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ABSTRACT: We present a model that describes the generation of the
spatial (grid fields) and temporal (phase precession) properties of medial
entorhinal cortical (MEC) neurons by combining network and intrinsic
cellular properties. The model incorporates network architecture
derived from earlier attractor map models, and is implemented in 1D
for simplicity. Periodic driving of conjunctive (position 3 head-direc-
tion) layer-III MEC cells at theta frequency with intensity proportional
to the rat’s speed, moves an ‘activity bump’ forward in network space
at a corresponding speed. The addition of prolonged excitatory currents
and simple after-spike dynamics resembling those observed in MEC stel-
late cells (for which new data are presented) accounts for both phase
precession and the change in scale of grid fields along the dorso-ventral
axis of MEC. Phase precession in the model depends on both synaptic
connectivity and intrinsic currents, each of which drive neural spiking
either during entry into, or during exit out of a grid field. Thus, the
model predicts that the slope of phase precession changes between
entry into and exit out of the field. The model also exhibits independent
variation in grid spatial period and grid field size, which suggests possi-
ble experimental tests of the model. VVC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

It is widely recognized that a major determinant of the spatial firing
characteristics of hippocampal neurons (O’Keefe and Dostrovsky, 1971)
is the integration of self-motion information (O’Keefe, 1976; O’Keefe
and Nadel, 1978; McNaughton et al., 1996). A major class of neural

models that have been proposed to account for inte-
gration of inputs uses ‘‘continuous attractor’’ neural
networks (CANN) (Amari, 1977; Ben-Yishai et al.,
1995; Skaggs et al., 1995; Zhang, 1996; Samsonovich
and McNaughton, 1997; Compte et al., 2000). Con-
tinuous attractor networks, unlike discrete (point)
attractors, have a continuum of states which are quasi-
stable in the absence of external input. Inputs to the
network can cause movement along the attractor
manifold, thus integrating input such as angular
movement of the head (Skaggs et al., 1995; Zhang,
1996) or distance traveled (Samsonovich and
McNaughton, 1997; Doboli et al., 2000; Conklin and
Eliasmith, 2005). The hippocampal network receives
inputs that could support path integration: from
‘‘head-direction’’ cells that encode relative azimuth
(Taube et al., 1990; Taube, 1995; Mizumori and Wil-
liams, 1993; Chen et al., 1994); and from a speed
encoding system, that combines vestibular, optic flow,
proprioception, and motor efference copy into a
coherent signal (Terrazas et al., 2005).

Samsonovich and McNaughton (1997) proposed a
model of how head direction and movement speed
signals can be combined in a continuous attractor net-
work to keep track of location, and suggested that the
necessary circuitry and cell types might be found in
CA3 or in the entorhinal cortex (EC). This model is
essentially a 2D extension of continuous attractor
models suggested by Skaggs et al. (1995) and Zhang
(1996) to account for how head direction (HD) cells
integrate head angular velocity to track relative head
direction. In these CANNs, neurons representing a
given parameter value (e.g., location or head direc-
tion) are connected to others representing nearby val-
ues. Thus, neurons encoding similar values support
each other’s activity. With global recurrent inhibition
that limits total network activity, spontaneous activity,
and some noise, a ‘‘bump’’ of activity centered on any
of an approximately continuous set of parameters or
neural states is the statistically most probable configu-
ration. This bump may form spontaneously or may
be created by transient external inputs. In Samsono-
vich and McNaughton (1997), the attractor network
of place cells was coupled to an intermediate layer of
neurons whose firing was conjunctive for position on
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the 2D manifold or ‘‘chart’’ (also referred to as a ‘‘map’’) and
head direction, and modulated by linear velocity. The return
connections from the conjunctive layer to the place cell layer
were offset in a direction consistent with the corresponding
HD component (see Fig. 1A for a 1D diagram of this connec-
tivity). Thus, the intermediate, conjunctive cell layer moved the
position of the activity bump in the chart, and translated the
rat’s movement in the environment into a movement through a
2D continuum of attractors or neural states. Each of these
states could theoretically become associated with external land-
mark information, thus linking them to specific environmental
locations. A problem that such a model encounters is that the

number of neurons available to represent points in the plane
cannot be limitless, so eventually the bump will encounter an
edge. To avoid edge-effects, Samsonovich and McNaughton
(1997) as well as Conklin and Eliasmith (2005) assumed there
must be periodic boundary conditions in the network, making
it equivalent to a torus. The implicit prediction of this ‘‘toroi-
dal attractor map’’ hypothesis was that firing of cells on the
attractor map would repeat at regular spatial intervals in a rec-
tangular lattice.

Neurons with regularly repeating place fields were subse-
quently discovered in layer II of the medial EC (MEC) (Fyhn
et al., 2004), and have since been named ‘‘grid cells’’ (Hafting
et al., 2005). In the Samsonovich and McNaugthon (1997)
model, place fields repeated in a rectangular grid, while the

FIGURE 1. Toroidal attractor model and implementation of
synaptic connections in simulations. A: One-dimensional represen-
tation of the network connectivity according to the toroidal attrac-
tor model. Grid cells (in blue) are arranged in a ring. Each grid
cell has synaptic connections onto nearby neurons, with the synap-
tic strength decreasing as a Gaussian function of distance between
neurons. Thus, a ‘bump’ of activity forms at one position. Grid
cells project to conjunctive (grid-by-HD) cells (red and orange).
Conjunctive cells also receive inputs from head-direction cells
(light and dark brown), so that when the animal is moving north,
the orange conjunctive cells are active. Conjunctive cells project
back to the grid cell layer, with an offset in the relative direction
which they represent. Thus, when the animal is moving north, the
orange conjunctive cells activate the grid cells in the counterclock-
wise direction from the position of the grid cell activity bump and
thus move the bump in the counterclockwise direction. B: Model
grid and conjunctive network connection matrix. The strength of
excitatory connections from all neurons (y-axis), to all neurons (x-
axis) are displayed. The first 100 neurons are grid cells, and the
upper left block shows their recurrent connections. Neurons 101–
200 are ‘‘north’’ conjunctive cells, and the upper middle block
shows their inputs from grid cells, while the left middle block
shows their offset connections back to grid cells. Neurons 201–300
are ‘‘south’’ conjunctive cells. Note the symmetry of the grid cell to
grid cell and grid cell to conjunctive cell connections and the
asymmetry of the conjunctive cell to grid cell connections. C: In-
hibitory neurons are not explicitly modeled, but global feed-back
and feed-forward inhibition are implemented as inhibitory connec-
tions from all excitatory cells to all excitatory cells. Axes and scale
are same as in excitatory weight matrix. Feedback inhibition
within the grid cell layer is the strongest and feed-forward connec-
tions from grid to conjunctive, and from conjunctive to grid cells
are weakest. Color scale is the same as in B. D: The result of
AMPA and NMDA conductances in model grid cells starting at
different membrane potentials. The AMPA component of the syn-
aptic event is modeled as a single exponential, with a decay time
constant of 10 ms. The NMDA component is a difference of expo-
nentials, with a rise time constant of 2 ls, and a fall time constant
of 150 ms. Displayed is the membrane potential resulting from a
single excitatory synaptic event in a grid cell. The maximal con-
ductance of the NMDA component is a fixed ratio of the AMPA
component for all grid cell to grid cell synapses, but also depends
on the membrane potential of the cell based on the relationship
determined by Jahr and Stevens (1990; see Methods). Synapses
from or to conjunctive cells only have an AMPA component and
are not shown. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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mathematically simplest unit describing a grid cell’s firing grid
is a rhombus (also referred to as a ‘‘triangular’’ grid).
McNaughton et al. (2006) pointed out, however, that distort-
ing a square map to a rhombus with periodic boundaries would
result in rhomboidal grids of repeating place fields. This is
equivalent to twisting a torus with a square unit cell, as was
recently implemented analytically by Guanella et al. (2007). In
addition to grid cells, Sargolini et al. (2006) have identified
other cell types, deeper in MEC, corresponding to the two
other essential ingredients of the Samsonovich and McNaugh-
ton (1997) model: pure HD cells, and grid location-by-HD
(‘‘conjunctive’’) cells, all exhibiting firing rate increases with
running speed as predicted by the model. Thus, all of the com-
ponents of Samsonovich and McNaughton’s model for path
integration appear to be present in the MEC. In further sup-
port for path integration via a continuous attractor occurring
in the MEC, each pair of grid cells recorded at the same
dorso-ventral location in the MEC has grid fields the same dis-
tance apart and with the same orientation relative to each other
in all environments (Fyhn et al., 2007). This supports the idea
that a single continuous attractor manifold could exist in a
module of connected MEC neurons. Hippocampal neurons, in
contrast, show random remapping of their relative field loca-
tions in different environments, and thus multiple attractor
manifolds (‘‘charts’’) would have to exist there to support path
integration as well as this remapping (Samsonovich and
McNaughton, 1997).

As was first observed in place cells of the hippocampus
proper (Jung et al., 1994; Maurer et al., 2005), the size of grid
fields (and the spacing between fields) increases in cells
recorded more ventrally in the MEC (Brun et al., 2008). In a
CANN model, the spatial period of grid fields is a function of
the mapping of the speed of the rat onto the speed of the ac-
tivity bump on the toroidal manifold (Samsonovich and
McNaughton, 1997; Conklin and Eliasmith, 2005). Because
the bump cannot move simultaneously at different speeds,
CANN models require that multiple, relatively independent to-
roidal attractor modules with different spatial scales (bump
speeds) are present at different dorso-ventral locations in the
MEC, and that the spatial scale of grid fields should change
discontinuously. This prediction was recently confirmed by
Barry et al. (2007). Combining the output of neurons from
multiple toroidal attractor networks with different spatial scales
would create a distributed code for position. Such a distributed
code is similar to a modulo representation of numbers, and
allows a larger capacity with fewer neurons than a sparse,
unary-like code (Fiete et al., 2008). This position code can
then be translated into a more sparse code such as the one in
CA3 by, for example, summation of inputs from grid cells at
multiple scales (McNaughton et al., 2006; Solstad et al., 2006).

The average tuning curves of place cells and grid cells are
usually depicted as smooth firing rate distributions in space,
which are easily modeled with attractor networks; however, this
smoothness is actually an artifact of trial averaging. The firing
of place and grid cells is sensitive not just to location, but also
to the phase of the theta oscillation (a 4–12 Hz rhythm

recorded in the local field potential of the hippocampus and
MEC). The firing of a place cell on a single pass through its
average firing field consists of a series of brief bursts of spikes,
with an interburst frequency slightly higher than the theta os-
cillation (O’Keefe and Recce, 1993; Maurer et al., 2005). This
results in theta phase precession, such that, as the rat enters a
place field, the spikes occur at the trough of the theta oscilla-
tion, and then shift earlier and earlier in phase upon progres-
sion through the field, until the spikes have moved through
3608 (but never more), when the rat exits the field (O’Keefe
and Recce, 1993). Theta phase precession has also been
observed in Layer II grid cells (but not in most layer III con-
junctive cells; Hafting et al., 2008). Phase precession has been
hypothesized to play a role in storing and possibly predicting
temporal sequences of activity (Jensen and Lisman, 1996;
Skaggs et al., 1996; Wallenstein and Hasselmo, 1997; Buzsaki,
2006; Lisman and Redish, 2009). Thus, it is important that a
model for grid cell activity can also show phase precession. Pre-
vious attractor models of place cells have shown that the activ-
ity bump can widen and narrow during a theta cycle, thus
showing a small amount of phase modulation of place cell fir-
ing rates, but not phase precession as is observed experimentally
(Samsonovich and McNaughton, 1997; Conklin and Eliasmith,
2005).

At the time of their discovery, O’Keefe and Recce (1993)
proposed that phase precession is generated by the sum of two
oscillators of slightly different frequencies: theta, and an intrin-
sic oscillation frequency of the neuron. This interference pat-
tern gives rise to an envelope (the place field) whose frequency
is the difference between the two basis frequencies. The peaks
within that envelope shift in phase progressively earlier relative
to the lower frequency component (theta). This oscillatory in-
terference model, as an explanation for the generation of place
fields, encounters difficulty with some of the properties of CA1
pyramidal cell phase precession (for discussion see Maurer and
McNaughton, 2007). The model, however, also predicts perio-
dicity of firing fields, and since the discovery of grid cells, has
been extended (O’Keefe and Burgess, 2005; Burgess et al.,
2007; Burgess, 2008) to a two dimensional model that appears
to account very well for some properties of the MEC grid cell
network. The implementation of this model with currently
known cell types, however, requires maintaining oscillations of
different frequencies within electrically compact cells such as
MEC stellate cells, and this has been shown to not be biophysi-
cally plausible (Remme et al., 2009).

An orthogonal class of explanation for phase precession was
proposed by Tsodyks et al. (1996) and by Jensen and Lisman
(1996; see also Wallenstein and Hasselmo, 1997). In these
models, neurons respond at different locations along a 1D
track by virtue of differential synaptic inputs driven by external
cues. Repeated traversal of the track (or some other unspecified
process) results in asymmetric intrinsic connections via Heb-
bian strengthening of connections in the forward direction
(called a ‘‘phase sequence’’ by Hebb, 1949). Phase precession in
these asymmetric connection models results from dynamics in
which the external input is enabled at the beginning of each
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theta cycle and then gated off, allowing the asymmetric intrin-
sic connections to activate a short sequence of neurons coupled
to locations ahead of the animal. Accumulating inhibition
interrupts this process at the end of the theta cycle, and a new
cycle begins with external input reflecting the new actual posi-
tion of the rat. This mechanism generates phase precession,
because the cells that fire at the beginning of the theta cycle are
those that are activated by external cues at the current position
of the rat, whereas those that fire later in the cycle reflect loca-
tions ahead of the rat. During each cycle, there appears to be a
time-compressed prediction (Skaggs et al., 1996) of the
sequence of place fields through which the rat will move (‘‘look
ahead’’), followed by a ‘‘reset’’ to the actual position of the rat
at the beginning of the next theta cycle. This is illustrated in
Figure 2, which is adapted from Tsodyks et al. (1996). There
are two main shortcomings of the asymmetric connection mod-
els of phase precession. First, phase precession occurs omnidir-
ectionally during 2D foraging behavior, such that the first
spikes fired on entry to the field are at late theta phase, regard-
less of the direction from which the rat enters the field (Burgess
et al., 1994; Skaggs et al., 1996). This implies that the network
must be able to ‘‘look ahead’’ or predict the sequence of place
fields ahead of the rat in all directions, and thus there cannot
be asymmetry in the recurrent connections. The second prob-
lem is that place fields can be updated solely by path integra-
tion, in the absence of sensory cues (McNaughton et al., 1996)

which means that the mechanism controlling the ‘‘reset’’ of ac-
tivity every theta cycle cannot depend solely on external cues.

We describe here a neural network model of grid cells, which
shows phase precession and addresses the problems with previ-
ous network models of precession. We use a network with con-
nectivity forming a ring attractor (a 1D version of the toroidal
attractor connectivity in Samsonovich and McNaughton,
1997). Conjunctive cells in this model fire specifically to a
heading-direction and drive the asymmetrical look-ahead of the
grid cell network. Additionally, because, in the toroidal attrac-
tor map the relative distance between the firing nodes of differ-
ent cells (spatial phase) is predetermined by their connectivity,
the reset of the bump every cycle does not need to be imple-
mented by an external input, but instead can be controlled by
intrinsic dynamics of the network and neurons. We suggest
that a reset of the network bump of activity may result from
intrinsic conductances of stellate cells in layer II of MEC,
which show intrinsic medium after-hyperpolarization (mAHP)
and after-depolarization (ADP) peaks approximately 20 ms and
100 ms following a spike, respectively (Klink and Alonso,
1993). These phenomena could cause the jump-back of the
bump at the start of each theta cycle, because they would allow
neurons active a set time ago (�100 ms) to reinitiate activity
during a lull in synaptic inputs. Such a mechanism has been
suggested for short-term memory maintenance over one theta
cycle (Lisman and Idiart, 1995; Jensen and Lisman, 1996). We
simulate this proposal in a network of integrate-and-fire neu-
rons with a conductance decrease for the mAHP and conduct-
ance increase for the ADP, implemented after every spike.
Finally, we present a reanalysis of data (Giocomo et al., 2007)
on intrinsic currents of MEC neurons, which provide empirical
support for the postspiking dynamics of the stellate cell mem-
brane assumed in our model.

RESULTS

Simulations

A network of integrate-and-fire neurons with connections
forming a ring attractor was implemented. The network
included 100 simulated grid cells, and 200 conjunctive cells,
half representing movement in the ‘‘north’’ direction, and half
in the ‘‘south’’ direction (see Figs. 1A,B). The north conjunctive
cells were activated with a constant input (we assume coming
from ‘‘north’’ HD cells), of an amplitude proportional to run-
ning speed. All conjunctive cells also included a sine wave
input at 8 Hz, to simulate the theta rhythm. Grid cells
included after-spike conductances resembling the medium af-
ter-hyperpolarization (mAHP) and after-depolarization (ADP)
of MEC stellate cells (see Methods) and received input from
the simulated conjunctive cells and other grid cells. A single
run of the model with HD input of 6 mV, an ADP conduct-
ance peak time of 130 ms, and an NMDA fall time constant
of 150 ms is illustrated in Figure 3A. An activity bump was

FIGURE 2. Tsodyks et al. (1996) model of phase precession.
Simulation of 800 neurons, arranged along the y-axis according to
the position of their firing maxima along the rat’s 1D route. Time
is represented along the x-axis, partitioned into theta cycles. The
spikes of neuron #400 are circled. At the beginning of each theta
cycle (vertical line), external input activates the neurons corre-
sponding to the rat’s current location. Then assymetrical connec-
tions propagate neural activity to neurons representing positions
ahead of the rat (‘‘look-ahead’’). The activity is ‘‘reset’’ back to the
current location of the rat at the beginning of the next theta cycle.
Thus, neuron #400 fires spikes late in theta phase upon entry into
its field, and early in phase when the rat is exiting the field. The
size of the place field is the distance moved in space from the first
to the last spike (adapted from Tsodyks et al., 1996). Note that, in
the Tsodyks et al. model, the reset is assumed to be governed by
external cues, and the connection asymmetry that underlies phase
precession is in the recurrent connections of the place cell network.
Both of these assumptions are incompatible with path integration
in multiple directions. The present model was devised to overcome
these problems.
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FIGURE 3. Grid and conjunctive cell network simulation. A:
General behavior of the model. The activity of all simulated neu-
rons (y-axis) during 2 s of simulation is displayed. Spikes are binned
into 10 ms bins, with time displayed along the x-axis. B: The aver-
age activity of grid cells in every 2-theta cycle period was calculated.
The center neuron of the grid cell activity bump was calculated for
every 2-theta cycle period and used to line up and average together
all of the 2-theta cycle intervals in the simulation. The average nor-
malized position of the bump in each 10 ms time bin is marked by
the black line. C: All firing fields were aligned according to the
theta peak at the center of the field, to determine the probability of
spiking in each 10 ms bin (bottom plot). Compare simulation
results (bottom plot) to same analysis of a CA1 place field from
Skaggs et al. (1996) on top plot. In both plots, red lines mark theta

peaks, which refer to the phase of theta during which the cells ex-
hibit maximal firing (this is the trough of the theta oscillation meas-
ured in the pyramidal cell layer for CA1 cells). D: Theta phase pre-
cession of MEC grid cells recorded by Hafting et al. (2008). E:
Model grid cell spikes are plotted according to the theta phase and
time relative to the center of the field in which they occurred. F:
Membrane potential traces of one simulated grid cell and its corre-
sponding conjunctive cell, showing a pass through 1 grid field. G:
Patch clamp data from Harvey et al. (2009), showing the theta fil-
tered membrane potential of a mouse CA1 cell during a pass
through the cell’s place field in a virtual environment. Note that the
size of theta oscillation peaks increases within the place field, as
they do in our model grid cells. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

776 NAVRATILOVA ET AL.

Hippocampus



activated at a random location on the ring attractor. As a result
of the ‘‘theta’’ input, conjunctive cells were only active during a
portion of the theta cycle corresponding to the peak of this
input, and hence, consistent with the data of Hafting et al.,
(2008) for layer III MEC cells, did not exhibit full phase pre-
cession. During the firing of conjunctive cells, the activity
bump in the grid cell layer moved in one direction (‘‘look-
ahead’’). At the theta input trough, a lack of inputs and contin-
ued inhibition caused the bump to collapse. The ADP and syn-
aptic NMDA conductances helped the bump to reform at (or
‘‘jump-back’’ to) the group of cells active �110 ms previously.
Thus, as a whole, the grid cell population was active for most
of the theta cycle, with the focus of activity sweeping forward
and increasing in intensity up to the peak of theta, and then
waning and jumping back towards its point of origin during
the theta trough. The average bump movement within a cycle
is shown in Figure 3B.

As a result of the look-ahead and partial jump-back of the
activity bump during each theta cycle, each grid cell fired at
successively earlier theta phases during progression through the
active grid field (Fig. 3C). The shape of the theta phase preces-
sion plot (Fig. 3E) depended on the dynamics of the bump
look-ahead (Fig. 3B). Two factors contribute to the shape: early
in the theta cycle, grid cells reinitiated spiking as a result of the
ADP and NMDA currents, and late in the theta cycle, new
grid cells were activated by conjunctive cell activity. Activation
by ADP currents was less precisely timed than the inputs from
conjunctive cells, resulting in reduced phase selectivity towards
the end of the field (where spikes occur in the early part of the
theta cycle), as is seen in experimental place cell and grid cell
data (Fig. 3D). This is also seen in plots of fields aligned to
theta peaks (Skaggs et al., 1996; Fig. 3C). In this plot, spikes
are binned into several time bins within each theta cycle. Many
passes through the field are then aligned based on the theta
peak that occurs in the center of the field, so that the theta
phase in which spikes occur in each theta cycle throughout the

field can be visualized. Firing rate peaks at the beginning of the
field, occur late in theta phase, and are sharper than the peaks
at the end of the field, which occur early in theta phase. As in
the experimental data, in the middle of the field, two peaks
tend to occur in one theta cycle. In the model, this was because
in the middle of its grid field, the cell may become activated
by both conjunctive cell activity and ADP currents. The precise
shape of the look-ahead and jump-back (and thus the phase
precession) depended on the precise intrinsic conductances and
time constants as well as synaptic weight parameters, which are
not known for in vivo networks. The synaptic parameters used
in all simulations shown were chosen because they resulted in
fairly realistic phase precession, but also because they allowed
the bump activity to be robust enough to allow some manipu-
lation of inputs and time constants (see below). The parameters
used here are in Table I. Simulations with different synaptic
weight parameters showed, for example, a more discontinuous
jump-back than is displayed here.

The membrane potential (and spikes) of a model grid cell
and a conjunctive cell during a pass through a grid field are
displayed in Figure 3F. The membrane potential of conjunctive
cells is theta modulated throughout the simulation, as a result
of the constant head direction inputs. Grid cells only show
strong theta modulation of the membrane potential during a
pass through a grid field, when the inputs from conjunctive
cells are strongest. This is similar to the theta modulation of
the membrane potential of a CA1 place cell during a pass
through its place field (Harvey et al., 2009; Fig. 3G).

To simulate changes in grid scale along the dorsal-ventral
axis of the MEC, the time constants of the mAHP and ADP
were varied (Fig. 4A). Increasing the time constants caused
reinitiation of spikes to occur later, increasing the interburst
interval of the grid cells (as measured from the autocorrelo-
gram; Fig. 4B). As a result, the neurons that were likely to
reinitiate during the lull of input at the theta trough were the
ones that had been activated earlier in the last theta cycle,

TABLE 1.

Synaptic Weight Parameters Used in the Simulations

Max excitatory

weight

Spread

(neurons)

Offset

(neurons)

Inhibitory

weight

Grid -> grid 0.0256 15 0 0.0617

Grid -> conjunctive 0.0473 10 0 0.0167

Conjunctive -> grid 0.0786 6 11 0.0167

Conjunctive -> conjunctive 0 0.0222

Excitatory synaptic weights between the neurons were assigned as a function of distance between the neurons
(along the ring attractor). The maximal weight, spread (standard deviation) of the Gaussian distribution that
determined the weights (in number of neurons), and offset (in number of neurons) are shown. The resulting
weights between all neurons are displayed in Figure 1B. Global inhibition was implemented as an inhibitory con-
nection with a delay, between all excitatory neurons. The weights of these inhibitory connections are displayed in
the last column. All weights are unitless quantities which represent the peak conductance of the channels (AMPA
or GABA) multiplied by the resistivity of the cell membrane. For comparison, an excitatory connection of
0.0143 raises the membrane potential from rest (270 mV) by �1 mV. An inhibitory connection of 0.1 decreases
the membrane potential from rest by �1 mV.
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which increased the jump-back size. This resulted in each grid
cell firing for a larger number of theta cycles, and a slower rate
of theta phase precession (Fig. 4C), and thus increased the grid
period and firing field size (Fig. 4D). Because synaptic inputs
also played a large role in the timing of spikes, however, the
burst frequency was not completely determined by the ADP
delay. The interburst frequency changed more slowly than the
peak of the ADP, staying faster than theta frequency even if the
ADP delay was slower than theta (Fig. 4B). This shows that
network connectivity (synaptic inputs), alter, but do not elimi-
nate, the effects of the time constants of intrinsic currents on
spike timing. Fernandez and White (2008) have shown that the

intrinsic oscillations in stellate cells in vitro are reduced by in
vivo-like synaptic conductances. In our model, there is a lull in
synaptic input to grid cells from conjunctive cells at the theta
trough. This may have the effect of unmasking the ADP from
the otherwise strong synaptic conductances, and allowing it to
cause a ‘‘jump-back’’ of the bump during the theta trough. The
fact that the ADP works in this way in the model, suggests
that currents which in vitro produce strong oscillations can
have significant, though much reduced, effects on interburst
frequency in vivo. The oscillations observed in vitro, like the
time constants of the ADP implemented in our model, are
slower than the theta frequency measured in behaving animals

FIGURE 4. Variation of after-spike conductance time con-
stants in grid network simulations. A: Variation of the mAHP and
ADP conductance time constants resulted in the after-spike poten-
tials shown. All time constants (mAHP time constant, ADP peak
delay and ADP peak width; see Methods), were varied proportion-
ally. The mAHP time constants shown are 40, 50, 60, 70, 80, and
90 ls. The strength of the ADP current was increased with an
increase in time constants, to keep the firing rates of grid cells
during a run of the full simulation constant. B: Intrinsic burst fre-
quency (as measured from the autocorrelation) of grid cells in net-
work simulations run with various after-spike conductance time
constants. Theta frequency (frequency of head-direction input to
conjunctive cells) was set to 8 Hz in all simulations, and all other
parameters were also unchanged. C: Firing within grid fields
aligned to theta peaks (red lines) in simulations run with mAHP

time constants of 40 and 115 ls. With an increasing time delay,
simulated grid cells show a slower rate of phase precession, and
are active for more theta cycles, resulting in larger grid fields and
spatial periods. D: Grid field size and spatial period (in arbitrary
units) in simulations run with varying after-spike conductance
time constants. Field size (dots) is measured as the time from first
to last spike within one field, converted to space units by taking
the amplitude of the head-direction input as proportional to run-
ning speed. The sizes of all grid fields in each simulation are plot-
ted, along with the average (solid line) and standard deviation
(SD) (dotted lines). Grid field spatial period (circles), the distance
between grid cell firing peaks, is plotted for each simulation. Sev-
eral 15-s simulations were run and are plotted for each ADP time
delay.
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(Giocomo et al., 2007), also suggesting that the in vivo level of
synaptic conductances acts to speed up the interburst frequency
of these neurons.

The other factor that had a large effect on grid field sizes
was the time constant of the simulated NMDA current. With-
out a long-lasting component to the synaptic connections
between grid cells, grid cells would not stay active for more
than one theta cycle, and thus no phase precession would
occur. As the ADP was not strong enough to initiate spiking
by itself, depolarization from another source was needed to
cause a jump-back. The long-lasting effects of the NMDA cur-
rents provided this depolarization in the simulations. Increasing
the NMDA time constant (Fig. 5A) increased grid field sizes
and the spacing between grid fields (Fig. 5B). This increase was
observed even though the synaptic strength of the NMDA
component was decreased to keep firing rates constant. The
longer-lasting depolarization allowed the jump-back to return
to neurons activated earlier in the previous cycle, and allowed
each grid cell to be active for a larger number of theta cycles.
Changing both the mAHP/ADP time constants and the
NMDA time constant together, provided a more than six-fold
possible variability in grid spatial periods (Fig. 5C). Even
though we have modeled these prolonged synaptic currents as
NMDA currents, other prolonged currents, such as the kainate
currents found in layer III neurons (West et al., 2007), could
instead contribute to phase precession and to determining grid
field size. Our results with NMDA and ADP time constants
suggest that multiple factors may be responsible for the change
in spatial scale in different parts of the MEC.

While the time constant of the H-current increases from
dorsal to ventral MEC, it is not clear whether it changes dis-
continuously, so that the mAHP would be the same for all neu-
rons within an attractor module of a particular scale, as we
have so far assumed. In fact, it appears that mAHP at similar
dorsal-ventral MEC locations may be quite variable (see below,
Fig. 8). To ascertain that the model can tolerate different
mAHP time constants between cells within the same attractor
module, the mAHP (and ADP) time constants were varied
between cells within a grid cell network. The mAHP time con-
stant for each grid cell was chosen randomly from a uniform
distribution in a range of 20 ms (and the ADP time constants
were changed in proportion to this value for each cell). These
simulations showed that, while different values of the mAHP
(and ADP) time constants changed the firing rate of individual
cells within the grid cell network (in a range of about 5–10
Hz), the field sizes of individual cells varied by at most 20%,
and this variability showed no relationship with the time con-
stants of the individual cells. The grid field size and spacing
changed as a function of the average mAHP time constant of a
given attractor module, but did not change within single mod-
ules (Fig. 6A). We further varied the NMDA time constant
within an attractor module (in a range of 100 ms), to ascertain
that this parameter can be heterogeneous as well. In this case,
the firing rates of individual cells varied linearly with the time
constant, covering a range of about 4–12Hz, and the field size
varied by about 15%. Again, the variability in grid field sizes

between grid modules is a lot larger than the variability within
a module, even though the time constants overlap significantly
between modules (Fig. 6B). This shows that field size is deter-
mined by not just the intrinsic properties of the cell, but by

FIGURE 5. Variation of NMDA time constants in grid net-
work simulations. A: Excitatory postsynaptic potentials (AMPA
and NMDA component) resulting from different NMDA time con-
stants are shown. The NMDA conductance is decreased as the time
constant is increased, to keep firing rates of grid cells constant. B:
Increasing NMDA time constants in the simulated grid neurons
increased grid field size and spatial period. C: By changing both
NMDA and mAHP/ADP time constants, grid field size, and spatial
period varied by more than six-fold.
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the inputs it receives from other cells. The spacing between
fields especially, is a function of the average NMDA and
mAHP time constants of all the cells in the interconnected
network.

Head-direction (HD), grid and conjunctive cells in MEC all
increase their firing rates with velocity (Sargolini et al., 2006).
To simulate changes in rat velocity, the amplitude of the HD
input was varied. Thus, we assume that self-motion signals pro-
vide input to the conjunctive cells (possibly via HD cells).
Increasing the HD input caused a linear increase in the firing

rate of the conjunctive cells (Fig. 7A). Increased conjunctive
cell firing caused the grid cell activity bump to move faster
(Fig. 7B). This relationship was linear up to an input of about
7.5 mV (Fig. 7C), indicating that the amplitude of the HD
input can be used to link rat speed to bump movement
through network states precisely in relation to actual movement
in space. Extrapolating this relationship showed that no net
movement of the activity bump would occur (which would
correspond to the rat being motionless) when conjunctive cells
receive a HD input of about 0.6 mV. Although this level of
input was not enough to sustain a bump of activity for longer
than half of a second, other mechanisms, perhaps reduced feed-
forward inhibition, which was not simulated here, may sustain
the bump when the rat is motionless. The HD input minus
the 0.63 mV intercept was used as the rat speed (in arbitrary
units) to calculate the field size and periodicity (in arbitrary
space units) from the time spent in each grid field (time
between first and last spike). Using this spatial scaling factor
conversion from rat speed to bump speed kept the spacing
between grid field nodes constant across simulated running
speeds (Fig. 7D). The spatial scale of course depends on the
time constants of grid cell currents (Figs. 4 and 5), but also on
the gain of the input from self-motion signals (Terrazas et al.,
2005). Information about the gain of the self motion input rel-
ative to the actual velocity of the rat (slope and intercept deter-
mined above), is all that is needed to keep the spatial scale con-
stant across velocities.

Unlike the spacing between grid nodes, grid field size is
determined by the jump-back of the activity bump in each
theta cycle. This is because the first spike when entering the
field occurs at the end of the look-ahead of the activity bump
during that theta cycle (just before the jump-back), and the last
spike when exiting that field occurs just after the jump-back in
the last theta cycle in which this cell is active (see Fig. 2).
Thus, the average distance moved in neural space from the be-
ginning to the end of a grid field is equal to the number of
neurons over which the jump-back occurred, and the distance
the rat has moved in actual space over this time is the jump-
back multiplied by the spatial scaling factor. Thus, in order for
grid field sizes to stay constant, the jump-back must not
change. However, this is not guaranteed to be the case as inputs
to the grid cells change with increased velocity. Thus, the grid
field size may change, even though the spacing between grid
nodes does not change, altering the proportion of the spacing
between grid nodes in which the cell fires. In the simulations,
the jump-back, and thus the proportion of spatial period in
which a grid cell fired, increased slightly with HD input
(Fig. 7D). This effect was stronger or almost absent, depending
on the connection strengths between simulated neurons (alter-
nate connection strengths were simulated but are not shown).
The connection strengths modulated the jump-back and the
intrinsic oscillation frequency of the neurons, even though the
time constants of the ADP and NMDA currents were constant.
Thus, these connection strengths could be tuned in order for
the network to have appropriate field sizes, and to respond to
changes in the HD input so that field sizes did not change

FIGURE 6. Heterogeneous mAHP and NMDA time constants
within grid network modules. A: The mAHP and ADP time con-
stants of individual grid cells were varied within each intercon-
nected network. The average grid field size and spatial period of
each individual neuron (over a 50s simulation) is plotted according
to the mAHP time constant of that neuron. Each separate simula-
tion, representing a different grid module, had a different average
mAHP time constant, but the distribution of time constants over-
lapped between simulations. Each simulation is plotted in a differ-
ent color, showing that the field sizes showed almost no overlap
between simulations, and no relationship with time constant
within simulations. B: The NMDA time constant of individual
cells within a single simulation was varied. Plotting the field sizes
and spatial periods of individual cells according to the NMDA
time constant shows that the field size varies much more between
network modules (different colors) than within each single mod-
ule, and spatial period is the same between cells within a module.
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with it. Alternately, the jump-back (and thus field size) could
be kept constant with HD input by decreasing the ADP time
constants as the HD input was increased (data not shown). Ion
channels including the H-channel change their open time con-
stants with depolarization (Dickson et al., 2000; Giocomo and
Hasselmo, 2008), and thus the time constant of the ADP and
mAHP may actually change with increased input to the neu-
rons, resulting in constant grid field sizes. We tested this possi-
bility in slices of MEC by measuring the time constant of the
mAHP at different depolarized potentials (see below).

Finally, to determine if correct path integration would occur
in a longer simulation at varying speeds, a path of back and
forth movement along a linear track was simulated. The simu-
lated track was 300 cm long, and the simulated movement was
a sine wave (thus slowing down at either end of the track),
with the time to travel each lap decreasing across laps. The ve-
locity required to travel along this path was used as an input to
the model, converting velocity (in cm/s) to a head-direction
input (in mV) by dividing the velocity by 7 (arbitrary factor

chosen to allow the simulation to represent the speeds at which
rats commonly run; McNaughton et al., 1983) and adding the
baseline input (0.63 mV) at a bump speed of 0, as determined
above. This simulation showed that the model could perform
path integration even when velocity varied. The spikes from
one simulated grid cell are plotted on the simulated path in
Figure 7E. There was some random drift in the bump position
integrated by the model, with error accumulating at up to 10
cm/s, which is �15% of the size of the grid fields simulated
per second or 6.5% of the spatial period per second. The only
condition in which the error became systematic was at HD
inputs of over �8mV, where the neural activity bump started
moving nonlinearly faster than the input.

This simulation of back-and-forth running also shows some
interesting predictions for grid fields in multiple directions of
travel. As a result of the mAHP, once a grid cell starts firing, it
continues firing in future theta cycles, regardless of the rat’s
new running direction. Thus, if the rat turns around in the
middle of a field, the look-ahead activates cells ahead of the rat

FIGURE 7. Variation of head-direction input in grid network
simulations. A: The amplitude of the HD input to the ‘‘north’’
conjunctive cells was varied to simulate different running speeds,
resulting in a linear variation of the firing rates of the conjunctive
cells and grid cells. B: Examples of bump movement at the lowest
and highest HD inputs analyzed. C: The average slope of move-
ment of the grid cell activity bump varied linearly with HD input.
HD inputs with amplitude lower than 2.5 mV did not sustain an
activity bump for longer than 4 s. D: Grid field size and spatial
period as HD input was varied. The linear fit of the relationship
between HD input and average bump movement (in C) was used
as the spatial scale to convert the time of neural activity to the

space covered in the environment (in arbitrary units). E: A single
simulation run with varying velocities and directions. The simu-
lated path is plotted in gray. The path simulated running along a
linear track as a sine wave, with the frequency of the sine wave
(speed of running each lap) decreasing over laps. The spikes of a
single neuron in the simulation are plotted along the path. Field
size decreased slightly over laps (increased with velocity). There
was some random drift in the movement of the activity bump,
resulting in slight shifts of field locations over laps. After a long
period of low inputs (at the turn around point during a slow lap),
the bump collapsed, and thus the firing of all cells stopped (see
text).
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in the new direction, but the jump back only activates cells
that were activated previously, not the cells directly behind the
rat. In a 2D environment or simulation, this may be seen as a
sequence of cells activated in a single theta cycle that represent
positions in the same path the rat took, such as around a cor-
ner, and not in a straight line. In the hippocampus, such a phe-
nomenon is observed when a rat turns around on a linear track
within a place field. Place cells that are otherwise unidirectional
on a linear track exhibit bidirectional firing when the rat turns
around within the cell’s place field, indicating an ‘inertia-like’
process (Redish et al., 2000), such as the ADP in this model,
which predicts a jump-back to previously activated cells,
regardless of what is directly behind the rat at the current time.
In our 1D simulations, neurons that were activated for just one
or two theta cycles before the turn around point, are not acti-
vated again in the reverse direction, because they were not
active strongly enough for the jump-back to reach them (data
not shown). In contrast, the interference oscillator model pre-
dicts symmetrical grid fields in both running directions. The
current model shows a look-ahead that is longer than the
jump-back, resulting in grid fields that are shifted in the for-
ward running direction, and thus asymmetrical in the two run-
ning directions (Fig. 7E).

Analysis of mAHP Timing in MEC Stellate Cells

To test the hypothesis that after-spike potentials vary with
the scale of grid fields, we analyzed the mAHP in layer II stel-
late cells (a subset of the cells whose membrane properties were
reported by Giocomo et al., 2007). The time constant of the
mAHP differed in layer II stellate cells along the dorsal-ventral
axis of MEC. Figure 8A shows examples of the mAHP from
different dorso-ventral levels, when the membrane potential
was approximately 250 mV (between 253 and 248 mV). As
determined by the Kolmogorov-Smirnov test, the stellate cell
mAHP time constant was significantly shorter in dorsal MEC
(dorsal mean s 6 standard error of mean (SEM), 53.3 6 4.8
ms and n 5 16;) compared to ventral MEC (ventral mean s 6
SEM, 70.5 6 5.7 ms and n 5 15; P < 0.01) at an approxi-
mate membrane potential of -50 mV. The time constant
showed a range of 86 ms (from 32.6 to 118.9 ms) and
systematically increased from dorsal to ventral portions of
MEC at multiple membrane voltages (255 mV: r 5 0.56,
slope 5 17.7, P 5 0.3263 and n 5 5; 250 mV: r 5 0.56,
slope 5 23.1, P < 0.05 and n 5 31; 245 mV: r 5 0.71,
slope 5 26.1, P 5 0.06 and n 5 11; Fig. 8B, left). The
mAHP time constant did not significantly correlate with cell
resistance (R2 5 0.0004) or firing threshold (R2 5 0.004).

To test if the model could reproduce the range of experi-
mental data that has been recorded, the experimentally deter-
mined changes in grid spacing and mAHP over dorso-ventral
locations in MEC were compared to the modeled results. In
the supplemental material of Sargolini et al. (2006), the gradi-
ent in grid spacing along the dorso-ventral axis of the MEC
was fit with the following equation provided by T. Hafting:

G(z) 5 30z 1 37.09 (for grid spacing in cm; z is the distance
from the postrhinal border in mm). This indicates that the
spacing between grid fields at the postrhinal border is 37.09
cm, and increases by 80.9% every mm. To better compare the
gradient in the mAHP time constant to the gradient in grid
spacing, the mAHP dorsal-ventral depth was rescaled to indi-
cate the distance from the postrhinal border (at �3.8 mm
from the surface of the brain). The gradient for all mAHP data

FIGURE 8. After-hyperpolarization in stellate cells along
dorso-ventral axis of the MEC. A: Examples of the mAHP after a
single action potential at an approximate membrane potential of
250 mV. Faster time constants for the mAHP were observed in
more dorsal portions (black) compared to more ventral portions
(gray) of MEC. B: The recovery time constant of the AHP
increases along the dorsal ventral axis of MEC at multiple mem-
brane potentials (left). The recovery time constant of the AHP
shows a slight decrease with membrane depolarization (right). C:
The half-width of the AHP increases along the dorsal ventral axis
of MEC at multiple membrane potentials (left). The half-width
shows a slight trend of decreasing with depolarization (right).
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was best fit by the following equation: s(z) 5 23.16z 1 35.35
(s in ms, z in mm). In the model with heterogeneous mAHP
and NMDA time constants, the spacing between grid cells
started at 13.9 (arbitrary units at mAHP 5 40 ms) and
increased by 30.5% for every 10 ms increase in mAHP time
constant (linear fit to Fig. 6A). Plugging in the experimentally
measured relationship between mAHP time constant and
dorso-ventral location in the MEC, this would predict a spac-
ing increase of 82.5% every mm. This is very similar to the
experimentally determined 80.9% increase; however, different
model parameters (including simply removing the heterogeneity
of mAHP time constants within a single module of the model;
Fig. 4D) greatly change this result. The linear fit to Figure 4D
suggests an increase of 42.3% every mm. These results further
support the finding that grid field spacing is not simply deter-
mined by the mAHP and many other factors contribute.
Importantly, however, an identical increase in grid spatial pe-
riod to that observed in the dorsal-most 1.5 mm of MEC (Sar-
golini et al., 2006) can be achieved in one version of the
model, by simply increasing the mAHP time constant at the
same rate as is observed in the same region of the MEC.

In addition to a systematic change along the dorsal ventral
axis, the time constant of the mAHP showed a slight decrease
with additional depolarization (from 254 mV to 240 mV).
To compare the effect of membrane potential on mAHP time
constant across multiple cells, the z-score of the time constant
was computed at each potential. The time constant for the
mAHP decreased slightly with depolarization (R2 5 0.13; Fig.
8B, right). Although the decrease was not significant, a decreas-
ing mAHP time constant with depolarization is consistent with
previous research indicating a decrease in the time constant of
Ih with depolarization (250 to 245 mV; Dickson et al., 2000,
Giocomo and Hasselmo, 2008; Fig. 8B). The mAHP half-
width also increased from dorsal to ventral portions of MEC at
multiple membrane potentials (Fig. 8C) and showed a slight
trend with depolarization in the same direction as the time
constant of the mAHP.

DISCUSSION

The model developed here accounts for the periodic struc-
ture of MEC stellate cell firing fields using the Samsonovich
and McNaughton (1997) framework with periodic boundary
conditions. That model simulated movement of an activity
bump on a periodic place cell manifold by driving place-by-
head-direction (conjunctive) cells with an input proportional to
running speed. Modulation of this input at the theta frequency
resulted in fluctuations of the bump speed within a theta cycle,
but no explicit ‘jump back’, and thus no phase precession. To
account for phase precession without spatially selective, external
input to reset the bump location, we assumed that an intrinsic
cellular mechanism renders cells hyperexcitable at a certain
postspike latency, so that the bump would reset at the end of
the theta cycle to an earlier location on the manifold. The

mAHP and ADP observed in MEC stellate cells appear to be
good candidates for this mechanism, provided that their timing
properties vary appropriately along the dorsal-ventral axis of
MEC. Postspike dynamics of MEC stellate cells recorded
in vitro exhibited time constants and half-widths of the mAHP
that increased linearly in the dorsal-ventral direction, with a
resulting linear increase in the latency of the ADP. Using the
observed parameter values, we found that grid cell dynamics
could be simulated rather faithfully, including realistic phase
precession, firing over the number of theta cycles observed in
dorsal MEC at various running speeds, firing fields that covered
about half a grid period, stable grid periods under changes in
velocity, and variation in field size and periodicity with changes
in mAHP time constant (reflecting dorso-ventral variation in
grid characteristics).

We believe that the major advantage of our model is its rela-
tively simple implementation of both network as well as intrin-
sic current dynamics to achieve path integration and account
for phase precession. Previous models of grid cells have focused
on either network properties (Fuhs and Touretzky, 2006; Gua-
nella et al., 2007) or intrinsic, single cell properties (e.g., Bur-
gess et al., 2007; Blair et al., 2007) to explain the firing proper-
ties of grid cells. Attractor models of path integration are pref-
erable to single cell models, because they are more robust to
the presence of noise (see Zilli et al., 2009 for an analysis of
the effects of noise on oscillatory interference models). Attrac-
tor models of path integration also predicted a priori both the
existence of theta-and speed-modulated conjunctive cells in
MEC and the quantization of grid scale (McNaughton et al.,
2006), neither of which are explicitly called for in alternative
models (e.g., Burgess et al., 2007; Kropff and Treves, 2008).
Previous models with attractor network dynamics, however, did
not account for phase precession (Fuhs and Touretzky, 2006;
Guanella et al., 2007). Our current implementation of an
attractor network-like connectivity with intrinsic currents
expressed phase precession very similar to that observed experi-
mentally in the presence of noise, in contrast to previous grid
cell phase precession models (Blair et al., 2007; e.g., Hasselmo
and Brandon, 2008), and would theoretically produce omni-
directional phase precession in a 2D implementation, without
the need for any external input or resets to correct for noise.
Our 1D simulations showed faithful path integration of a vary-
ing velocity input over several minutes (Fig. 7E).

All of the basic elements implemented in this attractor net-
work model appear to be present in the MEC, including: the
presence of conjunctive grid 3 HD cells (Sargolini et al.,
2006) and their connectivity to the layer II grid cells (Lingen-
hohl and Finch, 1991; Germroth et al., 1989; reviewed in Wit-
ter and Moser, 2006), feed-forward and feedback inhibition,
prolonged excitatory currents (West et al., 2007), and after-
spike currents that change time constants along the dorsal-ven-
tral axis (shown here). As implemented, the model also posits
recurrent connectivity between grid cells. Although recurrent
connectivity is more prominent in layer III of the EC (Dhillon
and Jones, 2000), it has been observed between layer II stellate
cells as well (Kumar et al., 2007). Quantitative consideration of
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the torus model suggests that actual connectivity is likely to be
very low. In the present simulations we used a Gaussian synap-
tic weight function; however, in a realistically sized network,
the weight function can be replaced by a probability function,
with binary weights. In the 1D case, we succeeded in reproduc-
ing the dynamics with the equivalent of about 15% connectiv-
ity. In a 2D case, the probability would be the square of 0.15
i.e., on the order of 2.25%. Given that there are nongrid cells
in layer II, which may or may not have recurrent connections;
this fraction may be lower still. Alternately, other network
architectures, in which the bulk of the recurrent connectivity
would occur between layer III conjunctive cells (possibly a sub-
class of phase precessing conjunctive cells), could result in path
integration and similar properties of grid cells.

This model proposes two causes of grid cell firing under the
theta regime: the after-depolarization potential, which causes
cells active sometime in the past to become active again, and
conjunctive cells, which cause cells in the direction ahead of
the rat to fire. As a result of the two different causes for spik-
ing, the model predicts that spikes generated at different phases
of the theta cycle (and different locations in the field of a single
grid cell), can have different properties, such as precision of
timing. Other grid cell phase precession models do not share
this prediction; they suggest the same mechanism causes spikes
throughout the field and thus predict a constant slope of phase
precession (e.g., Burgess et al., 2007; Blair et al., 2007). The
distribution of spikes on a theta vs. position plot in fact
appears to have a different slope and width at early compared
to late theta phases (Skaggs et al., 1996). This also predicts
that place fields may be asymmetrical when traversed from one
direction compared to the other, as the early field spikes gener-
ated by conjunctive cell inputs when the field is traversed in
one direction, will be late field spikes generated by the ADP
when the same field is traversed in the other direction. In our
simulation of back-and-forth running (Fig. 7E), fields are
slightly shifted in the direction of running, suggesting that the
‘look-ahead’ activated by conjunctive cell inputs is longer than
the re-initiation of spikes in grid cells via the ADP. Fields of
CA1 place cells also appear to be shifted in the forward run-
ning direction when traversed from opposite directions (Batta-
glia et al., 2004).

The two causes of grid cell spiking predicted by this model
are also consistent with models that suggest that the hippocam-
pus is involved in prediction of future events and sequence
encoding (Buzsaki, 2006, pp. 326–327; Jensen and Lisman,
1996). Spikes generated by the ADP can be thought of as ‘‘ret-
rospective,’’ or a cellular ‘‘memory’’ for the rat’s location in the
past, and spikes generated by conjunctive cells could be ‘‘pro-
spective,’’ predicting the location in the future. This mecha-
nism would allow the grid cell network, or a network down-
stream of it, to strengthen the synapses between neurons repre-
senting sequences of visited locations, by repeating this
sequence multiple times during a single pass through the loca-
tions (Skaggs et al., 1996; Jensen and Lisman, 1996). Finally,
an attractor map model of grid cells is consistent with a plan-
ning function for the grid cell network and down-stream struc-

tures, similar to the one proposed by Hopfield (2010). Hop-
field proposes that adaptation in an attractor map would cause
the activity bump to drift, thus ‘‘searching’’ the parameter
space, possibly to locate a new path to a previously visited goal,
without the rat having to physically travel through the space.
The mAHP implemented in our model serves the same func-
tion as adaptation in Hopfield’s model, in that it allows the ac-
tivity bump to drift forward, in our model also helped by
inputs from the conjunctive cells. Thus the ‘‘look-ahead’’ in
our model could be described as a ‘‘mental time travel’’ of the
attractor map locations just ahead of the rat in Hopfield’s ter-
minology. Also, in a regime other than theta during active loco-
motion, for example sharp waves, the same attractor network
with adaptation (resulting from the mAHP or some other
intrinsic current) could be used to conduct this mental travel
over longer distances and in random directions to plan and
encode future routes. Because the code for place is much less
sparse in the MEC than in the hippocampus, mental time
travel (‘‘look-ahead’’ or ‘‘sweep’’) occurring simultaneously in
many modules of grid cells (each module encoding the envi-
ronment at a different spatial scale) would find the goal much
faster than the same ‘‘sweep’’ across the hippocampal network.

The spatial scale of place and grid fields changes along the
dorso-ventral axes of both structures. Individual MEC grid
cells, like hippocampal cells, also exhibit changes in spatial scal-
ing under a variety of conditions (Brun et al., 2008; Barry
et al., 2007). In our model, spatial scale is determined by two
factors: the gain of the self-motion signal (velocity input), and
the various after-potential and long-term synaptic currents that
result in a ‘‘jump-back’’ of the neural activity bump. It is im-
portant to note that many parameters contribute to the dis-
tance of the jump-back, and thus influence spatial scale. These
include the mAHP and ADP time constants, and the amplitude
and time constants of synaptic currents (especially long-term
currents). In addition to the changes in time constant of the
H-current (Giocomo and Hasselmo, 2008), and the mAHP
time constant (Fig. 8), synaptic integrative properties of stellate
cells also change along the dorso-ventral axis of the MEC
(Garden et al., 2008). Garden et al. (2008) did not look at
long-lasting synaptic currents, but they show that the time con-
stant of AMPA currents increase in ventral parts of the MEC.
Changes to these parameters have not yet been induced or
observed in individual cells in vivo, but a decrease in the gain
of the self-motion signal is induceable in rats by removing self-
motion information derived from motor and proprioception
systems, which results in a large expansion of spatial scale in
hippocampus (Terrazas et al., 2005). In our model, this gain is
the factor used to convert bump movement along the neural
ring (in neurons) to position in space (cm). We assume that
this factor comes from self motion signals that provide an
input to conjunctive cells (possibly via head-direction cells),
which is linearly related to the velocity of the animal. At pres-
ent, little is known about how linear motion signals reach the
hippocampal system, although the mammilary nucleus - ante-
rior medial thalamus route is a possibility (Sharp and Turner-
Williams, 2005). In the simulations, the relationship between
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input to conjunctive cells and movement of the activity bump
was linear over a large range of inputs, and as a result, the spa-
tial scale did not vary with the velocity input.

Grid field size (the proportion of a grid period over which a
grid cell actually fires), however, may vary independently of the
spatial scale (grid spacing). Thus, for example, field size can
increase when the rat runs faster, without the grid period (spa-
tial scale) getting larger. If the field size changes, more neurons
are active simultaneously, but the population of neurons still
encodes the position just as accurately. Thus, this network
attractor model predicts that while the spatial scale and period
of grid fields stays the same at different running speeds, grid
field sizes may increase with running speed, or they may stay
the same. Our simulations support both possibilities. In order
for field size to stay the same with velocity, the ‘jump-back’
must stay the same, even though the look-ahead increases with
velocity. Thus the ratio of theta frequency to intrinsic burst fre-
quency of the grid cells has to decrease as the rat runs faster.
This means the time constants of the currents that cause the
re-initiation of spiking should decrease with running speed.
These currents could be either the intrinsic currents (ADP and
mAHP), which do not change significantly with depolarization
(Fig. 8), or the long-lasting excitatory synaptic current, which
could also change its time constants or conductance with depo-
larization. Our simulations showed a slight increase in field
sizes with velocity input; however, we could find a linear rela-
tionship between the time delay of the ADP and the changes
in HD input that maintained field sizes constant with running
speed (data not shown). It is plausible that such a relationship
could be tuned in the MEC network during postnatal
development.

Although it is known that firing rate increases with running
speed in most hippocampal formation neurons (e.g.,
McNaughton et al., 1983), there has been no systematic study
of the effect of speed on place field size, in the absence of other
possibly confounding variables. From a population vector anal-
ysis of the activity of CA1 cells on a within theta cycle time
scale, it has been shown that the look-ahead increases as the rat
runs faster on a linear track, as our model predicts, but the
jump-back may also increase, indicating that the intrinsic oscil-
lation frequency does not compensate adequately, and CA1
field sizes increase (Maurer, 2008); however in these studies
running speed is confounded with position on the track and
proximity to reward zones.

The prediction that grid field size and spatial period vary in-
dependently can be tested in conditions other than varying run-
ning speeds. The proportion of spacing over which a grid cell
fires can also change, for example as a result of the interactions
between the grid cell network and the rest of the hippocampal
system. Grid fields are expressed and show phase precession for
some time after hippocampal inactivation (Hafting et al.,
2008), showing that this network can function alone, but even-
tually grid cells cease firing, suggesting that hippocampal input
is not irrelevant. Such inputs might reset the path integrated
grid fields, which are subject to random drift, with information
from external landmarks, and may alter path integration by

adding different information to the circuit (Burgess et al.,
2007). For example, when a rat repeatedly follows the same
route, place fields expand opposite to the direction of running
(Mehta et al., 1997). This could cause a larger look-ahead in
the grid cell network, because of greater input from place cells
ahead of the rat during the last part of the theta cycle. If this
larger look-ahead does not affect the average progression
through grid fields, then grid cells would increase the propor-
tion of the grid period over which they fire in the direction op-
posite to rat movement, but not the spacing between fields,
and the path integrator would still accurately encode distance
traveled.

If, however, inputs from place fields are altered due to mis-
match between the path integrator and the external landmarks,
then rescaling or shifting of grid fields could occur (Samsono-
vich and McNaughton, 1997). For example, if the active place
cells (or other neurons providing a feed back to the grid cell
network) cause the bump in the grid cell network to shift and
stay ahead, the look-ahead would be larger, but the interburst
interval would not change. Thus the average progression
through grid fields will be faster, causing a smaller spacing
between grid fields. Since the interburst interval and jump-back
would not change, grid field sizes would also not change. Barry
et al. (2007) conducted a study to cause such a mismatch, in
order to determine if grid fields are reset by place cells in
response to environmental landmarks. The grid cells in that
experiment showed a rescaling of 50% of the resizing of the
environment and then a gradual transition to normal scale
once the new environment became familiar. These data suggest
that the rescaling was not due to a resetting by landmarks
(which should cause a 100% rescaling to the environmental
boundaries and an abrupt change from landmark-driven to
path integration-driven field location), but by a global decrease
in the gain of the speed signal in the rescaled dimension. Since
the novel environment was smaller than the familiar one, the
rat would have seen the walls of the environment approach
faster than expected, causing neurons tied to the landmarks to
activate sooner than the grid cells driven by path integration.
Feedback from landmark-driven cells would cause the look-
ahead of the grid cell network to be larger, causing a faster
overall movement of the grid cell activity bump through net-
work states, making the spacing between grid fields smaller.
The proportion of the spacing in which these cells fire would
be larger, because of the larger look-ahead, as appears to be the
case in Barry et al. (2007). This value should be measured in
future experiments, since the possibility of its variation is a pre-
diction of our model but not of oscillatory interference models.

In conclusion, this model of a network with ring attractor
connectivity and intrinsic currents and our simulations of this
model, generate three novel predictions which can be tested
experimentally. These predictions are different properties of
grid cell spikes during late compared to early parts of the theta
cycle, the potential for an independent variation of grid field
size and spacing, and finally, if field sizes remain constant with
running speed, the model predicts a change in time constant of
after-spike currents, or amplitude of prolonged excitatory cur-
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rents at different running speeds. The first two predictions
could be measured in multiple phenomena already studied
with electrophysiological recordings from the MEC of behaving
rats. The conjecture that grid cell spikes have different proper-
ties during late compared to early parts of the theta cycle sug-
gests, for example, that there is a different slope of phase pre-
cession at entry into a grid field compared to the exit out of a
field, and that grid fields are asymmetrical in different running
directions. Independent variation in grid spatial period and
field size could be observed, for example, at different running
speeds of the animal, or during experience-dependent changes
in field sizes.

METHODS

Simulations

An attractor map model of grid and conjunctive cells was
created, with connectivity according to the toroidal attractor
map theory (Samsonovich and McNaughton, 1997; McNaugh-
ton et al., 2006). For simplicity, the model was implemented
in 1D, making it equivalent in terms of connectivity to the
Skaggs et al. (1995) ring attractor model for head direction
cells (see also Zhang, 1996).

Grid and conjunctive cells were implemented as leaky inte-
grate and fire neurons, connected by synapses. The membrane
voltage (V) of each neuron dynamically changes as follows:

sm
dV

dt
¼ EL � V �

X

j

wijpjðV � EsÞ þ RmIext

where sm 5 10 ms is the membrane time constant, EL 5 270
mV is the leak reversal potential, and ES is the synaptic reversal
potential, set at 0 mV for excitatory synapses, and 280 mV
for inhibitory synapses. Inputs from sources external to the grid
and conjunctive cell network, including initial input to grid
cells to cause an activity bump to form, and input about head-
direction to the conjunctive cells (see below for full explanation
of head direction inputs) are modeled as external currents
(RmIext). Grid cells also had an intrinsic conductance, modeled
to mimic the after-spike potentials of stellate cells, to generate
intrinsic oscillatory activity, which contributes to theta phase
precession (see below). When the membrane voltage reached
threshold (254 mV), a spike was recorded, and V was reset to
280 mV. Simulations were run in MATLAB, using the Euler
method of integration.

AMPA synapses were modeled as conductance changes fol-
lowing a presynaptic spike, with the proportion of open chan-
nels decaying as a single exponential. Two ms after a spike
occurred in a presynaptic neuron (j), the proportion open
channels in that synapse (pj) was set to 1, and then exponen-
tially decayed with a time constant of 10 ms. The weight of
each synapse (wij) determined its maximal conductance. Excita-
tory synapses were probabilistic. The probability of transmis-
sion of each presynaptic spike was 0.5.

The synaptic connectivity was implemented as a ring attrac-
tor network. Grid cells can be schematically arranged according
to the relative phase offsets of their grid fields. Because phase is
periodic, the network boundaries are also periodic (i.e., a ring).
Each neuron was connected to others with synaptic strength
decreasing as a Gaussian function of distance (see Figs. 1A,B).
Interneurons were not explicitly modeled, but inhibitory feed-
forward and feedback connections, with a delay of 4 ms and a
10 ms decay time, were added between all groups of excitatory
neurons, to regulate the total activity of all grid cells and con-
junctive cells. Thus, activity stayed in a ‘‘bump’’ corresponding
to one location (see Fig. 3A). There were two groups of con-
junctive cells, each corresponding to opposite head directions
(‘‘north’’ and ‘‘south’’), each of which contained the same num-
ber of neurons as there were grid cells. Each grid cell had a
synaptic connection to its corresponding conjunctive cell in
each group, as well as their near neighbors, with synaptic
strength again falling off with distance in a Gaussian manner
(See Table I for parameters). Each conjunctive cell had synapses
onto the grid cells corresponding to a position offset (11 neu-
rons counterclockwise for the ‘‘north’’ conjunctive cells) from
that represented by the conjunctive cell. Again, there was a
Gaussian spread of synaptic connections to a group of grid
cells. Inhibitory synapses were present on all conjunctive cells
and activated based on the activity of the conjunctive cells of
both groups, in order to allow only a small group of conjunc-
tive cells of one head direction to be active at a time (Fig. 1C).
Therefore, when a ‘‘north’’ head direction input activated one
group of conjunctive cells, the conjunctive cells corresponding
to the location of the activity bump in the grid cell network
spiked, and moved the bump in the counterclockwise direction
(see Fig. 3A). The synaptic connectivity pattern modeled here
was designed based on previous attractor models of path inte-
gration (Samsonovich and McNaughton, 1997), with less atten-
tion paid to evidence of actual connectivity patterns in the su-
perficial layers of the MEC, because this evidence is very lim-
ited. Other connectivity patterns that could create an attractor
network are plausible, however.

In addition to AMPA and GABAA—like synapses, NMDA
synapses between grid cells were simulated. A long time con-
stant current such as this was necessary in order to allow grid
cells to be activated over multiple theta cycles. NMDA-like
synaptic events were activated every time an AMPA synaptic
event at the same grid cell-grid cell synapse occurred, thus also
with a probability of 0.5 and 2 ls following a presynaptic
spike. The time course of NMDA channel opening was mod-
eled as a difference of exponentials (Destexhe et al., 1994;
reviewed in Dayan and Abbot, 2001, pp. 180–183), with a rise
time of 2 ms and a fall time of 150 ls (or somewhere between
125 and 500 ms in Fig. 5). The maximal conductance (weight)
of these synapses was based on the weight of the AMPA synap-
ses between the same neurons, with a fixed NMDA:AMPA
weight ratio for all grid cell to grid cell synapses. (The NMDA
weight was 2*wij in simulations in which the NMDA fall time
constant was 150 ms. The NMDA:AMPA ratio was changed
with NMDA fall time to keep the firing rates the same for all

786 NAVRATILOVA ET AL.

Hippocampus



simulations in Fig. 5). The conductance of NMDA synapses
also depended on the neurons’ voltage, based on the relation-
ship determined by Jahr and Stevens (1990; reviewed in Dayan
and Abbot, 2001, p. 183):

GNMDA ¼ ½1þ ½Mg2þ�
3:57mM

� e�V=16:13mV��1

A magnesium concentration of 0.1 mM was assumed, giving
the voltage dependency of excitatory synaptic connections
shown in Figure 1C.

Inputs to the model included a source of theta modulation,
and a velocity modulated head-direction input, both presented
to the conjunctive cells. All conjunctive cells received an 8-Hz
sine wave current input, 8 mV in amplitude, throughout the
simulation, causing the activity of the conjunctive cells to be
‘‘theta’’ modulated. Head direction input was added to the
model as a constant current input into one group of conjunc-
tive cells (usually the ‘‘north’’ conjunctive cells). The amplitude
of this input was varied from 1 to 8 mV, to simulate different
running speeds. Head direction cells in the MEC have been
shown to be velocity modulated (Sargolini et al., 2006).

The medium after-hyperpolarization (mAHP), and after-
depolarization (ADP) phenomena of stellate cells were modeled
in the simulated grid cells as conductance changes following
each spike. Since the mAHP is likely caused by the closing of
H-channels (Fransen et al., 2004), a conductance with a rever-
sal potential of -20 mV was added to the grid cells. The leak
reversal potential was changed to -80 mV, and the H-conduct-
ance was set so that before a spike, the resting potential of the
cell remained at -70 mV. Following each spike, the proportion
of open H-channels first decreased, to cause the mAHP, and
then increased, to cause the ADP, according to summation of
the equations:

pmAHP ¼ 0:5� 0:5 � e�t=a

pADP ¼ 0:5 � e�ðt�bÞ2=ð2�c2Þ

where t is the time following the last spike, and a, b, and c are
time constants representing the decay of the mAHP, delay of
the ADP peak, and width of the ADP peak, respectively. These
time constants were set to mimic the stellate cell after-spike
potential data, and varied proportionally (from a 5 40, b 5
80, c 5 24 to a 5 115, b 5 230, c 5 69) to represent changes
in the H-current time constants along the dorso-ventral axis of
the MEC, resulting in the after-spike membrane potential pro-
files shown in Figure 4A. Note that the mAHP and ADP were
not modeled in the conjunctive cells, based on physiological
data showing the absence of H-current dynamics and ADP in
MEC Layer III neurons (Dickson et al., 1997).

The movement of the grid network ‘‘activity bump’’ during a
run of the simulation was analyzed by calculating the position
(neuron) of the center of mass of the activity of all of the grid
cells in every 10-ms bin. This position was then used to linea-
rize the movement of the bump along the circular arrangement
of grid cells, to determine cumulative movement. The move-

ment within a theta cycle was analyzed by aligning the average
positions over every two theta cycles, and averaging the activity
in each of those two-theta-cycle periods over the entire simula-
tion. Grid fields were analyzed by finding the first and last
spike during each pass through the field for each neuron. Grid
fields that began >100 ms after the formation of the activity
bump, and end <150 ms before the end of the simulation
were used. The time between the first and last spike of each
field was used as a measure of grid field size. The center of
mass of the spikes within each field was then found, and the
peak of theta nearest to that center of mass was used to align
all fields to one another. This produced the Skaggs plot of
theta phase precession (Skaggs et al., 1996; Fig. 3C). The spike
time relative to the center of mass of the field the spike
belonged to was plotted vs. the theta phase of that spike to cre-
ate the theta phase vs. position plots (Fig. 3E).

The average autocorrelation of all grid cells was used to
determine the intrinsic oscillation of the grid cells and grid
field spacing in each simulation. Two oscillations were evident
in the autocorrelation: an interburst frequency of �120 ms,
within a slower beat frequency that indicated the spacing of the
grid fields. The autocorrelation was convolved with a hanning
window of 25 ms, to extract the intrinsic oscillation peaks.
Grid field spacing was determined by convolving with a han-
ning window of the grid field size.

Slice Physiology

Methods for slice physiology and stellate cell in vitro whole-
cell patch clamp recordings have been described previously
(Giocomo et al., 2007). A total of 46 stellate cells were ana-
lyzed. Of the 46 cells, 25 came from the dorsal portion of
MEC (3.8–4.9 mm from the dorsal surface of the brain) and
19 came from the ventral portion of MEC (5.0–6.0 mm from
the dorsal surface of the brain).

All experimental data were analyzed in MATLAB. To deter-
mine the time constant of the medium AHP and characteristic
of ADP the portion of the AHP just after a single action
potential was fit with the following dual exponential equation:

V ðtÞ ¼ V ð0Þ � zð sRsO
sR � sO

Þðe�t=sR � e�t=sOÞ

where V(t) is the membrane potential as a function of time (t).
V(0) is the baseline membrane potential (corresponding to the
initial value and eventual highest positive value reached after
the mAHP). z is a constant used as a scaling factor propor-
tional to the magnitude of the mAHP. sO is the measured
onset time constant (rate of hyperpolarization), and sR is the
time constant of recovery (depolarization) back to the initial
membrane potential value. To determine the half width, the
trough value and eventual highest positive value reached after
the mAHP (as determined by the time constant fit) were used
to determine the time point (half max) where the width of the
AHP was measured. For time constant data, analysis was used
from cells which had >5 action potentials with good fits, as
determined by an average adjusted R2 of > 0.85. The average
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number of spikes analyzed was 22 6 2. Spikes were analyzed
that came from portions of the data where the cell was near its
firing threshold (255 to 240 mV). Data analysis was conducted
using MATLAB (Mathworks) and Excel (Microsoft). To test the
difference between samples (e.g., dorsal vs. ventral) the nonpara-
metic Kolmogorov-Smirnov (ks) test was used. Correlations
were tested using the Spearman’s rank correlation coefficient. For
all analysis, a value of P < 0.05 was considered significant.
Regression lines were constructed using the least squares method
in Microsoft Excel and the R values are reported.
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