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Abstract

Episodic memory binds the spatial and temporal relationships between the elements of

experience. The hippocampus encodes space through place cells that fire at specific spa-

tial locations. Similarly, time cells fire sequentially at specific time points within a tempo-

rally organized experience. Recent studies in rodents, monkeys, and humans have

identified time cells with discrete firing fields and cells with monotonically changing

activity in supporting the temporal organization of events across multiple timescales.

Using in vivo electrophysiological tetrode recordings, we simultaneously recorded neu-

rons from the prefrontal cortex and dorsal CA1 of the hippocampus while rats per-

formed a delayed match to sample task. During the treadmill mnemonic delay,

hippocampal time cells exhibited sparser firing fields with decreasing resolution

over time, consistent with previous results. In comparison, temporally modulated

cells in the prefrontal cortex showed more monotonically changing firing rates,

ramping up or decaying with the passage of time, and exhibited greater temporal

precision for Bayesian decoding of time at long time lags. These time cells show

exquisite temporal resolution both in their firing fields and in the fine timing of

spikes relative to the phase of theta oscillations. Here, we report evidence of

theta phase precession in both the prefrontal cortex and hippocampus during

the temporal delay, however, hippocampal cells exhibited steeper phase preces-

sion slopes and more punctate time fields. To disentangle whether time cell

activity reflects elapsed time or distance traveled, we varied the treadmill run-

ning speed on each trial. While many neurons contained multiplexed represen-

tations of time and distance, both regions were more strongly influenced by

time than distance. Overall, these results demonstrate the flexible integration

of spatiotemporal dimensions and reveal complementary representations of

time in the prefrontal cortex and hippocampus in supporting memory‐guided

behavior.
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1 | INTRODUCTION

Episodic memory requires the ability to effectively remember the time

and location of events (Eichenbaum & Fortin, 2003; Hasselmo, 2012;

Tulving, 1983). Models of episodic memory commonly include interac-

tions of storage mechanisms in the hippocampus (HPC) with the regu-

lation of encoding and retrieval by the prefrontal cortex (PFC)

(Eichenbaum, 2017b; Hasselmo & Eichenbaum, 2005). As a locus for

memory, spiking activity in the hippocampus could provide a neural

substrate for coding location and time based on the response of place

cells (O'Keefe & Burgess, 2005; O'Keefe & Dostrovsky, 1971; O'Keefe

& Recce, 1993) as well as time cells that fire at specific temporal inter-

vals during running in one location (Kraus et al., 2013; MacDonald

et al., 2011, 2013; Mau et al., 2018; Pastalkova et al., 2008; Shimbo

et al., 2021; Taxidis et al., 2020). Time cell sequences have been

observed in other structures, including the prefrontal cortex (Bakhurin

et al., 2017; Cruzado et al., 2020; Pilkiw & Takehara-Nishiuchi, 2018;

Tiganj et al., 2017), medial entorhinal cortex (Kraus et al., 2015), and

striatum (Akhlaghpour et al., 2016; Bakhurin et al., 2017; Mello

et al., 2015). In contrast, neuronal responses also show ramping activ-

ity with gradual increases or decreases in firing over an extended

delay period in the hippocampus and subiculum (Deadwyler &

Hampson, 2004; Hampson & Deadwyler, 2003), during the expecta-

tion of reward in the striatum (van der Meer & Redish, 2011), during

interval timing and working memory in the prefrontal cortex (Kim

et al., 2013), and during exploration of different environments in the

lateral entorhinal cortex (Tsao et al., 2018). Previous studies indepen-

dently compared activity in the prefrontal cortex and hippocampus

under different behavioral task demands so how these two comple-

mentary, distributed representations support temporal coding remain

unclear. To rule out confounding factors, here we utilized simulta-

neous tetrode recordings to directly compare the neural coding of

time in the prefrontal cortex and hippocampus during the treadmill

period of a delayed match to sample task.

Hippocampal neurons also show temporal coding of behavioral

variables in terms of spiking relative to the phase of theta rhythm

oscillations in the local field potential (LFP). Place cells exhibit theta

phase precession, a transition in the firing phase from late phases to

early phases as an animal traverses the place field (Kjelstrup

et al., 2008; O'Keefe & Recce, 1993; Skaggs et al., 1996), with a

slope that changes with the size of place fields or running speed

(Huxter et al., 2003; Kjelstrup et al., 2008; Maurer et al., 2012;

Skaggs et al., 1996). Time cells also show theta phase precession as

animals pass through the temporal firing field (Pastalkova

et al., 2008; Shimbo et al., 2021). Time cell responses have been

modeled based on an inverse Laplace transform that can combine

ramping cells with exponential decays to generate time cells that

peak at discrete times (Howard et al., 2014; Liu et al., 2019; Shankar

et al., 2016). These computational models provide a framework for

the prediction of the time of future events on different time scales

(Shankar et al., 2016), and this predictive model can simulate theta

phase precession in both discrete time cells (Pastalkova et al., 2008)

and ramping cells (van der Meer & Redish, 2011). Consistent with

this multi-scale representation, theta phase precession has been

shown to change slope when animals run through firing fields of dif-

ferent sizes regardless of running speed (Kjelstrup et al., 2008), and

can show slow precession during ramp-like changes in firing rate

(Terada et al., 2017; van der Meer & Redish, 2011). Some neurons

with broader firing fields can show multiple cycles of precession

during a broadly distributed increase in firing rate over locations

(Kim et al., 2012; Skaggs et al., 1996). In the current work, we inves-

tigate phase coding of prefrontal and hippocampal time cells during

the delay period, and test the stability of time cell firing field and

theta phase precession slope during running at different treadmill

speeds.

2 | METHODS

2.1 | Subjects

Three male Long-Evans rats (Charles River Laboratories), aged

3–12 months, weighing between 350–450 g were used for these

experiments. Rats were individually housed in plexiglass cages in a

temperature and humidity controlled vivarium with a 12 h light/dark

cycle. During the first week of habituation and handling, animals had

free access to food and water. For all subsequent behavioral training

and recording sessions, animals received reduced food and water but

were kept at a minimum of 85% of their ad libitum weight. All experi-

mental procedures were performed in compliance with the guidelines

of the National Institutes of Health and the Institutional Animal Care

and Use Committee at Boston University.

2.2 | Behavioral training and apparatus

The task environment was a custom-built wood maze (135 L

� 71 W � 90 H cm) consisting of a study arena (30 L � 30 W cm),

motorized treadmill (Columbus Instruments, 40 L � 14 W cm), test

arena (40 L � 40 W cm), and return arm (122 L � 7.6 W cm). In the

study arena, two objects were fixed on a rotating platform and sepa-

rated by a wall such that only one object was pseudorandomly pre-

sented at the start of each trial, while the other object was hidden

behind the wall. The objects consisted of two polycarbonate cylinders

(7 cm high with a diameter of 8 cm), filled with either purple beads

scented with blueberry oil or orange yarn scented with cumin. Each

object was equipped with an infrared break beam sensor (Adafruit) to

precisely detect when the animal's nose crossed the mid-diameter of

the cylinder, and a water port (1.5 cm diameter) was located in the cen-

ter for delivering 10% sucrose water reward. An automatic door was

positioned at the front of the treadmill to divide the study and test

arenas, and an infrared break beam sensor (Adafruit) was positioned

two inches from the front of the door on the treadmill to detect the

rat's presence on the treadmill. In the test arena, the same two objects

were placed on a rotating platform but without the dividing wall so that

animals could choose either object. On each trial, the position of the

578 NING ET AL.
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test objects changed pseudorandomly to either left or right. The door

and object platforms were actuated by hobby servo motors, reward

delivery via solenoids, which were all controlled by an Arduino Mega

2560 microcontroller. Custom MATLAB and Arduino code used for

automated control of the behavioral task is available at https://github.

com/winnyning/TimeCells.

At the start of all experiments, animals were acclimated to the

testing room and handled by researchers for at least a week. Rats

were then trained to consume Froot Loops (Kellogg's) and 10%

sucrose water (Sigma-Aldrich) from the experimenters' hands. Once

animals readily consumed both rewards from researchers, they were

introduced to the maze apparatus to perform a delayed match to

sample task.

On the first day of habituation, animals freely traversed

the environment and foraged for randomly dispersed Froot Loops. On

subsequent days, they were shaped to sample the objects in the study

and test phase for an immediate sucrose water reward. After animals

readily consumed reward from all objects, they began training on a

blocked object discrimination task. In this stage, the revealed study

object remained fixed and garnered a small water reward, but the ani-

mal was required to sample the pseudorandomly positioned matching

test object for a larger reward. During this phase, rats were required

to run in a single direction around the maze, from the study to the test

arena, and then around the return arm. Rats were also shaped at this

stage to remain at the rewarded objects for 2 s before reward was

administered. Importantly, animals were allowed to sample either

object as many times as necessary for shorter than 2 s before holding

for 2 s to indicate a choice. Reward administration was accompanied

by an audible click from the solenoid as the water port was activated.

During an incorrect choice, no reward was given and a 261 Hz tone

was played from a piezo buzzer for 0.5 s to indicate a miss.

Over the first six to eight weeks of training, animals started with

large blocks (10–20 trials) of the same rule, either matching beads or

yarn with no treadmill delay. Once performance levels exceeded 75%

correct after 50 trials of a given block size, the block size decreased in

small increments until animals were performing well at random trials

in which beads or yarn was presented pseudorandomly with no delay.

Subsequently, we introduced a temporal delay between the study and

test phase by requiring animals to run on a treadmill at a speed of

30 cm/s to ensure spatial location, behavior and other sensory inputs

remained constant across the delay. Once animals grew accustomed

to the treadmill, the temporal delay gradually increased up to 8 sec-

onds. Typically, animals took three to five months to be fully trained

on the delayed match to sample task, consistently performing at over

75% correct for 60–100 trials per day.

2.3 | Stereotaxic surgery for hyperdrive
implantation

Once animals reached the performance criterion (at least 75% correct

trials for 4–8 s delay), rats received free food and water for a week,

and then were surgically implanted with custom-built hyperdrives

under aseptic conditions. Each hyperdrive contained up to 24 indepen-

dently movable tetrodes, targeted unilaterally to the left hemisphere

of the medial prefrontal cortex (anterior/posterior [AP] +2.5 mm,

medial/lateral [ML] +0.6 mm, relative to bregma) and dorsal CA1 of

the hippocampus (AP �3.6 mm, ML +2.6 mm, relative to bregma) for

simultaneous electrophysiological recordings. Each tetrode was

composed of four intertwined nickel-chrome wires (12 μm diameter,

RO 800, Sandvik Precision Fine Tetrode Wire) and the tips were gold-

plated (non-cyanide gold solution, SIFCO) to lower the final impedance

to around 200 kΩ at 1 kHz (nanoZ, Neuralynx).

Anesthesia was induced via inhalation of 5% isoflurane (Henry

Schein Animal Health) in oxygen. Once the animal was anesthetized,

as determined by a lack of response to a toe or tail pinch, the head

was shaved and the rat was transferred from an induction chamber to

a stereotaxic frame (Kopf Instruments). Animals were stabilized at

1.5%–3% isoflurane for the entire duration of the surgical procedure

with continuous body temperature and heart rate monitoring

(PhysioSuite, Kent Scientific). Animals received preoperative injections

of the analgesic buprenorphine hydrochloride (Buprenex, 0.03 mg/kg

intramuscular, Reckitt Benckiser Healthcare), antibiotic cefazolin

(50 mg/kg intramuscular, WG Critical Care), anti-inflammatory Rima-

dyl (5 mg/kg subcutaneous, Zoetis Inc.), and respiratory stabilizer atro-

pine (0.05 mg/kg subcutaneous, Henry Schein Animal Health). After

cleaning the animal's head with chlorhexidine and alcohol, a 10 mm

midline incision was made and held open by hemostats or nylon

sutures (Ethicon) to expose the skull. Surrounding connective tissue

and fascia were cleared to reveal bregma and lambda landmarks and

the skull was leveled. One to two screws were implanted above the

cerebellum to serve as a ground signal, and six to eight anchoring

screws were positioned around the perimeter of the skull and covered

with Metabond cement (Parkell). Two large craniotomies centered

around the left medial prefrontal cortex and dorsal CA1 of the hippo-

campus were performed. After removing the dura mater, the guide

cannulae of the hyperdrive were positioned inside the two cranioto-

mies, on the pial surface above the brain. Excess gaps between the

craniotomies and cannulae were filled with vaseline and a silicone

polymer Kwik-Cast (World Precision Instruments), and the hyperdrive

implant was affixed to surrounding screws using dental acrylic (Perm

Reline, Coltene). Once the hyperdrive implant was firmly secured, an

antibiotic ointment (Neosporin) was applied and the wound was

closed using absorbable Vicryl sutures (Ethicon) if needed. Finally, all

tetrodes targeting the prefrontal cortex and hippocampus were grad-

ually lowered 0.85–1.5 mm into brain tissue, prior to removal of

anesthesia. For postoperative care, animals were administered with

Buprenex (0.03 mg/kg intramuscular), cefazolin (50 mg/kg intramus-

cular), and Rimadyl (5 mg/kg subcutaneous) twice daily for two to

three consecutive days following surgery. Animals were given a

week for recovery with ad libitum access to food and water before

starting electrophysiological recordings. During the recovery period

and subsequent retraining on the delayed match to sample task, tet-

rodes were gradually descended into the medial prefrontal cortex

and dorsal CA1 of the hippocampus, moving in increments as small

as 0.02 mm (1/16 of a turn). To confirm the location of tetrodes
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within CA1 of the hippocampus, we observed the presence of estab-

lished electrophysiological signatures of the pyramidal layer, includ-

ing multi-unit activity, strong theta in the local field potential, and

sharp-wave ripple activity.

2.4 | In vivo electrophysiological recordings

All electrophysiological recordings were collected using a 96 channel

Multichannel Acquisition Processor (MAP) recording system (Plexon).

For single-unit activity, each channel was amplified (1,000 to

10,000x), bandpass filtered between 200 Hz to 8.8 kHz, and digitized

at 40 kHz. Spiking activity was referenced to a local tetrode without

clear unit activity to remove any electrical noise or movement related

artifacts. Local field potentials were amplified (1,000x), bandpass fil-

tered between 1.5 to 300 Hz, and digitized at 1 kHz. The continuous

LFPs were uniformly referenced to cerebellar ground screws. Action

potentials of neurons were detected via threshold crossing, which

was manually set for each tetrode. Spike data were sorted from each

tetrode into individual single units via manual cluster cutting using

Offline Sorter (Plexon) and the following waveform parameters: peak-

valley, valley, valley full width at half maximum, peak to valley ticks,

energy, and principal components. Unit isolation quality was quanti-

fied using standardized Lratio and isolation distance metrics

(Schmitzer-Torbert et al., 2005).

Behavioral and positional data were recorded with Cineplex Stu-

dio (Plexon) using two overhead cameras, one positioned above the

entire behavioral apparatus and another above the test box, sampled

at 80 Hz, and were synchronized to the neural data acquisition sys-

tem. The animal's position was tracked using two light-emitting diodes

attached to the recording headstage. Timestamps of behavioral events

were automatically strobed via transistor–transistor logic (TTL) pulses

to the digital input board within the Plexon MAP system upon infrared

break beam sensor crossings, door movements, and water reward

deliveries.

2.5 | Behavioral testing

After a week of recovery from surgery, animals were food and water

restricted again, maintaining no less than 85% of their ad libitum

weight. Rats reacclimated to the testing environment and were

retrained on the delayed match to sample task until performance

reached above 75% correct for 60–100 trials of 8 s treadmill delay for

multiple consecutive days. Once tetrodes were lowered to the desired

depth and rats reached the performance criterion, recording sessions

commenced.

Prior to beginning a recording session, the animal was placed on

an elevated pedestal to connect to electrophysiological acquisition

equipment. Each session consisted of 60–100 trials of 8 s treadmill

delay. For each trial, the rat was randomly presented with one of two

objects (beads or yarn) during the study phase. The animal was

required to sample the object for 2 s for a small 10% sucrose water

reward and then ran on an 8 s treadmill delay held at a constant speed

of 30 cm/s. The start and stop of the treadmill were abrupt. The full

period of both acceleration and deceleration were included within the

8 s, but these full periods were very brief intervals. After the mne-

monic delay, an automatic door opened and the animal entered the

test box. The animal either correctly matched the same object sam-

pled previously by holding their nose in front of the object pot for 2 s

and received a 10% sucrose water reward, or made an incorrect

response (no reward). After the test phase, the animal ran along a

return arm that circled back to the study phase and the next trial

began. Generally, after each recording session, tetrodes were lowered

to reduce the likelihood of recording from the same neurons for multi-

ple sessions.

Rats performed two different variations of the delayed match to

sample task: normal 8 s delay or 8 s delays with different treadmill

speeds. For the normal 8 s sessions, each trial had a fixed treadmill

delay of 8 s and the treadmill speed was held constant at 30 cm/s. For

the different treadmill speed sessions, each trial had a fixed 8 s delay

but the treadmill speed pseudorandomly varied (25, 30, 35, 40, and

45 cm/s).

2.6 | Histology

Upon completion of the experiments, rats were anesthetized with

5% isoflurane in oxygen. To confirm tetrode recording locations,

small electrolytic lesions at the tips of the tetrodes were created

by passing 40 μA of current through each wire until the connection

was severed (normally 1–10 s). Animals were then administered an

overdose injection of Euthasol (50 mg/kg, intraperitoneal, Virbac

AH, Inc.), and were transcardially perfused with cold 0.05 M KPBS,

followed by 10% phosphate buffered formalin. The implanted

hyperdrive was removed and the brain was extracted from the

skull and stored in 10% phosphate buffered formalin at 4�C. A

week before slicing, the brains were transferred to a 30% sucrose

solution in 0.05 M KPBS for cryoprotection. Immediately prior to

sectioning, brains were flash-frozen (Freeze It Spray, Fisher Scien-

tific) and sliced into 40 μm coronal sections using a cryostat (Leica

CM3050S). Brain sections were mounted onto gelatin subbed

microscope slides (SouthernBiotech) and subsequently stained with

cresyl violet for histological confirmation of tetrode recording loca-

tions. Histological images were acquired using a Nikon Eclipse Ni-E

microscope with a 4x or 10x objective lens. Tetrode lesions and

tracts in the prefrontal cortex and dorsal CA1 of the hippocampus

were verified and registered to turn logs and images of the hyper-

drive implant guide cannulae.

2.7 | Unit quality and classification

All analyses were performed using custom code in MATLAB (Math-

Works). To quantitatively evaluate cluster quality, standard Lratio and

isolation distance metrics were calculated from a 128 dimensional

580 NING ET AL.
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feature space (Schmitzer-Torbert et al., 2005). Accepted clusters had

an isolation distance above the 5th percentile (80.94) and Lratio below

the 95th percentile (0.19). Well isolated units that passed cluster qual-

ity thresholds were then classified into putative pyramidal neurons or

interneurons based on the average firing rate and waveform shape.

Only pyramidal cells that had a mean firing rate below 20 Hz and

waveform duration greater than 0.4 ms were included in further

analyses.

2.8 | Peri-event time histograms and raster plots

For single-unit analyses, peri-event time histograms (PETHs) and

raster plots were generated and time-locked to the initiation of the

treadmill delay. For the PETHs, the 8 s delay period was divided

into 100 ms nonoverlapping bins and the trial averaged firing rate

was calculated and then smoothed with a Gaussian kernel with a

standard deviation of 200 ms. For all analyses, the PETHs were

restricted to only the mnemonic delay, starting from when the ani-

mal crossed the infrared break beam sensor causing the treadmill

to start, to when the treadmill stopped moving and the door to

the test box automatically opened.

2.9 | Identification and characterization of
temporally modulated cells

To quantify the temporal firing field properties of individual neurons,

we calculated sparsity, temporal information (bits per spike), and peak

firing rate for each unit from the PETH as described above. Sparsity

was computed using the following equation (adapted from Skaggs

et al., 1996):

Sparsity¼1�
P

piλið Þ2P
pi λið Þ2

where i is the temporal bin number, pi is the occupancy probability of

time bin i, and λi is the mean firing rate of the cell at time bin i.

Sparsity values ranged between 0 and 1, where a value closer to

0 indicates a broader tuning curve, meaning that the cell is active for a

larger proportion of the delay. A larger sparsity value closer to 1 indi-

cates a narrower firing field.

Temporal information (bits per spike) quantifies the amount of

information each spike conveys about time during the delay and was

calculated using the following formula (Skaggs et al., 1993, 1996):

Information¼
XN
i¼1

pi
λi
λ
log2

λi
λ

where i is the temporal bin number, pi is the occupancy probability of

time bin i, λi is the mean firing rate of the cell at time bin i, and λ is the

overall mean firing rate of the cell across all bins.

To determine significance, we performed a bootstrap permutation

procedure whereby the unit's spike train for each trial was circularly

shifted by a random time between 0.5 s and 7.5 s, and the mean curve

was calculated 1000 times. A null distribution of shuffled scores was

generated and p values were calculated via normalized likelihood. Cells

were identified as temporally modulated if the likelihood of both the

temporal information score and the peak firing rate were less than 0.01.

2.10 | Autocorrelogram and theta index

To calculate theta power in each unit's spike time autocorrelogram, a

model was fit using a previously published method (Royer

et al., 2010). First, a cell's autocorrelogram was calculated by binning

spikes into 10 ms time bins, then calculating the autocorrelation at 0

to 700 ms lags (t), and scaling the maximum value to 1. The following

equation was fit to the correlation values across time lags using the

function fit (MATLAB):

y tð Þ¼ a sin 2πωtð Þþ1ð Þþb½ � �e
� tj j
τ1 þc�e

�t2

τ2
2

The parameter bounds were as follows: �1 < a <1, 5 < ω <14Hz,

�1< b <1, �1< c <1, 100ms< τ1 < 1000ms, 10ms< τ2 < 100ms,

and the initial point began with the midpoint between each bound.

The theta index was calculated as the ratio of a=b.

2.11 | Theta phase estimation

The local field potential signal of the tetrode with the most hippocam-

pal units during the recording session was used as the LFP reference

for all units on that day. The LFP signal was bandpass filtered in the

theta frequency range (5 to 12 Hz) using a three-pole Butterworth fil-

ter, and the Hilbert transform was applied to obtain the instantaneous

theta phase and amplitude. To prevent the overestimation of phase

preferring units due to the asymmetric shape of the theta rhythm in

the LFP, we adopted a previously used method of linearly interpolat-

ing phases between the peaks and troughs of the analytic signal

(Belluscio et al., 2012). The LFP data were sampled at 1000 Hz and

the phase of each spike was interpolated using a nearest-neighbor

approach. Zero phase is defined as the peak of the theta oscillation in

CA1 of the dorsal hippocampus. For each neuron, the mean theta

phase was calculated using the circ_mean function in the circular sta-

tistics toolbox (Berens, 2009). Because the distribution of the mean

theta phase appeared to be bimodal, we opted to use the Omnibus

test, also known as the Hodges–Ajne test (Zar, 1999), for circular

uniformity to identify significant phase-locking cells (p < .05) using the

circ_otest function (Berens, 2009). This is a better alternative to the

commonly used Rayleigh test as it does not make specific assumptions

about the distribution, whereas the Rayleigh test is more suitable for

unimodal data (Fisher, 1995). Grouping of preferred phase across cells
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was tested with Rao's spacing test for circular uniformity

(Batschelet, 1981) using the function circ_raotest (Berens, 2009).

2.12 | Theta phase precession

To quantify theta phase precession, we adopted a circular–linear cor-

relation methodology similar to previously published approaches

(Kempter et al., 2012; Robinson et al., 2017). Briefly, the firing field of

each unit was estimated as spikes falling in the values of the top 80% fir-

ing rate bins of the delay period peri-event time histogram after rescaling

the mean curve to between 0 and 1. A circular–linear correlation was fit

between time xj and spike theta phase ϕj using the following equation:

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

cos ϕj�2πaxj
� �" #2

þ 1
n

Xn
j¼1

sin ϕj�2πaxj
� �" #2

vuut

The best estimated slope (a) of the regression line was quantified by

maximizing the mean resultant length (R) following an iterative search

algorithm using fminsearch (MATLAB).

2.13 | Population vector correlation

First, a firing rate vector for each temporally modulated cell was calcu-

lated separately for even and odd trials in the same manner as used in

the peri-event time histograms, but without convolving with a Gauss-

ian kernel. Then, mean even and odd trial rate vectors were

concatenated across units and all sessions. From these two 80 time

bin by n unit matrices, a Spearman correlation was calculated between

each column of the even trial matrix to each column of the odd trial

matrix. To match unit counts across regions and to jackknife a mean

correlation value, we randomly selected 128 units from each region

for 500 iterations and computed the average of the resulting correla-

tion matrices. Finally, the raw values of the HPC matrix were sub-

tracted from those in the PFC unit matrix to yield Figure 4b.

2.14 | Bayesian decoding of time

To calculate the Bayesian posterior probability of time given the

ensemble activity, a 10-fold cross-validated Bayesian decoder was

used with a Poisson distribution link function. Trial rate curves were

concatenated across sessions by using only the first 60 trials of every

session, and the decoder was bootstrapped 500 times using 128 units

randomly selected from each region. We only included temporally

modulated cells in this analysis, to be consistent with the above corre-

lation analyses. The mean posterior probability of each time given

each time ensemble was calculated (Figure 4c-i, c-ii). The mean error

of the decoded time across the six decoders was calculated, producing

500 error values across boots, and those values contributed to the

histograms illustrated in Figure 4d,e.

2.15 | Time versus distance analyses

For the different treadmill speed sessions, peri-event time histograms

and raster plots of individual units were calculated using a similar method

as the constant treadmill speed sessions. For PETHs and rasters plotted

as a function of time, spike timestamps were locked to the treadmill start

and the 8 s delay was divided into 100 ms nonoverlapping bins. For each

treadmill speed, the trial averaged firing rate was calculated and then

smoothed with a Gaussian kernel with a standard deviation of 200 ms.

For PETHs and rasters plotted as a function of distance, spike time-

stamps locked to the treadmill start were first multiplied by the treadmill

speed on that trial, and then binned into 80 distance bins along with the

distance of the fastest run. Then, the mean firing rate curve for each

treadmill speed was calculated before registering those curves by dis-

tance, and averaging across trials for each treadmill speed.

For each treadmill speed condition (25, 30, 35, 40, and 45 cm/s),

theta phase precession slopes over time and distance were calculated for

each unit using a circular–linear correlation method as previously

described, based on firing fields that were in the top 80% of the peak fir-

ing rate. To compare precession slopes across different treadmill speeds

for each cell, values were normalized to slopes in the 35 cm/s condition.

2.16 | Generalized linear model

A generalized linear model (GLM) framework was used to analyze the rela-

tive contributions of time and distance on cell activity during the treadmill

delay (Kraus et al., 2013, 2015; MacDonald et al., 2011). First, the firing of

each cell was converted to spike counts for each 100 ms bin following the

treadmill onset. An equivalent number of spatial bins were generated for the

fastest treadmill speed, and each temporal bin was assigned to a distance bin

based on the spatial bin in which the center of that time bin fell. For slower

running speeds, multiple temporal bins were assigned to the same distance

bin to account for the longer time duration the rat spent at that distance bin.

This allowed for the calculation of the empirical mean rate curve across time

and distance separately across running speeds. A GLM was then generated

with the empirical time and distance firing rate curves in 100 ms bins as the

predictors and then compared to that with only one of the curves as a pre-

dictor. Importantly, these two rate curves contained an equivalent number of

bins (and therefore predictors) allowing for a direct comparison of the two

predictor sets. To compare the likelihood of a time code over a distance

code, a logistic regression model was generated to predict the likelihood of a

spike at each bin on each trial given the mean firing rate curves for distance

and time and the deviances of those models were compared.

3 | RESULTS

3.1 | Rats performed a delayed match to sample
task with an 8 second treadmill delay

To investigate how the prefrontal cortex and hippocampus support

the temporal organization of memory, we recorded 547 neurons
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extracellularly in the medial prefrontal cortex (including anterior cingu-

late cortex, prelimbic and infralimbic regions) and 303 neurons in dor-

sal CA1 of the hippocampus from male Long-Evans rats (n = 3)

performing a delayed match to sample task (Figure 1a). Each animal

was unilaterally implanted with a dual-site hyperdrive with

24 independently movable tetrodes (96 channels) and recording loca-

tions in the prefrontal cortex and dorsal hippocampus were confirmed

with histology (Figure 1b). Well isolated units were identified using

standard Lratio and isolation distance metrics and putative pyramidal

cells with a mean firing rate below 20 Hz and waveform duration

F IGURE 1 Experimental task design
and tetrode recording sites. (a) Schematic
of the automated delayed match to
sample behavioral paradigm. Rats were
presented with one of two objects, ran
on a motorized treadmill for an 8 second
delay held at a constant speed of 30 cm/
s, and were subsequently required to
select the matching object to retrieve a

sucrose water reward (gray circles).
(b) Recording locations of tetrodes in the
prefrontal cortex (PFC), including anterior
cingulate cortex (Cg1), prelimbic (PrL),
and infralimbic (IL), and dorsal CA1 of the
hippocampus (HPC) in representative
coronal sections stained with cresyl
violet. Circles indicate the final lesion
marks at the most ventral positions.
Schematic diagram adapted from Paxinos
and Watson (1998).
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greater than 0.4 ms were included in further analyses. On each trial,

rats sampled one of two objects for 2 s, then ran on a treadmill mne-

monic delay for 8 s held at a constant speed of 30 cm/s. Controlling

for spatial and behavioral variables allowed us to examine neural

activity as a function of elapsed time and investigate how the prefron-

tal cortex and hippocampus generate an internal representation of the

passage of time during the delay. After the treadmill delay, animals

entered the test box and were allowed to sample the two objects. The

final choice was determined by holding the nose poke response in one

of the two objects for at least 2 s. Sucrose water rewards were deliv-

ered for correct trials, while incorrect trials were signaled with no

reward and an auditory tone. Rats were pretrained to run 60–100

F IGURE 2 Single cells in the prefrontal cortex and hippocampus exhibit temporally modulated activity during the treadmill delay. (a–b)
Examples of individual time cells and ramping cells in PFC and (c-d) dorsal CA1 of HPC during the 8 s treadmill delay. Top: raster plot, each row
represents one trial with spiking activity aligned to treadmill delay onset. Bottom: peri-event time histogram showing the smoothed average firing
rate (black line) across all trials in a given recording session. Red vertical lines indicate the start and stop of the 8 s treadmill delay. Time cells in
PFC (a) and HPC (c) fire sequentially at specific time points, exhibiting sparse temporal firing fields that tiled the entire delay period. Some units in

PFC (b) and HPC (d) were more broadly tuned, showing gradual changes in firing rate activity, either ramping up or down over the mnemonic
delay. Sparsity (S) values for temporal firing fields are indicated for each cell.
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trials each day, performing over 75% correct trials. Once animals

reached the behavioral criteria, recording sessions began. A total of

24 sessions with constant treadmill speed were included (Rat 1:

11 sessions, Rat 2: 5 sessions, Rat 3: 8 sessions). The average perfor-

mance was 83.11% ± 1.59% correct and the mean number of trials

per session was 74.29 ± 1.59.

3.2 | Single neurons in the prefrontal cortex and
hippocampus exhibit temporally modulated activity
during the treadmill delay

We first examined the 8 second treadmill delay period to investigate

how individual neurons in the prefrontal cortex and hippocampus

encode temporal information to bridge the gap between discontigu-

ous events. Recent studies have identified sequences of time cells

with punctate firing fields in CA1 (Kraus et al., 2013; MacDonald

et al., 2011, 2013; Mau et al., 2018; Modi et al., 2014; Pastalkova

et al., 2008; Shimbo et al., 2021; Taxidis et al., 2020), CA3 (Salz

et al., 2016), medial entorhinal cortex (Kraus et al., 2015), striatum

(Akhlaghpour et al., 2016; Bakhurin et al., 2017; Mello et al., 2015),

and prefrontal cortex (Bakhurin et al., 2017; Cruzado et al., 2020;

Pilkiw & Takehara-Nishiuchi, 2018; Tiganj et al., 2017). In contrast,

other studies report cells with monotonically changing firing rates

in the hippocampus (Deadwyler & Hampson, 2004), prefrontal cor-

tex (Kim et al., 2013), lateral entorhinal cortex (Tsao et al., 2018),

and ventral striatum (van der Meer & Redish, 2011), either

gradually ramping up or down over time, suggesting that the encod-

ing of time could be reflected through the firing rates of individual

neurons. These two complementary representations of time may

support active maintenance of information during delays important

for memory encoding.

To assess single-unit activity in the prefrontal cortex and dorsal

CA1 of the hippocampus, rasters and peri-event time histograms

centered around the onset of the treadmill delay were compared

(Figure 2). Consistent with previous reports, many hippocampal time

cells exhibited sparse rate curves, firing only at specific time points

that tiled the entire mnemonic delay (Figures 2c and 3a). We also

observed hippocampal cells with less punctate activity that slowly

ramped up or down during the delay (Figure 2d), similar to the delay

cells reported in the subiculum and CA1 during a spatial delayed

nonmatch-to-sample task (Deadwyler & Hampson, 2004; Hampson &

Deadwyler, 2003). In the prefrontal cortex, some units exhibited

responses similar to time cell activity in CA1 with discrete tempo-

ral firing fields, firing sequentially at specific moments in time

(Figure 2a). Strikingly, a majority of prefrontal units exhibited

ramping up or decaying activity (Figure 2b), similar to cells previ-

ously reported in rat prefrontal cortex (Kim et al., 2013; Tiganj

et al., 2017), lateral entorhinal cortex (Tsao et al., 2018), monkey

entorhinal cortex (Bright et al., 2020), and human entorhinal cortex

(Umbach et al., 2020).

To identify cells significantly modulated by delay time regard-

less of the firing rate curve shape, we set a criteria of information

score exceeding p < .01 and peak firing rate exceeding p < .01

F IGURE 3 Sequential population activity spans the entire delay with hippocampal neurons showing sparser temporal firing fields than
prefrontal cells. (a) Ensemble firing patterns of temporally modulated cells in PFC (left) and HPC (right) during the 8 s treadmill delay across all
animals. Each row depicts the peak normalized firing rate of one neuron, sorted by the peak firing time. Yellow indicates high firing rate, while
blue corresponds to low firing rate. (b) Sparsity of firing fields as a function of peak firing time. Each dot represents a temporally modulated cell in
PFC (blue) or HPC (red) and lines indicate the mean sparsity ± SEM at each time bin during the delay. (c) Histogram of peak times of temporal
firing fields in PFC and HPC. (d) Distribution of temporal information scores (bits per spike) for cells in PFC and HPC. (e) Histogram showing the
distribution of sparsity values of all temporally modulated cells in PFC and HPC. High sparsity values closer to 1 indicate narrow field widths,
whereas low sparsity values closer to 0 indicate broader firing fields.

NING ET AL. 585

 10981063, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hipo.23451 by B

oston U
niversity, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



when compared to a trial-wise circularly shifted spike train

(greater than 99th percentile of 1000 bootstrap permutations).

Around 47.9% of prefrontal cortex neurons (n = 262/547) and

45.2% of hippocampal neurons (n = 137/303) were classified as

temporally modulated cells. The percentage of temporally modu-

lated cells in the prefrontal cortex and hippocampus was not sig-

nificantly different (Chi-squared test of independence, χ2 =0.20,

p(1) = .65).

3.3 | Sequences of hippocampal time cells exhibit
sparser temporal firing fields than prefrontal cells

We then examined the ensemble activity of all identified temporally

modulated cells in the prefrontal cortex and hippocampus and sorted

each cell by its peak firing time. Temporal firing fields in both the pre-

frontal cortex and hippocampus span the entire 8 second delay

(Figure 3a), with more cells firing at the beginning and end of the

delay as these are behaviorally salient cues for the animals (Figure 3c).

This is consistent with previous work showing a nonuniform, com-

pressed distribution of time cells with decreasing temporal resolution

over time (Howard et al., 2014; Kraus et al., 2013; Salz et al., 2016;

Tiganj et al., 2017). Cells that fire early in the delay tend to be more

sparse (narrow time fields), and the firing fields get broader as time

progresses (Figure 3b). The slight increase in activity near the end of

the 8 s interval could reflect an anticipatory response for the end of

the delay and expectation of upcoming reward, similar to the increase

in number of place fields concentrated near reward sites (Dombeck

et al., 2010).

Based on the preceding observations, we next quantified the

firing rate curve shape of time coding cells in each region by calcu-

lating sparsity and information (bits per spike) for each unit's delay

firing rate curve. Sparsity and information scores have been used

previously to describe time cells and place cells, capitalizing on the

high clustering of spikes to one moment in time or position in

space. These two metrics can capture differences in firing rate

activity to distinguish punctate time cells from broad ramping activ-

ity. For temporally modulated cells, the trial averaged delay rate

curves of hippocampal units were sparser (Figure 3e, PFC mean

sparsity = 0.16 ± 0.01, HPC mean sparsity = 0.32 ± 0.02, Wilcoxon

rank-sum test, z = 7.43, p = 1.06 � 10�13), and contained more

temporal information than prefrontal cortex cells (Figure 3d, PFC

mean temporal information (bits per spike) = 0.16 ± 0.02,

HPC = 0.43 ± 0.04, Wilcoxon rank-sum test, z = 7.74,

p = 9.92 � 10�15). Furthermore, this effect was apparent at every

second throughout the whole delay (Figure 3b, Wilcoxon signed-

rank test, z = �2.52, p = 1.17 � 10�2). Interestingly, hippocampal

time cells fired many fewer spikes than prefrontal cells during the

mnemonic delay, which may explain the differences in information

rates across regions. Therefore, we conducted a complementary

analysis where we used an information theory approach that con-

sidered trial-by-trial firing rates (Olypher et al., 2003). Crucially, this

analysis measures the information content carried in the cells'

tuning curves after considering variance across trials, and is robust

to differences in spike counts. Therefore, by using “positional”
information scores, we were able to determine whether the

increased information observed in the smaller firing fields in the

hippocampus was consistent across trials. This analysis revealed

that there was neither a higher maximum information (Wilcoxon

rank-sum test, z = 9.99 � 10�1, p = .31), nor a higher mean infor-

mation (Wilcoxon rank-sum test, z = 1.05, p = .29) in the hippo-

campus, compared to the prefrontal cortex. Therefore, this result

suggests that while hippocampal cells have a higher information

content in the average tuning curves, a closer look suggests that

this is merely due to the higher concentration of spikes in a smal-

ler region of time.

Additionally, there was a significant difference in the mean firing

rate of temporally modulated cells in the prefrontal cortex and hippo-

campus (PFC = 3.49 ± 0.27 Hz, HPC = 2.29 ± 0.29 Hz, Wilcoxon

rank-sum test, z = 3.92, p = 8.70 � 10�5), however, no difference

was observed in the peak firing rate (PFC = 5.56 ± 0.35 Hz,

HPC = 4.74 ± 0.42 Hz, Wilcoxon rank-sum test, z = 1.58, p = .11).

3.4 | Bayesian decoding reveals that population
activity in the hippocampus encodes time more
accurately early in the delay, whereas the prefrontal
cortex is more accurate later in the delay

While prefrontal cortex and hippocampal units exhibited different fir-

ing rate curve characteristics across the delay, it was unclear whether

this translated into different information content about time during

the delay. To address this question, we used population vector ana-

lyses to examine ensemble coding during the delay. We constructed

ensemble-rate vectors from units in each region during the delay, and

generated a correlation matrix by calculating the Spearman correlation

of the normalized ensemble activity vectors sampled from each time

bin during the delay to activity vectors sampled from every other time

bin during the delay. To capture the consistency of ensemble activity,

we correlated vectors averaged across even trials to those averaged

across odd trials (Figure 4a-i,a-ii). Ensemble correlation matrices in

both the prefrontal cortex and hippocampus appeared to code for

time, showing high correlation values between ensembles sampled

from similar times (close to diagonal) and low values between ensem-

bles far in time (far from diagonal). A difference between the matrices

revealed much higher correlation values in the prefrontal cortex when

comparing the first 2 s of the delay to the following 2 s (two yellow

areas at top left), suggesting a less precise time code in the prefrontal

cortex at the onset of the delay (Figure 4b). To investigate this effect,

we applied a naïve Bayesian classifier to quantify the temporal preci-

sion of delay activity in each region (Figure 4c-i,c-ii). When the whole

8 s delay was considered, differences appeared in the decoding accu-

racy between the prefrontal cortex and hippocampus (Figure 4d, Wil-

coxon rank-sum test, z = �12.14, p = 6.37 � 10�34). As observed,

the distributions of decoding error for the whole delay did not follow

a unimodal distribution. For further investigation, we subdivided the
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F IGURE 4 Bayesian decoding reveals that population activity in the hippocampus encodes time more accurately early in the delay, whereas
the prefrontal cortex is more accurate later in the delay. (ai-aii) Cross-temporal ensemble correlation matrix for the 8 s delay. Correlation values
are high between population vectors taken closer in time, especially when comparing early to early, and late to late ensemble activations.
Population vectors were constructed from the mean tuning curves across the delay in 100 ms bins using 128 randomly selected cells from each
region. (b) Difference in population vector correlation values between PFC and HPC. High values in yellow areas comparing early to mid-delay
suggest greater PFC ensemble similarities across wider time gaps early in the delay. (ci-cii) Naïve Bayesian decoder success probability across the
delay. Decoder was trained in a 10-fold manner with 128 unit ensembles at the same bin size as above. Black line indicates the most likely
decoded time across decoders. (d) Histogram of decoding error across the whole 8 s delay suggests that the HPC decoder often makes either
very small or very large errors, whereas the PFC decoder often makes small to moderate errors (Wilcoxon rank-sum test, p < .001). (e)
Distribution of decoding error for delay quintiles across time. The HPC decoder is more accurate early in the delay, whereas the PFC decoder is
more accurate later in the delay. The HPC decoder error was significantly smaller from 0.1 to 1.6 s and 1.7 to 3.2 s, and larger from 3.3 to 4.8 s,
4.9 to 6.4 s, and 6.5 to 8.0 s, compared to PFC (Wilcoxon rank-sum test, p < .001 for all quintiles).
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F IGURE 5 Time cells in the prefrontal cortex and hippocampus exhibit theta phase precession. (a–h) Rasters, peri-event time histograms,
theta phase-time plots, phase histograms, and autocorrelograms of four example neurons in each region. Top right: raster plot of spikes, color-
coded by theta phase.Middle right: peri-event time histogram showing the mean firing rate (black line). Bottom right: theta phase plot depicting
spiking activity plotted as a function of theta phase and delay time. Two theta cycles are displayed for clarity. Red vertical lines indicate the start
and stop of the 8 s treadmill delay. Top left: Histogram of theta phase for all spikes for each cell. Bottom left: spike time autocorrelogram showing
the intrinsic theta rhythmicity of each neuron and the fitted model (red line) used to calculate the theta index, a measure of the strength of theta
modulation. (a–d) PFC time cells show less phase specificity and weaker theta phase precession. (e–h) Hippocampal CA1 time cells with sparse
firing fields show steeper theta phase precession and stronger theta rhythmicity.
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F IGURE 6 Temporally modulated cells with monotonically changing firing rates in the prefrontal cortex and hippocampus show shallow theta
phase precession slopes. (a–h) Rasters, peri-event time histograms, theta phase-time plots, phase histograms, and autocorrelograms of four
example neurons in each region. Top right: raster plot of spikes, color-coded by theta phase.Middle right: peri-event time histogram showing the
mean firing rate (black line). Bottom right: theta phase plot depicting spiking activity plotted as a function of theta phase and delay time. Two
theta cycles are displayed for clarity. Red vertical lines indicate the start and stop of the 8 s treadmill delay. Top left: Histogram of theta phase for
all spikes for each cell. Bottom left: spike time autocorrelogram showing the intrinsic theta rhythmicity of each neuron and the fitted model (red
line) used to calculate the theta index, a measure of the strength of theta modulation. (a,b) PFC cells with broad ramping or (c,d) decaying activity
exhibit slow shifts in theta phase during the entire delay. (e,f) Hippocampal CA1 cells with ramping or (g,h) decaying activity show stronger theta
rhythmicity and were associated with similar slow shifts in theta phase across the delay.
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delay period into five even quintiles (Figure 4e, Wilcoxon rank-sum

test, 0.1–1.6 s: z = 14.7; 1.7–3.2 s: z = 17.5; 3.3–4.8 s: z = �50.4;

4.9–6.4 s: z = �91.5; 6.5–8.0 s: z = �95.8, p < .001 for all quintiles).

Importantly, the hippocampus showed a more precise time code early

in the delay (first two quintiles), whereas the prefrontal cortex exhib-

ited a more precise time code later in the delay (last three quintiles).

3.5 | Temporally modulated cells exhibit theta
phase precession

We next examined the relationship between the timing of spiking

activity relative to the phase of hippocampal theta oscillation. Place

cells in the hippocampus and grid cells in the medial entorhinal cortex

have been known to exhibit robust theta phase precession, whereby

spikes fire at progressively earlier phases of theta as an animal tra-

verses through a firing field (Jeewajee et al., 2013; O'Keefe &

Recce, 1993; Skaggs et al., 1996). Phase precession is a temporal cod-

ing mechanism that allows for the compression of spatiotemporal

sequences, integrating past, present, and future information within a

single theta cycle, on a fast timescale required for synaptic plasticity.

While a multitude of studies have documented the role of hippocam-

pal phase precession within the spatial domain, only a few studies

have observed transient phase precession in hippocampal neurons

during nonspatial tasks (Takahashi et al., 2014; Terada et al., 2017;

Umbach et al., 2020) and in time cells as animals are running in place

F IGURE 7 Sparse time cells in the hippocampus exhibit steeper theta phase precession slopes compared to prefrontal cortex cells. (a)
Cumulative distribution of precession slopes (rad/s) for temporally modulated cells in PFC (blue) and HPC (red) exhibiting significant theta phase
precession (p < .05). (b) Box plot of theta phase precession slopes in PFC and HPC depicting the quartiles and median slopes (red line,
PFC = �0.41 rad/s, HPC = �0.84 rad/s), with a scatter plot showing individual cells (Wilcoxon rank-sum test, p = 3.69 � 10�4). (c) Relationship
between theta phase precession slope and temporal field size for cells in PFC (R2 = .40) and HPC (R2 = .69). (d) Scatter plot of precession slopes

(rad/s) and sparsity for temporally modulated cells with significant phase precession (p < .05). Top: Histogram of sparsity values for PFC and HPC
cells. Left: Histogram of precession slopes (rad/s). (e) Distribution of mean theta phase for all phase-locking time cells (Omnibus test, p < .05).
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(Pastalkova et al., 2008; Shimbo et al., 2021). Theta phase precession

of temporally modulated cells during a controlled treadmill task and

the role of phase precession in the prefrontal cortex have not been

well characterized. To investigate whether temporally modulated cells

would encode for time through the delay using theta phase, we

observed the spiking activity of each neuron during the 8 s delay with

respect to the phase of hippocampal theta oscillation and compared

rasters, peri-event time histograms, theta phase precession plots,

F IGURE 8 Neurons in the prefrontal cortex and hippocampus are more influenced by time than distance. (a–f) Firing patterns of individual
neurons plotted as a function of elapsed time (top) or distance traveled (bottom), sorted by treadmill speed (25, 30, 35, 40, and 45 cm/s). Left:
raster plot, each row represents one trial with spiking activity aligned to the treadmill delay onset. The slowest speed (25 cm/s) is shown on top in
navy and the fastest speed (45 cm/s) is at the bottom in yellow. Below the raster is the peri-event time histogram showing the trial-averaged
firing rate for each treadmill speed. Right: theta phase plot depicting spiking activity plotted as a function of theta phase and delay time. Two
theta cycles are displayed for clarity and the circular–linear regression line (black line) used to quantify theta phase precession slope (rad/s) is
indicated for each treadmill speed. Example neurons in each region showing strong tuning to time (a, d), distance (b, e), or both dimensions (c, f).
Deviance (ΔDT�D) values are indicated for each cell with more positive values showing a stronger influence of time, while negative values indicate
a stronger influence of distance on spiking activity. (g) Scatter plot of the deviance values of each predictor to compare the influence of time or
distance on spiking activity in PFC (blue) and HPC (red). Dots along the black diagonal indicate neurons with equal contribution of time and
distance. (h) Histogram of g showing the distribution of time versus distance coding in each region (Wilcoxon signed-rank test, PFC:
p = 2.17 � 10�7, HPC: p = 1.68 � 10�2). More positive values represent cells more influenced by time, and negative values indicate cells with
larger contributions from distance information. Black line at zero represents equal contribution of time and distance.
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phase histograms, and spike time autocorrelograms (Figures 5 and 6).

All analyses were done with reference to hippocampal theta oscilla-

tion. Temporally modulated cells in the prefrontal cortex showed less

phase specificity (Figure 5a–d) and some cells with ramping

(Figure 6a,b) or decaying activity (Figure 6c,d) exhibited slow shifts in

theta phase across the whole delay. This is similar to the slower rates

of phase precession observed in anticipatory ramping cells recorded in

the ventral striatum when animals approached an upcoming reward

(van der Meer & Redish, 2011). In comparison, many hippocampal

time cells with sparse firing fields exhibited steep phase precession

slopes (Figure 5e–h), while some ramping (Figure 6e,f) or decaying

cells (Figure 6g,h) showed slower phase precession during the entire

delay. These results suggest that there may be two different time

scales of theta phase precession.

3.6 | Sparse hippocampal time cells show steeper
theta phase precession slopes compared to prefrontal
cortex neurons

Using a circular–linear correlation method, we next quantified the slopes

of theta phase precession (rad/s) for temporal firing fields, which were

defined as the top 80% of a cell's peak firing rate (Kempter et al., 2012;

Kraus et al., 2013; Tingley et al., 2018). A greater proportion of temporally

modulated cells in the hippocampus (81/137 = 59.12%) exhibited signifi-

cant theta phase precession (p < .05), as compared to prefrontal cells

(28/257 = 10.89%). When considering only temporally modulated cells

with significant phase precession (Figure 7a–d), hippocampal time

cells showed steeper precession slopes, while slopes were more shallow

for prefrontal units (Figure 7a,b, Wilcoxon rank-sum test, z = 3.56,

p = 3.69 � 10�4). Hippocampal cells exhibited sparser temporal firing

fields (HPC mean sparsity = 0.34 ± 0.03), along with steeper theta phase

precession slopes (HPC mean slope = �1.94 ± 0.31, Figure 7d). For the

prefrontal cortex, precession slopes were significantly more shallow (PFC

mean slope = �0.50 ± 0.09) with the presence of broad, ramping activity

(PFC mean sparsity = 0.11 ± 0.02, Figure 7d). These results differ from

previous work where overall spatial theta phase precession occurred at a

similar rate in both CA1 and PFC in a continuous spatial alternation mem-

ory task (Jones &Wilson, 2005a).

Given our finding that hippocampal units showed steeper theta

phase precession slopes than prefrontal cells, we next examined

whether precession slope was correlated with the temporal field size,

similar to the increase in place field size and scaling of phase preces-

sion from dorsal to ventral hippocampus in the spatial domain (Jung

et al., 1994; Kjelstrup et al., 2008). Using a logarithmic regression

model, we observed a strong inverse relationship between precession

slope and time field width for cells in the dorsal hippocampus

(R2 = .69) and prefrontal cortex (R2 = .40, Figure 7c). Similar to place

fields, an increase in time field width (length in time) was correlated

with decreasing slope of theta phase precession (Figure 7c), consistent

with previous studies showing that the phase shift is a function of the

firing field size (Dragoi & Buzsáki, 2006; Huxter et al., 2003;

Pastalkova et al., 2008). The logarithmic relationship is more evident

in the hippocampus due to a greater number of sparse time fields that

are smaller than 1.6 s, compared to the prefrontal cortex where broad

ramping activity is more prevalent.

When considering only theta phase-locking time cells (Omnibus

test, p < .05, PFC 50, HPC 57 cells), the theta phase distribution of

hippocampal cells significantly deviated from a circular uniform distribu-

tion (Rao test, U[57] = 180.82, p = .001), instead showing a bimodal dis-

tribution (Figure 7e). The preferred theta phase of prefrontal cells was

weakly nonuniformly distributed (Rao test, U[50] = 152.60, p = .05).

3.7 | Time and distance coding in the prefrontal
cortex and hippocampus

Next, to disentangle the effects of spatial location, time, and distance on

neural firing activity, we systematically varied the treadmill speed to

regress out if neurons are tracking elapsed time or distance traveled (num-

ber of steps) during the mnemonic delay. Within a given recording session,

each trial had a fixed 8 s treadmill delay but with a random speed, ranging

from 25, 30, 35, 40, and 45 cm/s. We recorded a total of 13 sessions with

different treadmill speeds with an average performance of 80.65%

± 2.32% and the mean number of trials per session was 82.15 ± 4.50.

From the different treadmill speed recordings, 54% of cells in the

prefrontal cortex (n = 171/315) and 47% of cells in dorsal CA1 of the

hippocampus (n = 99/209) were temporally modulated. We first

examined single-unit firing activity during the 8 s delay period, sorted

by the five different treadmill speeds from slowest (25 cm/s) to fast-

est (45 cm/s), and plotted activity either as a function of elapsed time

or distance traveled. Cells that more reliably encode for time show

the same temporal firing field regardless of running speed (Figure 8a,

d, top row). When these same units were plotted as a function of dis-

tance (Figure 8a,d, bottom row), the tuning curves shifted to the right

for faster running speeds with increased distance covered.

For neurons that more accurately encoded distance (Figure 8b,e),

the firing fields should remain unchanged across different running speeds

when plotted as a function of distance (bottom row). However, when

observed as a function of time (top row), the firing fields should shift to

earlier times for faster speeds as it takes less time to cover the same

amount of distance if an animal is moving faster. Individual neurons

exhibited variable tuning along the time-distance continuum with a

majority of cells showing similar time and distance coding (Figure 8c,f),

while some units showed a high selectivity to either time (Figure 8a,d) or

distance (Figure 8b,e).

Next, we quantified theta phase precession slopes (rad/s) over

time and distance using a similar method as before, based on the

circular–linear regression between spike time and theta phase using

firing fields that were in the top 80% of the peak firing rate. Theta

phase of spiking activity was referenced to hippocampal theta.

18.73% of cells in the prefrontal cortex (n = 59/315) and 35.89% of

cells in the hippocampus (n = 75/209) exhibited significant overall

time or distance precession when we pooled together trials across all

running speeds, and then calculated the precession slope for each run-

ning speed condition (25, 30, 35, 40, and 45 cm/s). To compare the
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change in mean precession slopes with different running speeds across

units, precession slopes were normalized to the 35 cm/s condition. We

observed a significant increase in precession slope at the higher running

speed of 40 cm/s in the prefrontal cortex (Wilcoxon signed-rank test,

z = 2.45, p = 1.43 x 10�2). This overall effect could be related to the

greater consistency of firing relative to time in the prefrontal cortex.

Maintaining consistent firing relative to time could require neuronal firing

to transition across phases more rapidly in the prefrontal cortex in order

to maintain the size of firing fields in time. However, this does not

account for the lack of effect seen at 45 cm/s (Wilcoxon signed-rank

test, z = 1.70, p = 8.83 � 10�2). For slower speeds, we found no signifi-

cant difference in the mean precession slope over time for the prefrontal

cortex (Wilcoxon signed-rank test, 25 cm/s: z = 0.96, p = .34, 30 cm/s:

z = 0.94, p = .35). For hippocampal units, the precession slope over time

did not significantly change across treadmill speeds (Wilcoxon signed-

rank test, 25 cm/s: z = �0.99, p = .32, 30 cm/s: z = �0.42, p = .67,

40 cm/s: z = 0.89, p = .37, 45 cm/s: z = �0.22, p = .82). Similarly, the

precession slopes as a function of distance traveled also did not change

for different running speeds for units in the prefrontal cortex (Wilcoxon

signed-rank test, 25 cm/s: z = 1.76, p = .08, 30 cm/s: z = 1.25, p = .21,

40 cm/s: z = 0.87, p = .38, 45 cm/s: z = 0.73, p = .46) and hippocampus

(Wilcoxon signed-rank test, 25 cm/s: z = 1.05, p = .29, 30 cm/s:

z = �0.74, p = .46, 40 cm/s: z = 0.56, p = .57, 45 cm/s: z = �1.37,

p = .17). However, there may have been too few cells that exhibit signifi-

cant phase precession across different speeds for such analyses, or alter-

natively, there may be significant trial-to-trial variability in phase

precession for individual cells (Schmidt et al., 2009).

3.8 | Neurons in both the prefrontal cortex and
hippocampus are more strongly influenced by time
than distance

To directly compare the relative importance of elapsed time and distance

traveled on prefrontal cortex and dorsal hippocampus unit firing, we

applied a generalized linear model framework. This framework allowed us

to measure the consistency of a cell's firing rate at each time or distance

relative to the start of the treadmill epoch, and then compare those two

metrics. While many cells exhibited similar sensitivities to elapsed time and

distance traveled, some cells clearly locked more tightly to one over the

other (Figure 8g). Overall, ensembles in both the prefrontal cortex and hip-

pocampus were more influenced by time than by distance traveled

(Figure 8h, Wilcoxon signed-rank test, PFC: z = 5.18, p = 2.17 � 10�7,

HPC: z = 2.39, p = 1.68 � 10�2). The deviance (ΔDT�D) values of cells in

these two regions were not significantly different, demonstrating that the

influence of time over distance was equally strong across the prefrontal

cortex and hippocampus (Wilcoxon rank-sum test, z= 0.72, p = .47).

4 | DISCUSSION

The experiments presented here allowed a comparison of neuronal

firing patterns in both the prefrontal cortex and hippocampus during

the same delay period in a delayed match to sample task. Both regions

showed a distribution of neuronal firing patterns across the 8 s tread-

mill delay period (Figure 3a), similar to previous studies of the coding

of time in the hippocampus (Kraus et al., 2013, 2015; MacDonald

et al., 2011, 2013; Mau et al., 2018; Modi et al., 2014; Pastalkova

et al., 2008; Salz et al., 2016; Taxidis et al., 2020) and prefrontal cortex

(Bakhurin et al., 2017; Cruzado et al., 2020; Pilkiw & Takehara-

Nishiuchi, 2018; Tiganj et al., 2017). This ensemble code could pro-

vide a framework for coding the time of events during a delay and the

expectation of the end of the delay.

The data reveal consistent differences in the temporal distribu-

tion of neural firing between the two regions. The hippocampus

contained many more discrete temporally restricted firing fields

with low background activity similar to time cells described in pre-

vious work (Figure 2c), whereas the prefrontal cortex tended to

show broader, more graded rate coding of time in the task (Figure

2b). This is reflected in the measure of firing sparsity in these two

regions, which shows more neurons with sparse representations

(discrete firing fields with lower background activity) at all time

points in the hippocampus compared to the prefrontal cortex

(Figure 3b). This resulted in better coding of time at low resolu-

tions in the prefrontal cortex. While a sparse code as observed in

the hippocampus may be better suited for fine discrimination of

time, a denser, more distributed code as observed in the PFC is

thought to provide a more efficient code such that fewer neurons

are required to transmit the same information and is more precise

in the presence of noise (Rigotti et al., 2013).

Consistent with the difference in sparsity, neurons in the prefron-

tal cortex and hippocampus showed a difference in the distribution of

the slope of theta phase precession. Both regions contained some

slow ramping changes in neuronal firing rate, consistent with previous

studies in the hippocampus (Deadwyler & Hampson, 2004;

Hampson & Deadwyler, 2003) and prefrontal cortex (Kim et al., 2013).

In our data, the slow ramp-like changes were sometimes accompanied

by slow changes in theta phase (Figure 6), similar to previous findings

in the hippocampus and ventral striatum (Terada et al., 2017; van der

Meer & Redish, 2011). However, the hippocampus showed more

examples of sparse firing fields with faster theta phase precession

(Figure 5e–h), especially near the start of the delay. The firing fields of

time cells were remarkably stable despite changes in the treadmill run-

ning speed (Figure 8a,d). The change in treadmill speed also did not

significantly change the slope of theta phase precession.

The regional difference in sparsity could reflect functional differ-

ences between the prefrontal cortex and hippocampus. A prevailing

hypothesis posits that separate cortical regions process what, when,

and where information, but it is in the hippocampus where these

three features of experience are organized and combined into a uni-

fied representation (Eichenbaum, 2017a; Hargreaves et al., 2005). The

neural circuitry responsible for the estimation of time or anticipation

of future events may lie outside of the hippocampus, in cortical

regions like the prefrontal cortex, which is known to be involved in

planning. Thus, one could expect a more reliable global timing signal

in cortical regions with activity slowly evolving across multiple
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timescales. Given that firing rates of prefrontal cortex cells monotoni-

cally decay or ramp up to a salient event, this type of distributed cod-

ing mechanism may provide more information at any given time and

would be synonymous with a planning or predictive function toward

future behavior and action, rather than a mnemonic function that is

retrospective. Sparse, sequentially activated time cells in the hippo-

campus fire at specific moments to stitch together a temporal record

of past events but with decreasing accuracy after time has elapsed

from the start of a behaviorally salient event. Because the ramping

function in PFC might be more accurate than the sequential interac-

tion of time cells in CA1, this may explain why late in the delay, pre-

frontal cells with monotonically changing firing rates are more

temporally precise than hippocampal time cells (Figure 4e).

Memory of different events requires coding of time on multiple

scales, ranging from short intervals of a few hundred milliseconds to

much longer intervals of seconds, minutes, and even hours (Howard

et al., 2014). A multi-scale temporal code has been simulated using a

network model based on the Laplace transform and its inverse, show-

ing how a set of neurons with exponentially decaying firing rates

could be combined to generate time cells with discrete temporal firing

fields over a range of seconds (Howard et al., 2014; Liu et al., 2019;

Shankar et al., 2016). This computational framework is supported by

the evidence that neurons coding short time intervals at the start of

the delay have shorter firing fields than neurons coding longer tempo-

ral intervals (Figure 3b), consistent with previous studies (Kraus

et al., 2013; Mau et al., 2018). This model predicts that temporal infor-

mation is primarily coded in cells with decaying rates, similar to what

we observed here in prefrontal cells, and others have found in the lat-

eral entorhinal cortex in rodents (Tsao et al., 2018) and monkeys

(Bright et al., 2020), and in the prefrontal cortex showing slow expo-

nential decays or saturating exponential increases (Kim et al., 2013).

Cells with these firing characteristics are hypothesized to transmit

information, either directly or indirectly to time cells with punctate fir-

ing field properties. This model would predict that monotonically

changing activity would be both necessary for, as well as more tempo-

rally precise than time cell activity. While the role of the entorhinal

cortex input to hippocampal time cells is supported by previous stud-

ies, those results do not preclude a prefrontal timing signal as well.

Indeed, time cells remained even after the inactivation of the medial

entorhinal cortex, albeit to a lesser degree (Robinson et al., 2017).

Together with previous studies, these results suggest that hippocam-

pal time cells may receive temporal information from cortical regions

and transform decaying activity into sparse time fields using a

Laplace transform (Howard et al., 2014; Liu et al., 2019).

This model based on the Laplace transform can also be used to sim-

ulate theta phase coding and generate the difference between fast theta

phase precession with steep slopes in small firing fields to slow theta

phase precession with shallow slopes in cells with long ramp-like firing

fields (Shankar et al., 2016, Figures 5 and 6). The robustness of theta

phase to changes in running speed could reflect selective coding focused

on the 8 s time interval, despite the change in distance of running

(Figure 8). The difference between the prefrontal cortex and hippocam-

pus could reflect a broader time scale prediction by prefrontal cortex that

focuses on the behavioral time scale of reward prediction (Shankar

et al., 2016), similar to the ramping activity during the time interval

approaching reward seen in the striatum, which may be mediated by

neuromodulators such as dopamine (van der Meer & Redish, 2011).

As an alternative interpretation, the higher resolution and discrete

coding of time and space in the hippocampus could interact with a

reinforcement learning mechanism in the prefrontal cortex

(Hasselmo & Eichenbaum, 2005). In this framework, the prefrontal

cortex might not represent the episodic memory of time and space

but instead represents the value of specific states or actions, as in the

value function or state-action value function in reinforcement learning

theory (Sutton & Barto, 1998). For example, the ramp-like increase in

activity in some prefrontal cells could reflect the increase in value of

states (different time points) as the delay progresses and the response

and reward get closer in time, similar to the proposal for the ventral

striatum (van der Meer & Redish, 2011).

Furthermore, the interaction of prefrontal cortex and hippocam-

pus may reflect the complex dynamics of a phase code from the hip-

pocampus interacting with a decision process in the prefrontal cortex.

The phase code in the hippocampus might reflect coding of sequences

of activity that encode and retrieve segments of the spatiotemporal

trajectory of the task, as found in the evidence of theta sequence

readout in the hippocampus (Foster & Wilson, 2007; Terada

et al., 2017). These spatiotemporal sequences do not necessarily only

involve sequences of place cells and time cells, but could also involve

sequences that include representations of the objects, behavioral

responses, and reward value (Maurer et al., 2012; Terada et al., 2017;

Wiener et al., 1989). The phase coding in prefrontal cortex may reflect

timing of decision processes in different contexts relative to theta

rhythm oscillations, as shown by changes in prefrontal cortical phase

of firing during different task demands (Hyman et al., 2005; Jones &

Wilson, 2005b).

In summary, the data presented here indicate clear differences in

neuronal responses during a temporal delay in the prefrontal cortex

versus hippocampus, with prefrontal cortex exhibiting more ramping

activity and less sparse coding by time cells relative to the hippocam-

pus. Consistent with this, prefrontal cortex shows greater temporal

precision for decoding of time at long time lags and the hippocampus

exhibits faster transitions in theta phase with time. As discussed

above, these differences could reflect complementary roles of the

prefrontal cortex and hippocampus in the coding of time for the per-

formance of memory-guided behavior.
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