimulation of layer
Ib than of layer Ia. Previous work in the piriform cortex has
repeatedly shown both components after layer Ib stimulation
(Tseng and Haberly 1989). Our data suggest that stimulation in
the afferent fiber layer predominantly evokes slower compo-
nents of the IPSP. This is consistent with more recent data
showing a greater proportion of slow GABA currents in more
distal dendritic regions (Kapur et al. 1997). If there is a laminar
difference in the relative amount of fast and slow inhibitory
potentials evoked by stimulation, this would be consistent with
data from hippocampal region CA1, where it has been shown
that stimulation of feedforward inhibition in stratum lacuno-
sum-moleculare selectively activates slower components of
inhibition (Lacaille and Schwartzkroin 1988).

Cholinergic agonists have been shown to increase frequency
of spontaneous inhibitory potentials recorded intracellularly
from pyramidal cells in brain slice preparations of the hip-
pocampus (Pitler and Alger 1992). This effect was also ob-
served in the piriform cortex in the presence of a range of
modulatory substances (Gellman and Aghajanian 1993), in-
cluding the cholinergic agonist carbachol (R. Gollub, personal
communication). This increase in spontaneous inhibitory po-
tentials was attributed to a direct depolarization of inhibitory
interneurons caused by activation of cholinergic receptors
(Behrends and ten Bruggencate 1993; Pitler and Alger 1992),

which was demonstrated with intracellular recording from in-
terneurons in the hippocampus (McQuiston and Madison 1996;
Reece and Schwartzkroin 1991). This effect appears somewhat
paradoxical with relation to the observed suppression of
evoked inhibitory potentials but may be due to a requirement
for lower tonic background activity, with greater response to
specific evoked patterns of activity. This could contribute to a
change in “signal-to-noise ratio” similar to that proposed for
effects of noradrenergic modulation. As shown in Fig. 3,
depolarized interneurons will result in an overall increase of
inhibitory tone, decreasing background activity, whereas sup-
pression of excitatory input to interneurons will results in less
feedback inhibition during activity elicited by afferent input.

The authors thank Dr. Donald Rannie for help with voltage-clamp record-
ings.

This research was supported by National Institute of Mental Health Grant
R29 MH-52732.

Address for reprint requests: M. E. Hasselmo, Dept. of Psychology, Boston
University, 64 Cummington St., Boston, MA 02215.

Received 10 September 1997; accepted in final form 6 January 1999.

REFERENCES

AMBROS-INGERSON, J., GRANGER, R.,AND LYNCH, G. Simulation of paleocortex
performs heirarchical clustering.Science247: 1344–1348, 1990.

AMIT, D. J. Modeling Brain Function: The World of Attractor Neural Net-
works.Cambridge, UK: Cambridge University Press, 1988.

BARKAI , E., BERGMAN, R. E., HORWITZ, G., AND HASSELMO, M. E. Modulation
of associative memory function in a biophysical simulation of rat piriform
cortex.J. Neurophysiol.72: 659–677, 1994.

BARKAI , E. AND HASSELMO, M. E. Modulation of the input/output function of
rat piriform cortex pyramidal cells.J. Neurophysiol.72: 644–658, 1994.

BEHRENDS, J. C.AND TEN BRUGGENCATE, G. Cholinergic modulation of syn-
aptic inhibition in the guinea pig hippocampus in vitro: excitation of
GABAergic interneurons and inhibition of GABA-release.J. Neurophysiol.
69: 626–629, 1993.

BEIDENBACH, M. A. Effects of anaesthetics and cholinergic drugs on prepyri-
form electrical activity in cats.Exp. Neurol.16: 464–479, 1966.

BOWER, J. M. Reverse engineering the nervous system: an in vivo, in vitro and
computational approach to understanding the mammalian olfactory system.
In: An Introduction to Neural and Electronic Networks, edited by S. Zor-
netzer, J. Davis, and C. Lau. New York: Academic, 1995.

BURGARD, E. C. AND SARVEY, J. M. Muscarinic receptor activation facilitates
the induction of long-term potentiation (LTP) in the rat dentate gyrus.
Neurosci. Lett.116: 34–39, 1990.

FRANSEN, E. AND LANSNER, A. Low spiking rates in a population of mutually
exciting pyramidal cells,Network6: 271–288, 1995.

FREEMAN, W. J. Mass Action in the Nervous System. New York: Academic,
1975.

FREEMAN, W. J., YAO, Y., AND BURKE, B. Central pattern generating and
recognizing in olfactory bulb: a correlation learning rule.Neural Networks
1: 277–288, 1988.

GELLMAN , R. L. AND AGHAJANIAN, G. K. Pyramidal cells in piriform cortex
receive a convergence of inputs from monoamine activated GABAergic
interneurons.Brain Res.600: 63–73, 1993.

GRANGER, R., AMBROS-INGERSON, J., AND LYNCH, G. Derivation of encoding
characteristics of layer II cerebral cortex.J. Cogn. Neurosci.1: 61–87, 1989.

HAAS, H. L. Cholinergic disinhibition in hippocampal slices of the rat.Brain
Res.233: 200–204, 1982.

HABERLY, L. B. Neuronal circuitry in olfactory cortex: anatomy and functional
implications.Chem. Senses.10: 219–238, 1985.

HABERLY, L. B. AND BOWER, J. M. Olfactory cortex: model circuit for study of
associative memory?Trends Neurosci.12: 258–264, 1989.

HANSEL D. AND SOMPOLINSKY H. Modeling feature selectivity in local cortical
circuits. In:Methods in Neuronal Modeling, edited by C. Koch and I. Segev.
Cambridge, MA: MIT Press, 1998.

HASSELMO, M. E. Acetylcholine and learning in a cortical associative memory.
Neural Comput.5: 32–44, 1993.

2117MODULATION OF INHIBITION



HASSELMO, M. E. Neuromodulation and cortical function: modeling the phys-
iological basis of behavior.Behav. Brain Res.67: 1–27, 1995.

HASSELMO, M. E., ANDERSON, B. P.,AND BOWER, J. M. Cholinergic modulation
of cortical associative memory function.J. Neurophysiol.67: 1230–1246, 1992.

HASSELMO, M. E. AND BARKAI , E. Cholinergic modulation of activity-depen-
dent synaptic plasticity in the piriform cortex: brain slice physiology and
computational modeling.J. Neurosci.15: 6592–6604, 1995.

HASSELMO, M. E. AND BOWER, J. M. Cholinergic suppression specific to
intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex.J. Neu-
rophysiol.67: 1222–1229, 1992.

HASSELMO, M. E. AND BOWER, J. M. Acetylcholine and memory.Trends
Neurosci.16: 218–222, 1993.

HASSELMO, M. E. AND CEKIC, M. Suppression of synaptic transmission allows
combination of associative feedback and self-organizing feedforward con-
nections in a model of neocortex.Behav. Brain Res.79: 153–161, 1996.

HASSELMO, M. E. AND LINSTER, C. Modeling the piriform cortex. In:Models of
Cortical Circuits. Cerebral Cortex, edited by E. G. Jones, P. S. Ulinski, and
A. Peters. New York: Plenum, 1998a, vol. 13.

HASSELMO, M. E. AND LINSTER, C. Acetylcholine and frontal cortex “signal-
to-noise” ratio. In: The Human Frontal Lobes: Function and Disorders,
edited by B. L. Miller and J. Cummings. New York: Guilford, 1998b.

HASSELMO, M. E., LINSTER, C., MA, D., AND CEKIC, M. Noradrenergic sup-
pression of synaptic transmission may influence cortical “signal-to-noise”
ratio. J. Neurophysiol.77: 3326–3339, 1997.

HASSELMO, M. E. AND SCHNELL, E. Laminar selectivity of the cholinergic
suppression of synaptic transmission in rat hippocampal region CA1: compu-
tational modeling and brain slice physiology.J. Neurosci.14: 3898–3914, 1994.

HASSELMO, M. E., SCHNELL, E., AND BARKAI , E. Dynamics of learning and
recall at excitatory recurrent synapses and cholinergic modulation in hip-
pocampal region CA3.J. Neurosci.15: 5249–5262, 1995.

HOUNSGAARD, J. Presynaptic inhibitory action of acetylcholine in area CA1 of
the hippocampus.Exp. Neurol.62: 787–797, 1978.

HUERTA, P. T.AND LISMAN, J. E. Heightened synaptic plasticity of hippocam-
pal CA1 neurons during a cholinergically induced rhythmic state.Nature
364: 723–725, 1993.

KAPUR, A., PEARCE, R. A., LYTTON, W. W., AND HABERLY, L. B. GABAA-
mediated IPSCs in piriform cortex have fast and slow components with
different properties and locations on pyramidal cells.J Neurophysiol.78:
2531–2545, 1997.

KIMURA, F. AND BAUGHMAN, R. W. Distinct muscarinic receptor subtypes
suppress excitatory and inhibitory synaptic responses in cortical neurons.
J. Neurophysiol.77: 709–716, 1997.

LACAILLE, J. C.AND SCHWARTZKROIN, P. A. Stratum lacunosum-moleculare inter-
neurons of hippocampal CA1 region. I. Intracellular response characteristics,
synaptic responses and morphology.J. Neurosci.8: 1400–1410, 1988.

LEVY, W. B., COLBERT, C. M., AND DESMOND, N. L. Elemental adaptive
processes of neurons and synapses: a statistical/computational perspective.
In: Neuroscience and Connectionist Theory,edited by M. A. Gluck and
D. E. Rumelhart. Hillsdale, NJ: Erlbaum, 1990, p. 187–236.

LILJENSTROM, H. AND HASSELMO, M. E. Cholinergic modulation of cortical
oscillatory dynamics.J. Neurophysiol.74: 288–297, 1995.

LILJENSTROM, H. AND WU, X. B. Noise-enhanced performance in a cortical
associative memory model.Int. J. Neural Syst.6: 19–29, 1995.

LINSTER, C. AND HASSELMO, M. E. Modulation of inhibition in a model of
olfactory bulb reduces the overlap in the neural representation of olfactory
stimuli. Behav. Brain Res.84: 117–127, 1997.

LINSTER, C., WYBLE, B. P., AND HASSELMO, M. E. Reciprocal interactions
between the olfactory system and the horizontal limb of the diagonal band
of Broca.Soc. Neur. Abstr.23: 807.8, 1997.

LINSTER, C., WYBLE, B. P., AND HASSELMO, M. E. Modulation of synaptic
potentials in the piriform cortex by electrical stimulation of the horizontal
limb of the diagonal band of Broca.J. Neurophysiol.In press.

MCQUISTON, A. R. AND MADISON, D. V. Postsynaptic actions of cholinergic
receptor activation on multiple types of interneurons in CA1 region of the rat
hippocampus.Soc. Neurosci. Abstr.22: 786, 1996.

METHERATE, R., ASHE, J. H.,AND WEINBERGER, N. M. Acetylcholine modifies
neuronal acoustic rate-level functions in guinea pig auditory cortex by an
action at muscarinic receptors.Synapse6: 364–368, 1990.

MULLER, W AND MISGELD, U. Carbachol reduces IKbaclofen, but not IKGABA in
guinea pig hippocampal slices.Neurosci. Lett.102: 229–234, 1989.

PATIL , M. M., LINSTER, C., LUBENOV, E., AND HASSELMO, M. E. Cholinergic
agonist carbachol enables associative long-term potentiation in piriform
cortex slices.J. Neurophysiol.80: 2467–2474, 1998.

PINTO, D. J., BRUMBERG, J. C., SIMONS, D. J., AND ERMENTROUT, G. B. A
quantitative population model of whisker barrels: re-examining the Wilson-
Cowan equations.J. Comput. Neurosci.3: 247–264, 1996.

PITLER, T. A. AND ALGER, B. E. Cholinergic excitation of GABAergic inter-
neurons in the rat hippocampal slice.J. Physiol. (Lond.).450: 127–142,
1992.

REECE, L. J. AND SCHWARTZKROIN, P. A. Effects of cholinergic agonists on 2
nonpyramidal cell-types in rat hippocampal slices.Brain Res.566: 115–126,
1991.

ROMAN, F., STAUBLI , U., AND LYNCH, G. Evidence for synaptic potentia-
tion in a cortical network during learning.Brain Res. 418: 221–226,
1987.

ROMAN, F. S., SIMONETTO, I., AND SOUMIREU-MOURAT, B. Learning and mem-
ory of odor-reward association: selective impairment following horizontal
diagonal band lesions.Behav. Neurosci.107: 72–81, 1993.

ROMAN, F. S., CHAILLAN , F. A., AND SOUMIREU-MOURAT, B. Long-term po-
tentiation in rat piriform cortex following discrimination learning.Brain
Res.601: 265–72, 1993.

SCHOENBAUM, G. AND EICHENBAUM, H. Information coding in the rodent
prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared
with that in pyriform cortex.J Neurophysiol.74: 733–750, 1995.

SILLITO , A. M. AND KEMP, J. A. Cholinergic modulation of the functional
organization of the cat visual cortex.Brain Res.289: 143–155, 1983.

TSENG, G.-F. AND HABERLY, L. B. Characterization of synaptically mediated
fast and slow inhibitory processes in piriform cortex in an in vitro slice
preparation.J. Neurophysiol.59: 1352–1376, 1988.

TSODYKS, M. V., SKAGGS ,W. E., SEJNOWSKI, T. J.,AND MCNAUGHTON, B. L.
Paradoxical effects of external modulation of inhibitory interneurons.
J. Neurosci.17: 4382–4388, 1997.

VALENTINO, R. J.AND DINGLEDINE, R. Presynaptic inhibitory effect of acetyl-
choline in the hippocampus.J. Neurosci.1: 784–792, 1981.

WILLIAMS , S. H. AND CONSTANTI, A. A. Quantitative study of the effects of
some muscarinic antagonists on the guinea-pig olfactory cortex slice.Br. J.
Pharmacol.93: 855–862, 1988.

WILSON, H. R. AND COWAN, J. D. Excitatory and inhibitory interactions in
localized populations of model neurons.Biophys. J.12: 1–24, 1972.

WILSON, H. R. AND COWAN, J. D. A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue.Kybernetik13: 55–80,
1973.

WILSON, M. A. AND BOWER, J. M. A computer simulation of olfactory cortex
with functional implications for storage and retrieval of olfactory informa-
tion. In: Advances in Neural Information Processing Systems, edited by D.
Amderson. New York: AIP, 1988, p. 114–126.

YAMAMOTO, C. AND KAWAI , N. Presynaptic action of acetylcholine in thin
sections from the guinea-pig dentate gyrus in vitro.Exp. Neurol.19: 176–
187, 1967.

YAO, Y. AND FREEMAN, W. J. Model of biological pattern recognition with
spatially chaotic dynamics.Neural Networks3: 153–170, 1990.

2118 M. M. PATIL AND M. E. HASSELMO


