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SUMMARY

It has long been hypothesized that a primary function
of the hippocampus is to discover and exploit tempo-
ral relationships between events. Previously, it has
been reported that sequences of ‘‘time cells’’ in the
hippocampus extend for tens of seconds. Other
studies have shown that neuronal firing in the hippo-
campus fluctuates over hours anddays. Both of these
mechanisms could enable temporal encoding of
events over very different timescales. However, thus
far, these two classes of phenomena have never
been observed simultaneously, which is necessary
to ascribe broad-range temporal coding to the
hippocampus. Using in vivo calcium imaging in unre-
strained mice, we observed sequences of hippo-
campal neurons that bridged a 10 s delay. Similar
sequences were observed over multiple days, but
the set of neurons participating in those sequences
changedgradually. Thus, the samepopulation of neu-
rons that encodes temporal information over seconds
can also be used to distinguish periods of time over
much longer timescales. These results unify two pre-
viously separateparadigmsof temporal processing in
the hippocampus that support episodic memory.

INTRODUCTION

The mammalian hippocampus is critical for linking spatiotempo-

rally defined events to form episodic memories [1, 2]. Numerous

experiments in both rodents and humans have shown that repre-

sentations of temporal delays or temporal order are generated in

the hippocampus [3–8] (for reviews, see [9–11]). In a particularly

striking example, CA1 pyramidal cells reliably spike in sequence

during defined temporal intervals within experimentally imposed

delays of up to 20 s [4–6, 8, 9]. Sequences of this nature had been

predicted in computational models of hippocampal function

[12, 13], suggesting that the ‘‘time cells’’ that comprise these

sequences provide temporal information about successive
Curre
events at a behavioral timescale (i.e., ‘‘microtime’’) [14]. In sup-

port of this, time cell sequences differentiate goal locations [6],

odors [15], tones, and behavioral decisions [16]. After learning,

time cell sequences are required for appropriate memory for

past events, supported by evidence that interruption of these se-

quences impairs performance in memory tasks [17, 18]. Further-

more, CA1 temporal structure is compromised in the timeperiods

before erroneous decisions [6, 15, 16, 19], reflecting their impor-

tance in maintaining task-relevant information about the past.

Time cell sequences span seconds,making themwell suited to

encode temporal information in microtime, but for timescales

exceeding seconds, the hippocampus appears to utilize a

differentmechanism. That is, neural representations ofmemories

occurringminutes to days apart (‘‘macrotime’’) diverge in order to

support accurate retrieval. For instance, in a recent human func-

tional imaging study, the neural similarity of the activation in the

anterior hippocampus evoked by remembered events tracked

objective distance in time over the scale of hours, days, and

weeks [20]. In analogous animal studies, the hippocampus ex-

hibits population ‘‘drift’’ whereby neuronal outputs gradually

and continuously change. For example, the spatial code in CA1

has been found to progressively differ with increasing temporal

distance under constant conditions [21–23]. One purported role

for population drift is the timestamping of mnemonic representa-

tions via indexing within neuronal engrams that continuously turn

over [22, 24, 25]. That is, memories of events within a certain

temporal window are allocated to subpopulations of cells, with

memories that occur proximally in time residing in overlap-

ping populations [26–29]. Those populations ultimately underlie

memory representations during subsequent retrieval [29, 30].

This so-called temporal context model has powerful implications

for how neural circuits distinguish between events occurring far

apart in time [31, 32] and would require macroscopic-timescale

basal dynamics in the brain. Indeed, population drift is required

to support memory tasks with a temporal demand [19, 33].

Theories of hippocampal function have hypothesized its

role in binding events into a spatiotemporal configuration for

memory storage and retrieval [1, 10, 11]. Hippocampal time

cell sequences, in conjunction with spatial responses (i.e., place

cells) [34], are thought to fulfill this role and represent events for

informing future behavior [9]. Thus, it is imperative to examine the

long-term activity of cell sequences representing temporal order
nt Biology 28, 1499–1508, May 21, 2018 ª 2018 Elsevier Ltd. 1499
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Figure 1. Sequentially Activated Time Cells

Were Observed Using Calcium Imaging

(A) Task schematic. Mice run for 10 s on a motor-

ized treadmill then turn left to retrieve a sucrose

water reward at a well.

(B) Example of the field of view through an im-

planted lens aimed at CA1, depicted as the

maximum temporal projection of fluorescence

activity. Ten neuron ROIs are highlighted.

(C) Fluorescence traces of highlighted neurons in

(B). Inset, zoom.

(D) Activity patterns of four representative time

cells. Top plots are Ca2+ transient density maps,

aligned to treadmill onset. Bottom plots are tem-

poral receptive fields, averaged across treadmill

runs (teal). Also shown are receptive fields of

time-shuffled data (blue, solid) with 95% confi-

dence intervals (blue, dashed), regions where

empirical data are statistically significant from

time-shuffled data (red dots), and fluorescence

traces from individual treadmill runs (gray).

(E) Trial-averaged time lapse images of last cell

in (D).

(F) Receptive fields (grayscale) of all classified time

cells in one mouse during one session, sorted by

location of field peaks (red line).

See also Figures S1 and S2 and Video S1.
in particular, as this would elucidate how the brain encodes time

along multiple scales. One popular prediction is that the hippo-

campus must distinguish between events occurring minutes or

hours apart via population drift [21, 24], but this has not yet

been explicitly observed in hippocampal time cell sequences.

Fortunately, recent advances in imaging technology permit

longitudinal recording of brain regions at cellular resolution

[35, 36], allowing us to track long-term evolution of these se-

quences. In this study spanning four days, we demonstrated

that on each day, time cell sequences retain a semblance of

the previous day’s structure while also systematically varying,

producing temporal signals over multiple timescales.

RESULTS

Behavioral Task and Epifluorescence Imaging of
Calcium Transients
Due to the strong place selectivity of hippocampal neurons and

the direct relationship between space and time, it is necessary
1500 Current Biology 28, 1499–1508, May 21, 2018
to control for spatial variables when

observing temporal sequences. To do

this, we utilized forced treadmill running

as a method for clamping position while

measuring neural activity as a function of

time, as done in previous studies [5, 18].

Mice were trained to traverse a rectan-

gular track followed by running in place

on a motorized treadmill for 10 s at a con-

stant velocity to receive sucrose water

reward after traversing an additional part

of the track (Figure 1A). Thus, a ‘‘trial’’ in

this study refers to a 10 s treadmill-
running interval. We virally transfected dorsal CA1 neurons

with the calcium indicator GCaMP6f using a synapsin promoter

(Figures S1A and S1B) and used in vivo one-photon microscopy

to image calcium (Ca2+) transient activity and reliably capture the

activity patterns of hundreds of cells simultaneously [23, 35, 37]

in each of four adult mice during laps around the track and tread-

mill running (Figures 1B and 1C). Optical recording began after

training ensured that mice reliably ran�30 laps per day at a con-

stant velocity on the treadmill. To extract fluorescence traces

and infer Ca2+ transient events, we utilized an image segmenta-

tion algorithm designed to minimize optical crosstalk between

overlapping neurons (see STAR Methods; D.W. Sullivan et al.,

2017, Soc. Neurosci., abstract). To identify sequentially active

time cells, we aligned Ca2+ transient traces to the treadmill’s

onset and averaged across trials to characterize putative tempo-

ral receptive fields. Fields for each cell were then compared to

surrogate receptive fields generated by shuffling Ca2+ transient

time stamps along the 10 s delay for each run. We identified a

large population of cells whose receptive fields were statistically



Figure 2. Time Cell Sequences Contained

Information about Relative Time on the

Scale of Seconds

(A) Decoding results of individual treadmill runs.

Color bar indicates posterior probabilities, and

blue lines denote decoder’s most confident esti-

mation. Green lines signify hypothetical perfect

decoding.

(B) Decoding results of all sessions, averaged.

(C) Average decoding error as a function of

elapsed time. Chance (red) was calculated by

shuffling cell identity. Decoder performs better

than chance for the majority of the temporal

delay (green, p < 0.05). Data are represented as

means ± SEM.

(D) Average decoding error for each mouse

and session compared to chance (Mann-Whitney

U test; p < 7.5 3 10�10).

See also Figure S3.
significant compared to the randomized fields (p < 0.01,

n = 1,111 time cells/10,315 neurons recorded over four days,

10.8% of total population of cells that fired at least 1 Ca2+ tran-

sient, Figures 1D–1F; see also Video S1 and Figure S1C). As

described in previous literature, these cells reliably fired during

specificmoments relative to the start of the treadmill run (Figures

1D and 1E) and spanned the entirety of the 10 s delay (Figure 1F).

Similar to observations in previous studies [4–6], the distribution

of temporal receptive fields along the delay was skewed toward

the beginning of the delay onset, possibly reflecting the relative

salience of the treadmill turning on and scalar representation of

time [31]. A sizeable percentage of time cells also exhibited place

fields (n = 164/1,111 time cells, 17.0%of the time cell population,

example shown in Figure S2). The overlap in time and place

cells was not significantly different from chance, calculated

via random sampling (Mann-Whitney U test, p = 0.15), suggest-

ing that temporal and spatial information are interchangeably

encoded by the neuronal population [14].

Reconstructing Temporal Information from Ordered
Neural Firing
Though these cells exhibited temporal firing fields, a separate

question concerns whether temporal sequence information

was embedded in the ensemble activity. To test this, we investi-

gated our ability to reconstruct elapsed time from Ca2+ transient

population vectors derived from the time cell ensemble. For each

session, we trained a naive Bayesian classifier with all the time

cells’ Ca2+ transient activity on that day from a random 50% of

the trials and used the trained classifier to predict elapsed time
Current B
relative to the treadmill onset from the

activity on the other 50% of the session.

We found that we were able to accurately

decode elapsed time on individual trials

(Figure 2A) and over all sessions (Fig-

ure 2B). Interestingly, the classifier’s error

increased as a function of time relative

to the treadmill onset (one-way ANOVA,

F15,639 = 16.79, p < 3.4 3 10�37; Fig-

ure 2C), reflecting the uncertainty associ-
atedwith scalar representation of time [38]. To assess the perfor-

mance of our classifier compared to chance, we trained it on a

dataset with shuffled cell identities and found that this dramati-

cally increased the classifier’s error (Mann-Whitney U test,

p < 7.5 3 10�10), reinforcing the idea that the order of neuronal

firing is necessary to generate accurate representation of tempo-

ral information (Figures 2C and 2D). This effect was extremely

robust, and even a small percentage of cells contributed to

encoding temporal information (Figure S3).

Evolution of Time Cell Sequences on the Scale of
Minutes
Although numerous studies have primarily characterized popu-

lation changes across days [21–23], it is also informative to

observe these changes at a finer temporal resolution. We hy-

pothesized that if population differences are apparent at time

points hours apart, they might also be visible at time points mi-

nutes apart. Therefore, we explored how the time cell ensemble

evolved over minutes by tracking its activity profile throughout

the course of a recording session. To quantify when cells were

actively encoding temporal information during the session, we

identified the trial numbers on which a cell fired in its receptive

field and computed the average of those trial numbers and then

normalized by the number of trials in that session. Using this

method, cells that fired on every trial would receive a ‘‘within-

session trial bias score’’ of 0.5, whereas cells that fire only early

in the session would have lower scores and cells that fire only

later in the session would have higher scores. Scores were

centered around 0.5 (0.53 ± 0.0029), but extremes in either
iology 28, 1499–1508, May 21, 2018 1501



Figure 3. Time Cells Encoded Information about Elapsed Time on the Scale of Minutes

(A) Activity profile of example time cell active early in the session. Top plots are Ca2+ transient density maps and trial-averaged receptive field. Bottom plots are

fluorescence traces from individual runs (black), divided into treadmill run blocks and averaged within a block (teal).

(B) Same as (A) but for a time cell active late in the session.

(C) Trial-by-trial correlation matrix of fluorescence traces.

(D) Correlation as a function of trial lag, averaged from off-diagonals of matrix in (C). Data are represented as means ± SEM.

(E) Trial-by-trial activity of time cells during one session. Yellow indicates trials where that cell fired in its receptive field. Blue indicates trials where it did not. Data

are sorted by within-session trial bias scores.

(F) Treadmill run block decoder performance compared to chance (shuffling run identity; Mann-Whitney U test; p < 9.0 3 10�6).

See also Figure S4.
direction were also prevalent, as reflected in scores that were

lower and higher than expected by chance compared to a dis-

tribution derived from randomized trial numbers (Figure S4C).

We identified cells that were disproportionately active earlier

in the session (permutation tests, p < 0.05, n = 109, 9.8% of

the time cell population; e.g., Figure 3A) or later in the session

(n = 167, 15.0% of the time cell population, e.g., Figure 3B).

The proportion of early-active cells versus late-active cells

was not significantly different (Mann-Whitney U test p > 0.92).

This trial-modulated activity was not a result of shifting the

plane of focus on the microscope because Ca2+ transients

were still detected in early cells at later time points on the track,

but not during the delay (Figure S4A) and same for late cells at

early time points (Figure S4B). This indicates that, despite the

treadmill running task being highly familiar, the hippocampus

nonetheless showed changes in its activity patterns, with cells
1502 Current Biology 28, 1499–1508, May 21, 2018
forming and losing temporal receptive fields throughout each

session.

Our single-cell observations prompted us to investigate

whether the hippocampal population as a whole exhibited global

changes in temporal coding over the course of a session. To do

this, we performed pairwise correlations between fluorescence

traces on single trials for each cell and then averaged across

all cells to find the global population similarity for each pair of

treadmill runs (Figure 3C). Trials that occurred farther apart in

time became gradually more decorrelated, revealing continuous

population drift over the entire recording session (one-way

ANOVA F23,4799 = 8.77, p < 8.8 3 10�30; Figures 3D and 3E).

The time cells participating in the sequence also changed as a

function of time (Figure S4D). To test the possibility that temporal

information on the scale of minutes could be encoded in this sys-

tematic variance, we designed another naive Bayes classifier to



Figure 4. Time Cell Sequences Were Stably Recorded over Days

(A) Example fields of view for image alignment from the same mouse, on different days. Visible vasculature is indicated by red arrows.

(B) Time cell ensembles on two consecutive days (left andmiddle), with individual ROIs sized by temporal position in time cell sequence (larger, later in sequence)

and overlaid (right). Green arrows indicate cells with similar temporal tuning curves across the two days; black arrows indicate otherwise. The scale bars represent

100 mm.

(C) Cell masks of neurons marked in (B) over all four days. The scale bars represent 10 mm.

(D) Ensemble plots of time cell ensembles, filtered day by day. Rows in each panel represent different neurons. For rows representing the same neuron, see

Figure 5B.

(E) Ensemble overlap (black) as a function of temporal distance compared to chance (red; two-way ANOVA F1,1211 = 611.88, p < 0.001; post hoc Tukey’s HSD test,

p < 0.001). Gray lines indicate separate mice. Data are represented as means ± SEM.

(F) Decoded output of Bayesian classifier trained and tested on different days. Plotting conventions are the same as those in Figure 2.

(G) Seconds-level decoder performance from training decoder on data from a day different from the test set. Decoder error (black) is significantly below chance

(red) for all temporal distances here (two-way ANOVA F1,2039 = 483.19, p < 0.001; post hoc Tukey’s HSD tests, p < 0.001). Decoder performs better when trained

on data from the same day (post hoc Tukey’s HSD test; p < 0.001). Data are represented as means ± SEM.

See also Figure S5.
decode approximate trial number (trial blocks with each session

split into six blocks, �5 trials per block) from the collective Ca2+

transient activity of the time cell ensemble on each treadmill run.

Again, we trained this classifier on 50% of each session’s trials

and then tested on the other 50% and asked it to predict

which blocks those trials belonged to. The classifier was able

to predict trial blocks significantly better than chance (calculated

by shuffling trial blocks; Mann-Whitney U test, p < 9.0 3 10�6;

Figure 3F). Different-sized trial blocks were tested with similar

results (see STAR Methods). This demonstrates that temporal

information on the order of minutes (across trials) can be ex-

tracted from population drift occurring over the course of a

recording session in the same subset of neurons that also

encode sequential structure within each trial.
Longitudinal Tracking of Time Cell Sequences
Next, we sought to define how the time cell ensemble developed

over macroscopic time on the order of days. We exploited the

ability of in vivo calcium imaging to track neurons over long time-

scales and examined time cell sequences longitudinally. Across-

day cell registration was performed by first aligning the minimum

projection of the field of view for each pair of days via rigid

translations and rotations, utilizing vasculature as landmarks

(Figure 4A; see also Figures S5A–S5D). Then neuronal regions

of interest (ROIs) on one day were matched to the closest ROI

on another day based on distance between ROI centroids (all

matches <3.3 mmaway; Figure 4B). After determining which cells

were the same across days, we were able to visualize time cell

ensembles over the duration of the experiment (Figure 4C).
Current Biology 28, 1499–1508, May 21, 2018 1503



Figure 5. Time Cell Sequences Carried Information about Relative Time on the Scale of Days

(A) Receptive fields of three example cells exhibiting different across-days dynamics with accompanying ROI masks across days (top). Red arrows denote

significant temporal receptive field peaks. Also shown are temporal mutual information (bits per transient for each cell) and tuning curve Pearson correlations.

Italicized coefficients indicate statistically significant correlations.

(B) Time cell ensemble on day 1 of one mouse across four days. Teal line outlines the peaks on day 1 across all successive days.

(C) Correlationmatrix of population similarity for all day pairs. Each value in the matrix represents the grand average of population correlations between all trials in

that day pair for all animals.

(D) Correlation as a function of day lag, data from (C). Data are represented as means ± SEM.

(E) Proportion of time cells exhibiting stability characteristics described in (A); n = 486 unique time cells.

(F) Performance of Bayesian decoder trained to decode day compared to chance from shuffling days (Mann-Whitney U test; p < 7.0 3 10�4).

See also Figure S5.
Although a different subset of the CA1 population encoded rela-

tive time on the scale of 10 s each day (Figure 4D), therewas sub-

stantial overlap in time cells on one day compared to time cells

up to three days later (Figure 4E). This overlap was significantly

different from chance as calculated by ensemble overlap when

random cells were drawn from the population instead (two-way

ANOVA F1,1211 = 611.88, p < 0.001; post hoc Tukey’s honest

significant difference [HSD] test, p < 0.001). We next inquired

whether this partial overlap was sufficient to preserve temporal

information. Indeed, training the Bayesian classifier on activity

rate vectors from one day allowed us to accurately decode

elapsed time within the 10 s delay interval one day later (Fig-

ure 4F). This was true even when the classifier was trained using

data from three days prior (chance calculated by performance

trained on data with shuffled cell identity; two-way ANOVA

F1,1223 = 206.35, p < 0.001; post hoc Tukey’s HSD test,

p < 0.001; Figure 4G). Collectively, this evidence suggests that

despite our observations that a different subpopulation of neu-

rons participate in the time cell ensemble each day, the activity
1504 Current Biology 28, 1499–1508, May 21, 2018
of the sequence is preserved to allow for extraction of meaning-

ful temporal information.

Evolution of Time Cell Sequences on the Scale of Days
After establishing that the time cell sequence remains sufficiently

intact over days, we focused on the content of all cells that were

classified as a time cell at any point during the experiment. Out of

that pool of cells (n = 486 time cells), we characterized longitudi-

nal sequence coding by correlating tuning curves relative to the

treadmill run. Time cells that were consistently correlated across

all sessions and had statistically significant temporal receptive

fields (Pearson correlation p < 0.01, Bonferroni corrected) were

considered stable (Figure 5A, left), whereas cells that lost or

gained temporal firing fields between a pair of sessions were

designated exiting (i.e., had a temporal receptive field on one

day, but not the next, as defined by permutation tests described

in Figure 1; Figure 5A, center) or entering (i.e., had no significant

temporal receptive field on one day but gained one on the

next; Figure 5A, right), respectively. A modest percentage



(12.5% ± 2.5%) of time cells were stable throughout the entire

4-day experiment, whereas most either entered (35.3% ±

4.5%) or exited the ensemble (44.7% ± 2.2%; Figure 5E). A mi-

nority of cells (7.5% ± 2.0%) both lost and gained temporal tun-

ing at least once over the experiment, and as such, their activity

was considered ‘‘transient’’. These observations were unlikely to

be due to shifts in the focal plane due to consistently high spatial

correlation of cell masks (Figure S5C) and virtually no change

in ROI movement or orientation across days (Figure S5D).

Furthermore, to address the possibility that entering and exiting

cells might reflect erroneous across-days cell registration, we

computed the ROI displacements of those cells across days

and compared them to stable cells. ROI displacements of

entering and exiting cells were indistinguishable from those of

stable cells, discrediting the possibility that our registration

threshold allowed inaccurate matching of different cells across

days (Figure S5E). Interestingly, we also found time cells with

higher temporal information were more likely to be stable over

two consecutive days (Figure S5F), which parallels previous find-

ings that reliability of dendritic branch spiking predicts place field

stability [39]. Turnover of the activity of single cells contributed to

the evolution of the time cell ensemble day by day, gradually

introducing variance to the system (Figure 5B), while simulta-

neously, a reliable time signal persisted (Figure 4G). This popula-

tion drift was quantified by correlating fluorescence traces in the

same manner as in Figure 3C and then averaging across trials to

calculate the overall level of difference between pairs of days

(Figure 5C). Similar to our results across trials during single ses-

sions, we found a significant and systematic decorrelation in

ensemble activity across days (one-way ANOVA F3,39 = 9.43,

p < 0.025; Figure 5D). Analogous to our minutes-timescale anal-

ysis, to determine whethermacroscopic temporal information on

the order of days was present in this population drift, we built a

third type of classifier to predict on which day a sample of pop-

ulation activity occurred. Just as theminutes-timescale classifier

was able to correctly identify trial blocks, our day-scale classifier

could accurately distinguish between recording days (days 1–4)

based on population activity better than chance (Mann-Whitney

U test, p < 7.0 3 10�4; Figure 5F). These results imply that

temporal information on the order of days can be derived from

macrotime-scale drift from the same population that encodes

sequence order on the order of seconds.

DISCUSSION

We showed that time cell sequences spanning 10 s durations

occur in CA1 neurons of mice running in place during a simple

goal-seeking task (Figure 1). There was sufficient temporal infor-

mation contained in those sequences for a Bayesian classifier to

faithfully decode elapsed time (Figure 2). Interestingly, notwith-

standing the lack of salient cues during our temporal interval,

this information is preserved over multiple days, as we can suc-

cessfully train and test a classifier to decode elapsed time with

data collected on different days (Figure 4). Despite stability in

its overall temporal structure, the time cell ensemble systemati-

cally varied with the passage of minutes (Figure 3) and days (Fig-

ure 5). This time-dependent variance similarly contained tempo-

ral information, in parallel with and on larger scales compared to

the content of time cell sequences. Thus, minute-scale and day-
scale Bayesian classifiers were capable of accurately inferring

temporal position within and between imaging sessions. Collec-

tively, these data demonstrate that the hippocampus has the ca-

pacity to encode temporal information along multiple timescales

in support of episodic memory.

Robustness and Fluidity of Sequential Firing over Days
A key finding of this study was that of a heterogeneous popula-

tion of CA1 neurons that displaying diverse stability patterns over

days. Although some cells retained stable temporal receptive

fields throughout the experiment, others gradually acquired

and lost firing fields. Our observations that a time cell can change

its temporal receptive field while not completely disrupting the

downstream sequence reveals flexibility in the CA1 temporal

coding regime, ruling out a simple synfire chain model for time

cell sequence generation [9]. Instead, the evidence presented

here suggests a more complex system where CA1 continuously

reassigns encoding responsibilities to distributed ensembles of

cells during population drift. This mechanism is manifested in

time cells that lost their temporal receptive fields. Such a strat-

egy, termed ‘‘dropout’’ by neural network researchers, is utilized

in artificial intelligence by randomly removing single units during

encoding to prevent the network from becoming disproportion-

ately dependent on particular neurons. Dropout had been previ-

ously explored and successfully implemented to prevent overfit-

ting in artificial neural networks by the deep learning community

[40]. Taking inspiration from this model, in a biological neural

network, population drift might serve multiple different pur-

poses—(1) to facilitate the formation of neural associations in a

diverse and resilient population of neurons, (2) to timestamp neu-

ral events along an extended timeline, and (3) to assimilate expe-

riences across multiple timescales.

Advantages of Neural Instability in an Unstable World:
Drift as a Mechanism for Timestamping Events
Why might a system continuously vary its activity patterns at

the population level? Intuition leads one to believe that stability

would be preferable in order for neural circuits to preserve and

promote consistent outputs at the behavioral level. Following

this line of thought, early experiments focused disproportion-

ately on how hippocampal ensembles remained stable over

long time periods [41, 42]. However, recent studies have begun

to appreciate the potential benefits and advantages of an ‘‘un-

stable’’ system [21, 22, 24, 25]. Such a strategy might enable dy-

namic allocation of memories to distributed networks of neurons

for mentally separating experiences in time [21, 22, 27, 29]

while simultaneously providing a mechanism for avoiding

interference during retrieval [43]. From the results presented

here, we concluded that this mechanism is prominent in a pop-

ulation of neurons that encode sequential information. Through

Bayesian decoding analyses, we found that this was true for min-

ute- to day-level timescales, opening up the prospect that se-

quences of events occurring at different time points could be

disambiguated based on the active population. This disambigu-

ation might be performed by a downstream reader interpreting

the network state to infer time.

A question triggered by our findings is the mechanism by

which population drift manifests and how it might subserve

memory encoding. One conspicuous possibility is plasticity
Current Biology 28, 1499–1508, May 21, 2018 1505



via synaptic changes in the cellular network. Despite the repu-

tation of the hippocampus for being a long-term memory stor-

age unit, it is not uncommon to observe ample synaptic turn-

over. A recent imaging experiment has estimated the lifetime

of CA1 dendritic spines in live mice to be only 1 or 2 weeks [44].

The impermanence of hippocampal synapses may be due to a

perpetual rotation of cells constantly forming and eliminating

potentiated connections [26]. These dynamics at the synaptic

level seem to be modulated by expression of key plasticity pro-

teins, such as cyclic AMP (cAMP) response element-binding

protein (CREB), where cells with high levels of CREB are more

likely to be potentiated and recruited into a memory trace [26].

CREB also modulates cellular excitability [45], and endogenous

cycling of CREB in cells could explain emergence and decay of

time cell activity over both minute and day timescales through

their impact on time cell excitability. The time course of

CREB phosphorylation, which occurs over minutes [46], is

consistent with our observations of changes in time cell re-

sponses over similar timescales, and stability of time cell

responses is most likely the byproduct of sustained synaptic

potentiation mediated by CREB [26]. On the other hand,

changes in time cell sequences over days could reflect compet-

itive processes [29], where cells with ramping CREB dominate

over existing time cells.

CREB-induced excitability may underlie the emergence

of firing fields in the hippocampus [47] as well as other struc-

tures [45]. Therefore, it is conceivable that the hippocampus

routinely recruits neurons into sequential patterns to establish

associative connections [48] based on CREB expression.

Furthermore, recent findings of synaptic plasticity windows in

CA1 that occur on the behavioral timescale [49] lend credence

to the idea that constituents of time cell ensembles, which

activate over seconds, could be linked in this manner, yielding

a neural storage unit for sequential information across long time-

scales, as observed in our study.

Another possible mechanism for hippocampal time cell

generation and the population’s neural drift could originate

from mathematical model utilizing a two-layer feedforward

network [31, 50]. According to this model, one set of cells re-

sponds to a salient event and then decays exponentially, with

different cells decaying with a range of time constants. A second

set of cells receives and filters input from the exponentially de-

caying ensemble to generate sequentially activated time cells.

The sequence extends over a range of times controlled by the

range of time constants in the exponentially decaying popula-

tion. Previous modeling work has suggested that a calcium-

activated non-specific cation (CAN) current dependent on

muscarinic receptor activation may be sufficient to generate

the observation of drifting time cells presented in this study [51].

A Unified Framework of Event Sequence Coding in
Hippocampus over Long Timescales
Although it has been shown that population drift serves to time-

stamp place cells in CA1 [21, 22], until now, no studies have

shown that population drift also applies to sequence coding in

the hippocampus. This finding is a novel demonstration of a uni-

fied representation of temporal order along many scales, which

is critical for episodic memory. Here, we observed time cell en-

sembles that fired in sequence but also rode on top of a basal
1506 Current Biology 28, 1499–1508, May 21, 2018
and continuous population-level dynamic that changed with

the passage of minutes and days. Drifting time cell ensembles

synthesize different regimes of temporal coding in the hippo-

campus by describing a population of neurons that simulta-

neously reflects temporal information about microtime within

a 10 s delay interval and much longer timescales of minutes

and even days (macrotime). This framework could potentially

allow events occurring in sequence (including episodic features

beyond that of spatial features) to be encoded while simulta-

neously providing a signal for distinguishing broad temporal

context within a common subpopulation of neurons [31]. In

addition, sequential firing could enable these neurons to reacti-

vate, generating predictions of the future to inform behavioral

decisions [52].

Formation of Schemata via Integration of Experiences
across Macrotime
The paradigm of continuous neural drift might also support the

integration of novel information during learning. Accumulation

of knowledge occurs as a function of time as organisms contin-

uously sample their environment. In a psychological context, this

evidence accumulation is harnessed for the assimilation of con-

cepts into a pre-existing mental ‘‘schema’’ [53]. The biological

basis of assimilationmight rest in themerging of neural represen-

tations, most likely manifested in neural sequences, such as

time cell assemblies. In support of this, new neurons become

incorporated into established sequences during learning and

sleep [48, 54]. These ‘‘incoming’’ neurons may be primed by

the continuously shifting hippocampal network to encode poten-

tially useful new data. Furthermore, by amalgamating neurons

into a sequence network, this places the brain in an advanta-

geous position to make associative links to pre-existing mem-

ories and thus form cognitive schemata [55, 56]. Indeed, mem-

ories may be linked physically by the overlap in ensembles

encoding them [27, 29, 54]. Our study recorded longitudinally

from time cells, which by their very nature are critical for repre-

senting temporally separated events [4]. In the resulting ana-

lyses, we presented a key piece of evidence for this mechanism

of schema formation by demonstrating that individual time cells

insert and remove themselves from existing sequences from

previous days.

Outstanding Questions in Long-Term Sequence
Representations
Persistence and variance of temporal information across long

timescales support the idea that the hippocampus stores and

modifies firing patterns to support memory. However, several

questions remain. The constant flux of excitable neurons situ-

ates the hippocampus in an ideal position for integrating new in-

formation into existing schemata [48, 54], but this has yet to be

explicitly demonstrated. Promising recent advances in imaging

technology have permitted other groups to longitudinally track

network states of various brain regions across macroscopic

time [36], but few have addressed the evolution of hippocampal

cell assembly sequences during learning. Given that sequence

generation appears to be the default activity of the hippocampal

network [57, 58], future investigation into this domain promises

fruitful gains in knowledge about how learning is imprinted

onto the neural substrate.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV9.Syn.GCaMP6f.WPRE.SV40 Penn Vector Core Cat#AV9-PV2822

Deposited Data

Raw imaging and behavioral videos Google Drive https://drive.google.com/open?id=1r4Ipk_Z6rttc4btQAIml-S0uSmv0pTPW

Processed data Mendeley Data https://dx.doi.org/10.17632/f9fmrj98n3.1

Experimental Models: Organisms/Strains

C57BL/6J mice Jackson Laboratories https://www.jax.org/; Cat#000664

Software and Algorithms

MATLAB 2016b MathWorks https://www.mathworks.com/; RRID: SCR_001622

nVista Inscopix https://www.inscopix.com/

Mosaic 1.2 Inscopix https://www.inscopix.com/

Tenaspis GitHub https://github.com/SharpWave/TENASPIS
CONTACT FOR REAGENT AND RESOURCE SHARING

Inquiries for reagent and resource sharing should be directed to the Lead Contact, William Mau (wmau@bu.edu) and they will be

fulfilled, assuming reasonable requests.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Subjects
All procedures were in compliance with the guidelines of the Boston University Animal Care and Use Committee. Subjects

were 4 healthy adult male C57BL6/J mice (Jackson Laboratories), 5 – 10 months of age and weighing 25 – 33 g. Mice were initially

socially housed with 1 – 3 cagemates in a vivarium with a 12 hr/12 hr light/dark cycle and lights on at 7am. After surgery, mice were

singly housed.

Viral Constructs
For calcium imaging, virus (AAV9-Syn-GCaMP6f.WPRE.SV40) was supplied by U Penn Vector Core at a titer of �4 3 1013 GC/mL,

which was diluted down to �5-6 3 1012 GC/mL with 0.05 M phosphate buffered saline prior to surgical infusion into CA1.

METHOD DETAILS

Stereotactic Surgeries
Naive mice underwent two stereotactic surgeries and one base plate implant for calcium imaging [23, 35, 37]. All surgeries were per-

formed on mice anesthetized with �1% isoflurane with mixed oxygen and 0.05 mL/kg buprenorphine. Mice also received injections

of 5.0 mL/kg anti-inflammatory Rimadyl (Pfizer) and 400 mL/kg antibiotic Cefazolin (Pfizer). First, mice received infusions of AAV9-

Syn-GCaMP6f (U Penn Vector Core). A small craniotomywas performed (AP�2.0mm,ML +1.5mm, DV�1.5mm relative to bregma)

and an infusion needle was inserted. The viral vector was injected at 40 nL/min and allowed 15min to diffuse andminimize backwash

prior to removing the needle. Three weeks after viral infusion, mice were implanted with a gradient index (GRIN) lens (1 mm diameter,

4 mm length; Inscopix). A 2 mm-diameter circular craniotomy centered on AP �2.25 mm, ML +1.8 mm was opened. The neocortex

underneath this craniotomy was aspirated until vertical white fiber tracts were visible. Bleeding was controlled via irrigation with cold

0.9% saline solution and GelFoam (Pfizer). Once bleeding was arrested, the GRIN lens was carefully lowered into the craniotomy

using a stereotactic device until the bottom of the lens was 200 microns dorsal to the infusion site. Gaps between the lens and

the skull were filled in using a non-bioreactive silicone polymer, Kwik-Sil (World Precision Instruments). After the Kwik-Sil set, the

lens was affixed to the skull using dental cement Metabond (Parkell) and the top of the lens was covered with a Kwik-Cast cap (World

Precision Instruments) to protect the lens and occlude light until base plate attachment. Mice were allowed one week of convales-

cence before they were implanted with a base plate for camera attachment. The Kwik-Cast cap on the lens of the mouse was

removed and a plastic base plate (Inscopix) was magnetically attached to the bottom of the camera. The camera objective was

then aligned to the GRIN lens and lowered until visible and focused fluorescence was observed on nVista recording software

(Inscopix). Adjustments were manually made to maximize focus of GCaMP6f expressing cells. After an optimal image was obtained,
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the camera was raised �50 microns to account for dental cement shrinkage during curing. The base plate was then affixed to the

Metabond surrounding the lens using Flow-It ALC Flowable Composite (Pentron), cured with light, and finally covered with an addi-

tional layer of Metabond. The plastic cap of the base plate was then screwed on, and the mouse awoken.

Treadmill Running Behavior
A week after recovery, mice were introduced to a 40 cm x 60 cm rectangular track with an embedded motorized mouse treadmill

(Columbus Instruments) as one of its long sides. Mice were acclimated to the environment until they reliably sought 20% sucrose

water solution (3-4 days), delivered by a gravity feed. Then, they were trained to run in place on the treadmill for increasing intervals

of time in between laps starting with 6 s. For the beginning sessions, running speed was titrated up from �10 cm/s to 12-24 cm/s

depending on the running speed of the subject. Once a stable velocity was reached, run duration was increased every two days

by 1 s until the mouse was running for 10 s on the treadmill per lap. Once mice would reliably run for �30 laps per day, data was

then collected for 4 days, with each session lasting approximately 30 min and consisting of �30 laps of 10 s treadmill running

and water retrieval.

Freely-Moving Calcium Imaging and Mouse Tracking
Calcium imaging

A commercially available miniaturized epifluorescence microscope (Inscopix) was used to collect imaging videos of CA1 activity at a

frame rate of 20 Hz. Digital gain (1.0-1.75) and LED intensity (�10%) was adjusted for each mouse to maximize dynamic range.

Frames were spatially down-sampled from 14403 1080 pixels to 7203 540 pixels (1.1 microns/pixel) to accelerate post-acquisition

processing steps. Microscope attachment was done on awake, restrained mice. Optical focus and recording settings were kept

consistent for each mouse each day. TIF videos collected via nVista were saved and transferred to a permanent workstation for pre-

processing steps. First, videos were motion corrected and cropped using Mosaic (Inscopix). Cropping excluded areas with no

GCaMP6f activity (usually resulting in 500 3 500 pixel videos).

Videos were then passed through a custom image segmentation algorithm called Tenaspis (software available at https://github.

com/SharpWave/TENASPIS) that has been optimized to reduce optical crosstalk between regions of interest (ROIs) (see D.W. Sulli-

van et al., 2017, Soc. Neurosci., abstract). ROI-based segmentation algorithms detect events based on threshold crossings within an

ROI, which is susceptible to Ca2+ transients bleeding in from a nearby overlapping cell. To contrast, Tenaspis detects events frame by

frame, separates overlapping fluorescent regions first, and then afterward assigns these events to neuronal ROIs. Briefly, Tenaspis

utilizes heuristics about neuron shape and size, and then iteratively (by frame) detects fluorescent regions that fit the description of a

neuron. After identifying these regions, Tenaspis collects timestamps for the rising phase of each Ca2+ transient (DF/F > 2 standard

deviations above the mean) and allocates them to a neuronal ROI, then collapses images into ROI masks. Thus, all Ca2+ transients

described in this article refer to times of increasing fluorescence, ignoring the slow decay of the Ca2+ indicator, the former more

accurately reflecting action potentials in neurons.

Longitudinal cell tracking

In order to track neurons captured during recording sessions one ormore days apart, neuron ROIs were registered across days. First,

the minimum time projection for each session was computed to utilize vasculature as stationary landmarks during image alignment.

Using these landmarks, each session’s field of view was aligned to the first session’s minimum projection via image registration soft-

ware fromMATLAB’s Image Processing Toolbox, assuming rigid geometric transformation and rotation. Then, we successively took

each session (reference sessions) and registered the neurons from that session to the next day’s neurons (registered sessions; i.e.,

we would register Day 1 to Day 2, Day 2 to Day 3, etc.). Cell registration was done by searching for the nearest ROI, with a threshold

that the displacement between ROI centroids must be under 3.3 microns. In rare cases where multiple neurons on the registered

session were the same distance away from a neuron in the reference session, a spatial correlation was done for each candidate

mask and the neuron with the higher correlation coefficient was ultimately matched to the reference neuron. To ensure that neurons

did not drift excessively over the course of the experiment, for each mouse, the first day’s neurons were registered to the last day’s

neurons to check for large deviations. Any neuron registrations from this condition (Day 4 versus Day 1) that differed from the first

condition (Day 4 versus Day 3) were discarded. Additionally, in analyses involving neurons across multiple days, if a neuron on

one day did not have a corresponding registered neuron on the subsequent day, it was discarded from the analysis.

Mouse tracking

The mouse’s position was recorded using an overhead camera (30 Hz) and video tracking software CinePlex (Plexon). The tracking

video was synchronized to the imaging using a TTL signal from Cineplex to trigger data acquisition on the microscope. Frames were

linearly interpolated tomatch the sampling rate of themicroscope. Position tracking was carefully reviewed and errors weremanually

corrected using a custom MATLAB script.

Histology and Epifluorescent Microscopy
After data collection, mice were perfused transcardially with 10% phosphate buffered formalin. Brains were extracted and then

submerged in formalin for an additional two days, followed by 30% sucrose solution in phosphate buffered saline for another two

days. Brains were then flash-frozen and sliced into 40 mm sections on a cryostat (Leica CM 3050S). Sections were mounted and

coverslipped with Vectashield Hardset mounting mediumwith DAPI (Vector Laboratories) to visualize cell nuclei. Slides were imaged

on a widefield epifluorescence microscope (Nikon Eclipse Ni-E) with a 10x and 20x objective to verify viral expression and lens tract
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localization to the CA1 region. Viral expression was confirmed by examining native fluorescence of the GCaMP6f fluorophore under

the anterior-posterior and medial-lateral extent of the lens tract.

QUANTIFICATION AND STATISTICAL ANALYSIS

Time Cell Selection
Tuning curves were constructed using temporally binned (250ms) activity profiles of each cell during treadmill running and taking the

mean across treadmill run trials. Time-shuffled tuning curves were also constructed by circularly shuffling activity timestamps for

each trial 1,000 times and averaging across these trials. Temporal information (TI) was computed using the following equation:

TI=
1

l

X
i

li log2

�
li

l

�
Pti

where:

d l is the average transient rate of the cell.

d li is the average transient rate of the cell in time bin ti (50 ms bins from 0 to 10 s).

d Pti is the probability the mouse is in time bin ti.

The TI was then computed 1,000 times for iterations of shuffled calcium event timestampswithin the treadmill run epochs. A neuron

was called a time cell if it met the following criteria:

1. The neuron’s TI was higher than 99% of the shuffled TIs.

2. The neuron fired for at least a quarter of the total completed treadmill runs.

3. The neuron had at least two consecutive time bins where its tuning curve exceeded the time shuffled tuning curve’s 99%of the

time.
Within-Session Trial Bias Score
To quantify trial preference, and thus characterize the within-session activity dynamics of single cells, we calculated each cell’s trial

bias score. This score was the mean of all the trial numbers that the cell was active within its temporal receptive field, divided by the

total number of runs. Thus, a lower trial bias score indicated more activity closer to the beginning of the session whereas higher

scores indicated more activity near the end of the session. Cells that were consistently active over the course of the entire session

had a trial bias score of 0.5 or near 0.5. Examples in Figures 3A and 3B had trial bias scores in the 5th (early-session cells) or 95th

(late-session cells) percentiles of the distribution. Similar results were found when this analysis was repeated with data that excluded

even-numbered trials to verify that it was not being driven by noise.

Population Correlations
To measure the similarity of the time and place cell population across trials and days, normalized Ca2+ transient traces for each trial

were correlated with each other (Pearson correlation), and the correlation coefficients averaged across the population.

Naive Bayes Classifiers
Naive Bayes classifiers were built around the MATLAB function fitcnb with population activity as predictors and temporal variables

as response variables, within eachmouse and session. To avoid overfitting and to assess classifier performance, we utilized a cross-

validation scheme where we trained the classifier on Ca2+ transient activity from a random 50% of available treadmill runs and tested

it the other 50%. Below are the procedures we used for temporal decoding on the scale of seconds, minutes, and days:

Seconds (Figure 2)

We trained the classifier on Ca2+ transient timings from a random 50% of treadmill runs each session, and tested on the remaining

50%. Chance was calculated by training classifier on same data with cell identities shuffled 50 times each per mouse and session.

Trials (Figure 3F)

We trained the classifier on the number of Ca2+ transients on each treadmill run from a random 50% of treadmill runs sampled evenly

from each of six trial blocks and tested on the remaining 50%. Trials were categorized into blocks due to technical restraints on the

classifier. Chance was calculated by shuffling treadmill run blocks 50 times each per mouse and session. Analyses were repeated on

different sizes of trial blocks and similar results were found for two trial blocks up to and including seven trial blocks.

Seconds across days (Figure 4G)

We trained the classifier on Ca2+ transient timings on all treadmill runs from one session, and tested on all the treadmill runs from the

other session. Chance was calculated by training the classifier on the same data with cell identities shuffled 50 times each per mouse

and session.
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Days (Figure 5F)

We trained the classifier on the number of Ca2+ transients each treadmill run from a random 50% of treadmill runs sampled evenly

from each of four recording sessions and tested on the remaining 50%. Chance was calculated by shuffling day identities 50 times

each per mouse.

Statistical Tests
All statistics were done with one- or two-way ANOVAs, Mann-Whitney U tests, or permutation tests by shuffling data along one

dimension. All critical p values were corrected for multiple comparisons with Bonferroni corrections when applicable.

DATA AND SOFTWARE AVAILABILITY

Raw imaging and behavioral videos are available at https://drive.google.com/open?id=1r4Ipk_Z6rttc4btQAIml-S0uSmv0pTPW. The

processed data reported in this paper is available from Mendeley Data at https://dx.doi.org/10.17632/f9fmrj98n3.1.
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