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Abstract
Scale-invariant timing has been observed in a wide range of behavioral experiments. The firing

properties of recently described time cells provide a possible neural substrate for scale-invariant

behavior. Earlier neural circuit models do not produce scale-invariant neural sequences. In this

article, we present a biologically detailed network model based on an earlier mathematical algo-

rithm. The simulations incorporate exponentially decaying persistent firing maintained by the

calcium-activated nonspecific (CAN) cationic current and a network structure given by the

inverse Laplace transform to generate time cells with scale-invariant firing rates. This model pro-

vides the first biologically detailed neural circuit for generating scale-invariant time cells. The cir-

cuit that implements the inverse Laplace transform merely consists of off-center/on-surround

receptive fields. Critically, rescaling temporal sequences can be accomplished simply via cortical

gain control (changing the slope of the f–I curve).
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1 | INTRODUCTION

1.1 | Behavioral evidence for a scale-invariant
internal representation of time

Numerous behavioral experiments in humans and other animals sug-

gest that time is represented in the brain in a scale-invariant fashion.

For example, in interval timing experiments, the variability of the

reproduced interval is proportional to the duration of the interval

(Ivry & Hazeltine, 1995; Rakitin et al., 1998). The distributions of the

response to different intervals are scale-invariant in that they overlap

when rescaled by the duration of the interval, a phenomenon termed

the scalar property (Gibbon, 1977).

Scale-invariance is also observed in the associative learning rate

in animal conditioning experiments. For instance, it has been shown

that the number of trials needed for animals to develop a conditioned

response increases when the reinforcement latency is increased and

decreases when the intertrial interval is increased (Gallistel & Gibbon,

2000). Moreover, as long as the ratio between the intertrial interval

and the reinforcement latency is fixed, the number of trials needed to

develop a conditioned response is fixed, again indicating scale-

invariance in the animal’s timing behavior.

Results from memory experiments also point to a scale-invariant

representation of time. The classic power-law of forgetting (Wixted,

2004) indicates that a single mechanism may underlie both short and

long term forgetting. In free recall, subjects are given a list of words

and are asked to recall them in any order. The recency effect refers to

the phenomenon that words from the end of a list are more easily

recalled. This effect has been observed over a wide range of time-

scales, from fractions of seconds (Murdock & Okada, 1970) to several

minutes (Glenberg et al., 1980; Howard, Youker, & Venkatadass,

2008), indicating that a single memory mechanism with a scale-

invariant representation of time may serve under different timescales.

1.2 | Time cells in the brain

Behavioral scale-invariance requires that the neural system supporting

behavior is also scale-invariant. Recent neurophysiological recordings

in behaving animals show spiking activity at specific temporal intervals

by individual neurons, referred to as time cells. These experimental

data provide a possible neural substrate for timing behavior and vari-

ous forms of memory (Howard, Shankar, Aue, & Criss, 2015).

Sequentially activated time cells have been observed in a wide

range of behavioral tasks and in many brain regions. Time cells were
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observed when an animal is performing delayed match to sample

(MacDonald, Lepage, Eden, & Eichenbaum, 2011), delayed match to

category (Tiganj, Cromer, Roy, Miller, & Howard, 2018), spatial alter-

nation (Salz et al., 2016), or temporal discrimination tasks (Tiganj, Kim,

Jung, & Howard, 2017). Time cells have been found in various parts of

the brain including the hippocampus (MacDonald et al., 2011; Salz

et al., 2016), prefrontal cortex (PFC) (Bolkan et al., 2017; Jin, Fujii, &

Graybiel, 2009; Tiganj et al., 2017) and striatum (Adler et al., 2012;

Akhlaghpour et al., 2016; Mello, Soares, & Paton, 2015). A recent

study suggests that neurons in the amygdala are sequentially acti-

vated during the intertrial interval of a conditioning task (Taub, Sto-

lero, Livneh, Shohat, & Paz, 2018).

Time cells exhibit phenomena that are suggestive of time-scale-

invariance. The firing fields of time cells that fire later in the delay

period are wider than the firing fields of time cells that fire earlier in

the delay period (Figure 1). Moreover, the number density of time

cells goes down with delay. Although there is not yet quantitative evi-

dence that time cells are scale-invariant, these findings imply that the

representation of the past is compressed (Howard, 2018) and are at

least qualitatively consistent with a scale-invariant compression. If it

turns out that sequentially activated time cells support timing behav-

ior, and if time cells are scale-invariant, then the neurophysiological

mechanisms that endow time cells with scale-invariance are of critical

importance in behavior. Scale-invariance of time cells is important

because it provides the temporal basis for an animal to use the same

set of mechanisms to integrate information and make decisions over

different time scales. Because the natural world’s choice of scale is

not known a priori, treating all scales equally is adaptive. It can be

shown that logarithmically spaced one-dimensional receptors opti-

mally represent a function when the statistics of the stimulus function

is unknown (Howard & Shankar, 2018). Just as in the visual system

acuity decreases further away from the fovea and facilitates saccades,

a scale-invariant representation of time where the temporal acuity

decreases as we recede into the past would potentially facilitate

retrieval of episodic memory (Howard, 2018).

1.3 | Chaining models are ill-suited to support scale-
invariant sequential activation

A natural proposal for a model that generates sequentially activated

neurons is to connect neurons sequentially in a one-dimensional

chain. Although such chains can readily model sequentially activated

neurons, it is very difficult to make such chains scale-invariant.

For instance, Goldman (2009) proposed a feedforward network

model for sustained persistent activity in a network in which a series

of neurons modeled by leaky integrators are sequentially connected.

In particular, the neurons all have the same decay time constant τ. By

solving the dynamical equation it can be shown that their activations

are given by the “time basis functions” rn tð Þ¼ 1
n!

t
τ

� �n
e
t
τ . However this

FIGURE 1 Sequentially activated neurons in the brain. Each row on each heatplot displays the normalized firing rate for one time cell. Red

corresponds to high firing rate, while blue corresponds to low firing rate. The cells are sorted with respect to the median of the spike time in the delay
interval. Two features related to temporal accuracy can be seen from examination of the heatmaps. First, time fields later in the delay are more broad
than time fields earlier in the delay. This can be seen as the widening of the central ridge as the peak moves to the right. In addition the peak times of
the time cells were not evenly distributed across the delay, with later time periods represented by fewer cells than early time periods. This can be
seen in the curvature of the central ridge; a uniform distribution of time fields would manifest as a straight line. (a) After Tiganj et al. (2018). (b) After
Tiganj et al. (2017). (c) After Bolkan et al. (2017). (d) After MacDonald et al. (2011) [Color figure can be viewed at wileyonlinelibrary.com]
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set of activations is not scale-invariant, as they are not of the same

functional form. Figure 2 shows the actual and scaled neuronal activ-

ity in the chain. The rescaled neuronal activity becomes more concen-

trated for neurons that are activated later.

This property ultimately arises from the Central Limit Theorem. Con-

sider a chain of N neurons where every neuron is modeled by the same

synaptic kernel K(t). That is, the activity of every neuron gi(t) is the convo-

lution of its synaptic kernel with the activity of the previous neuron.

gi tð Þ¼
ðt
−∞

gi−1 t0ð Þ K t−t0ð Þdt0 ð1Þ

Since the functions K(t) and gi(t) are bounded, we can treat them

as probability distributions up to a scale factor. Then the activity of

the ith neuron gi(t) is proportional to the probability distribution of the

sum of the random variables described by K(t) and gi−1(t). Assuming

the kernel K has mean μ and standard deviation σ, then by the Central

Limit Theorem, for large i, gi(t) would have a Gaussian shape with

mean iμ and standard deviation
ffiffi
i

p
σ. The coefficient of variation

(CV) would scale as 1ffi
i

p . When rescaled, the neuronal activity for the

neurons that get activated later will be more concentrated. This is

indeed what is observed in Figure 2.

This logic is quite general. Systems that develop slow behavior

from interactions among elements with a single characteristic time

scale will show Central Limit Theorem scaling and thus not exhibit

scale-invariance. This logic applies whether the kernel with a single

characteristic time scale takes the form of a single time constant for

leaky integrators, a single time scale of synaptic transmission or a sin-

gle time constant of a recurrent network. In order to construct a

scale-invariant neural system, it is essential that it be endowed with a

range of characteristic time scales.

Previous work (which we describe in detail below) has shown that

one can build a scale-invariant memory using leaky integrators taking

input in parallel, rather than in series as in the chaining model

described above, if the integrators decay with a spectrum of time con-

stants. This set of leaky integrators represents the Laplace transform

of the past; approximately inverting the Laplace transform generates a

set of units that activate sequentially and are scale-invariant

(Shankar & Howard, 2013), much like neurophysiologically observed

time cells (Howard et al., 2014).

In this article, we develop a biologically realistic minimal neural

circuit to implement these equations. The set of leaky integrators with

a spectrum of time constants is implemented using a previous compu-

tational model (Tiganj, Hasselmo, & Howard, 2015) that uses known

single-unit properties of neurons in a variety of brain regions mea-

sured from slice physiology experiments (Egorov, Hamam, Fransén,

Hasselmo, & Alonso, 2002; Fransén, Tahvildari, Egorov, Hasselmo, &

Alonso, 2006; Navaroli, Zhao, Boguszewski, & Brown, 2011). We will

find that the minimal circuit model to implement the inverse Laplace

transform merely implements off-center/on-surround receptive fields.

Moreover temporal rescaling of sequences can be accomplished by

any mechanism that changes the slope of the f–I curve of the leaky

integrators.
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FIGURE 2 Simple chaining models can produce time cells, but these time cells are not scale-invariant and have properties that differ from

experimentally observed time cells. (a) A simple chain of units can give rise to sequentially activated cells. The direction of the ‘clock hands’ within
the neurons indicate the peak firing time of that neuron. (b) Simulated “time basis functions” constructed from the chaining model described in
Goldman (2009). Top: Five successive time basis functions in the chaining model. They represent the neuronal activity for five successive nodes
along the chain. We set τ = 20 s. Bottom: The same time basis functions rescaled by the peak time along the x axis and by the maximum activity
along the y axis. They deviate from each other systematically. It is clear that the neurons at different points along the chain do not obey scale-
invariance. In particular, the activity of neurons that are activated later is more concentrated when rescaled. This can be shown in an asymptotic
analysis using the central limit theorem (see text). (c) The heatmap for the activity of 50 neurons in the chaining model. The number of neurons
coding later time is the same as the number coding for earlier times. This indicates that these neurons do not represent time in a scale-
invariant way [Color figure can be viewed at wileyonlinelibrary.com]
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2 | METHODS

Here we describe the mathematical framework for building a set of

scale-invariant time cells. Following that, we describe a biologically-

plausible instantiation of these equations.

2.1 | A mathematical approach for constructing a
scale-invariant history

The neural circuit presented in this article is built upon a mathematical

framework that has been proposed to construct a representation of the

recent past in a distributed, scale-invariant way (Shankar & Howard,

2012, 2013). This mathematical model has two layers of nodes. Nodes

in the first layer integrate the input stimuli with an exponential kernel,

equivalent to performing a Laplace transform on the stimuli. The activity

of the nodes in the second layer is obtained by inverting the Laplace

transform using the Post approximation (Post, 1930). After presenting a

delta function as input to the first layer, the activity of units in the sec-

ond layer resembles the firing rates of scale-invariant time cells. The

model can be implemented as a two layer feedfoward neural network

where the weights can be explicitly computed as a function of the time

constants of the nodes in the first layer. Here we give a brief overview

of the mathematical model and emphasize the connection to our neural

circuit that will be introduced later.

The goal of this method is to reconstruct a vector-valued function

over the time leading up to the present f(t' < t). For simplicity we focus

our attention on a single component f(t). As shown in Figure 3a, this

input stimulus is fed in parallel into a series of leaky integrators F(s,t):

(a)

(b) (c)

0 5 10 15 20 25 30 35 40 45 50

time

0

1

2

3

4

5

ac
tiv

ity

1
2
3
4
5

normalized time

ac
tiv

ity

0 2 4 6 8 10

Time

10

20

30

40

50

60

70

80

90

100

C
el

l #

FIGURE 3 Illustration of the scale-invariant mathematical model for sequentially-activated time cells. (a) Rather than a simple chain, in this

formulation, an input is provided in parallel to a set of leaky integrators, F. These units provide a feedforward input to another set of units ef that
function like time cells. The direction of the ‘clock hands’ within the neurons indicate the time constant of that neuron (peak time for sequentially

activated cells and decay time constant for leaky integrators). (b) The activation of ef nodes after a delta function input in the mathematical model

is scale-invariant. Top: The activation of 5 ef nodes with different time constants τ* (Equation (7)). k = 2 is chosen in the inverse Laplace transform.
Bottom: The same functions rescaled by τ* along the x axis and by the maximum activation along the y axis as in Figure 2. Unlike the chaining
model, the five lines exactly overlap, showing the scale-invariant property. (c) Heatmap from the mathematical model. The time at which a
particular time cell activates is ultimately controlled by the time constant of the integrators that provide input to it. Choosing the time constants

of the leaky integrators controls the number density of time cells [Color figure can be viewed at wileyonlinelibrary.com]
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dF s,tð Þ
dt

¼ α tð Þ −sF s,tð Þ+ f tð Þ½ � ð2Þ

Here F(s,t) is the activity of the node labeled by s. α(t) is an exter-

nally controlled parameter. For now, we assume that α(t) = 1.1 We can

observe from Equation (2) that the set of activities F(s,t) is just the

Laplace transform of the original stimuli with Laplace index s.

F s,tð Þ¼
ðt
−∞

f t0ð Þe−α t0ð Þs t− t0ð Þdt0 ð3Þ

More specifically if we take the stimulus to be a delta functionef(t) = δ(0), the neuron represented by the F node will simply have an

exponentially decay firing rate with a decay time constant of 1
s

F s,tð Þ/ e−st ð4Þ

The activity of the F nodes is transformed by a second layer of ef
nodes. The ef nodes are in one-to-one correspondence with the

F nodes. At each moment the activity of the F node labeled by s is

transformed in the following way:

ef τ* ,t
� �

¼ −1ð Þk
k!

sk +1
dkF s,tð Þ
dsk

ð5Þ

where τ* � k=s is a parameter2 that indexes the nodes in ef and k is an

integer that we later identify to be related to the precision of the inverse

Laplace transformation. The only time-varying part in Equation 5 is F. It

will turn out that the value of τ* specifies the time that each unit in ef
has its peak activation following a delta function input.

The above transformation is an inverse Laplace transform in the

sense that

ef τ* ,t
� �

≈ f t−τ*
� �

ð6Þ

where, f t−τ*Þð is the value of the stimulus function a time τ* prior to

the present. The approximation becomes exact when k ! ∞ (Post,

1930). Because there are many units in ef τ* ,tÞð , that set of units trace

out the past values of the input function such that an approxima-

tion of the entire function is available at time t. Thus we can see

that the set of activations ef τ* ,tÞð constitutes a faithful representation

of the original stimulus function delayed by τ*. This is true regardless

of the form of the function f(t).

To better understand the properties of ef τ*,tÞð , consider the form

it has if f(t) is a delta function at time zero. Then, each node in F(s)

decays exponentially as e–st and each ef node is given by:

efðτ* ,tÞ¼ sk +1

k!
tke−st ¼Ck

1
τ*

t
τ*

� �k

e−k
t
τ* ð7Þ

where, Ck is a constant that depends only on the choice of k and we

have substituted τ* � k
s in the last step.

Equation (7) has properties that resemble the firing rate of a time

cell with a peak firing rate at t = τ*. Note that the time-dependence of

this expression depends only on the fraction t
τ*. Thus if we rescale the

x axis according to τ*, and the y axis by the maximum activity, the fir-

ing activity of all the cells will coincide, as shown in Figure 3b. Thus,

the activity of nodes in ef is scale-invariant.
This mathematical framework produces a set of functions that

resembles the firing rates of time cells. Moreover this mechanism gives

rise to time cells that are scale-invariant, which would be a desirable

property for the brain to possess. However, it is not clear whether it is

possible for neural circuits in the brain to actually implement this

hypothesized mechanism. We will demonstrate that this is indeed neu-

rally realistic by constructing a biologically detailed neural circuit that uti-

lizes a biophysical model of exponentially decaying persistent firing

neuron (Tiganj et al., 2015) to perform the computation of this mathe-

matical model, thereby generating a set of scale-invariant time cells.

The values of τ* in ef are controlled by the values of s in F. It

remains to specify the distribution of values of s and thus τ*. In order

to preserve scale-invariance, equate the information content of adja-

cent nodes (Shankar & Howard, 2013) and enable ef to implement

Weber-Fechner scaling (Howard & Shankar, 2018), we choose the

values of τ* to be logarithmically spaced as shown in Figure 3c. This is

equivalent to choosing the number density of s to go down like s−1.

Power law distributions of time scales emerge in physical systems

under quite general circumstances (e.g., Amir, Oreg, & Imry, 2012).

2.2 | A biophysical model implementing this
mathematical framework

The mathematical framework requires two physical processes. One is a

set of exponentially decaying cells with a spectrum of time constants.

For this we follow (Tiganj et al., 2015) with a set of integrate-and-fire

neurons equipped with a slowly decaying calcium-dependent non-

specific cation current (Fransén et al., 2006). The second process is an

implementation of the operator to approximately invert the Laplace

transform in Equation (5). We will implement this with a neural circuit

with realistic synaptic conductances. First, however, we discuss how to

implement the derivatives in Equation (5) with discrete values of s.

2.2.1 | The weight matrix for inverse Laplace
transform WL

By Equation (5), the connection weights should depend on the discre-

tized kth derivative with respect to s. To write derivatives in matrix

form, imagine there are three successive F nodes, with labels s−1, s0,

and s1. Note that the first derivative of a function with respect to s0

can be approximated as a weighted average of the slope of the line

connecting the successive points on the curve.

dF s0ð Þ
ds

≈
F s1ð Þ−F s0ð Þ

s1−s0

s0−s−1
s1−s−1

� �
+
F s0ð Þ−F s−1ð Þ

s0−s−1

s1−s0
s1−s−1

� �
ð8Þ

The factors in the parentheses account for the fact that the accu-

racy of the slope further away from the point s0 is a less accurate esti-

mate of the derivative.3
1By modulating α(t) with velocity, the model can produce place cells (Howard

et al., 2014).
2Note that this definition of τ* differs from the notation in some previous

papers where τ* was defined to be negative. We adopt this convention for con-

venience here.

3This approximation works when the second derivative d2 f sð Þ
ds2

does not change

sign along the interval [s−1, s1]. This is always the case for F(s, t).
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The derivative as expressed in Equation (8) is a linear combination of

F(s1), F(s0), and F(s−1) with coefficients determined by s1, s0, and s−1. There-

fore, if we represent the function F(s) by a discretized vector of values

F sð Þ!F≈ F s1ð Þ, F s2ð Þ, … F sNð Þ½ �T ð9Þ

we can write the first derivative as a matrix,

dF
ds

≈DF, ð10Þ

where the matrix D is given by

Di, i−1 ¼ −
s1−s0

s0−s−1ð Þ s1−s−1ð Þ ð11Þ

Di, i ¼ s1−s0
s0−s−1ð Þ s1−s−1ð Þ −

s0−s−1
s1−s0ð Þ s1−s−1ð Þ ð12Þ

Di, i+1 ¼ s0−s−1
s1−s0ð Þ s1−s−1ð Þ ð13Þ

for i = 1, 2, …, N and all the other elements are 0. The kth derivative

can be obtained by simply multiplying k of these matrices.

dkF

dsk
≈DkF ð14Þ

After we have the matrix representation of the kth derivative, the

activity for a given ef node centered on τ*= k=s can be approximated

by a linear combination of the F node activities F(s,t). In matrix

notation,

ef tð Þ≈ −1ð Þk
k!

sk+1�DkF tð Þ�WLF tð Þ ð15Þ

where � represents element-wise multiplication, and sk+1 ¼
sk +11 , sk +12 ,
	

… sk +1N �. Thus the inverse Laplace transform is readily

implemented in a neural network via a weight matrix WL.

In our simulation we will choose k = 2, so for a given ef node

labeled by s0 its activity at any given time t will depend on its five

nearest neighboring F nodes, F(s−2, t), F(s−1, t), F(s0, t), F(s1, t), and

F(s2, t). In this simulation, we have 9 F nodes labeled by s1 to s9.

According to the above description they will generate 5 ef nodes.
2.2.2 | A biophysical model for exponentially decaying
persistent firing neurons

Biologically, time cell sequences have been observed stretching out to

at least a minute. Because τ* ¼ k
s, implementing these equations

requires some mechanism for implementing time constants of at least

tens of seconds. It is non-trivial to identify a biophysical mechanism

that can result in persistent spiking that lasts over that period of time.

While recurrent connections with appropriate eigenvalues would

implement this property perfectly well, here we follow previous work

that uses known single-cell properties to build long time constants.

Tiganj et al. (2015) developed a computational model of single neu-

rons that uses a calcium-activated nonspecific (CAN) cationic current

to achieve decay time constants up to tens of seconds under a realis-

tic choice of parameters. Here we utilize that same model as the neu-

ral realization of the F nodes.

The model works because cells contain a slowly deactivating cur-

rent that depends on calcium concentration. Because this current

causes spikes, and because spikes cause an influx of calcium, this

mechanism can result in very long functional time constants. Because

the functional time constant depends on spiking, mechanisms that

alter the amount of current needed to cause a spike also alter the func-

tional time constant.

The dynamics of the model are summarized as follows:

1. During the interspike interval, the membrane potential vm(t) is

modeled to be only affected by the CAN current

Cm
dvm tð Þ
dt

¼ − iCAN tð Þ: ð16Þ

where, Cm is the membrane capacitance and iCAN is the CAN current.

2. The CAN current is given by

iCAN tð Þ¼ gCAN m vm tð Þ−ECAN½ � ð17Þ

Here gCAN is the maximal value of the ion conductance measured

in mho
cm2 , ECAN is the reversal potential of the CAN current ion channels

and m is a dimensionless quantity between 0 and 1 that is associated

with the activation of the CAN current ion channels.

3. Critically, the value of m depends on the concentration of calcium.

Following previous computational work (Traub, Wong, Miles, &

Michelson, 1991; Fransén, Alonso, & Hasselmo, 2002), we let the

activation parameter for the ion channel m change from moment

to moment according to

dm
dt

¼ a
	
Ca2+



tð Þ 1−mð Þ−bm ð18Þ

where, a and b are free parameters. Following Fransén et al. (2002),

we choose a and b as 0.02 and 1, respectively

4. The dynamics of the calcium concentration is given by an expo-

nential decay during the interspike interval

d
	
Ca2+



tð Þ

dt
¼ −

	
Ca2+



tð Þ

τp
ð19Þ

where, τp is the decay time constant.

5. Critically, there is a fixed amount of calcium influx whenever the

cell fires an action potential

	
Ca2+



tð Þ! 	

Ca2+


tð Þ+ kCa ð20Þ

Tiganj et al. (2015) showed both analytically and numerically that

under appropriate assumptions the firing rate will be approximately

exponentially decaying with a functional decay time constant τ that

far exceeds the decay time constant τp of the calcium concentration

from Equation (19):
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1
τ
¼ 1
τp

+
gCAN kCa γ

Q
ð21Þ

where, γ¼ a vm−ECANð Þ, vm is the average membrane potential during

a spike and Q is the total charge influx during a spike. Note that this

expression allows infinite values of the functional time constant. This

expression holds when the neurons are in the linear regime and when

the change of m is much faster than the change of calcium, that is,

1
a Ca2+½ � tð Þ+ b� τp and the interspike interval is much less than τp, the

decay time constant of the calcium concentration. In the simulation

we choose the parameters to satisfy the two conditions above, so that

the firing rates are well approximated by exponentially decaying func-

tions with a broad range of time constants.

2.2.3 | Layer I neurons implementing F nodes

Layer I consists of 108 integrate-and-fire neurons driven by the CAN

current described above, modeling the F nodes from the mathematical

model. The set of model neurons spans 9 different values of s with

12 neurons for each value. To model the experimental finding of a log-

arithmically compressed timeline, the time constants 1/s were chosen

to be logarithmically spaced between 2 and 50 seconds by adjusting

the maximum CAN current conductance gCAN and initial calcium con-

centration in the CAN current driven persistent firing neuron model

above according to Table 1. All the model parameters are summarized

in Table 1.

2.2.4 | Layer II neurons relay the activity and ensure
Dale’s law

The expression for the synaptic weights WL in Equation (15) requires

both positive and negative connections. The 9 groups of layer I neu-

rons are connected to 5 output layer neurons (time cells) via a connec-

tion matrix WL with k = 2. If there were only direct connections

between layer I neurons and the output layer neurons, implementing

WL would violate Dale’s law. To ensure adherence to Dale’s law we

place a layer II neuron on every connection. The layer II neurons are

inhibitory or excitatory depending on the sign of the connection

weight that they convey to the output neurons, as shown in Figure 4.

TABLE 1 List of the parameters of the model

Variable Label Value

Layer I neurons

Threshold potential vt −40 mV

Reset potential vreset −70 mV

Reversal potential of CAN current ECAN −20 mV

Capacitance Cm 10−4 μF

Calcium decay constant τp 1,000 ms

Dynamical parameter for m a 0.02

Another dynamical parameter for m b 1

Maximum CAN current conductance gCAN 0.0023, 0.0031, 0.0036, 0.0039, 0.0042,
0.0043, 0.0044, 0.0045, 0.0045 mho/cm2

Calcium influx every spike kCa 0.001 (calcium concentration is defined to
be unitless)

Initial calcium concentration Ca(0) 0.05/0.0376/0.0322/0.0294/
0.0278/0.0268/0.0262/0.0258/0.0255

Layer II neurons

Time constant τi 250 ms

Threshold potential vt,i −50 mV

Reset potential vreset,i −50.2 mV

Output layer neurons

Time constant τpost 50 ms

Threshold potential vt, post −50 mV

Reset potential vreset,post −50.2 mV

Synaptic Potential (modeled as alpha function)

Time constant for NMDA receptor τalpha,NMDA 45 ms

Time constant for GABAA receptor τalpha,GABA 15 ms

Duration of a single synaptic potential 300 ms

Vint t+△tð Þ¼
Vreset, i, if Vint tð Þ�Vt

Vint tð Þ+ △t
τint

− Vint tð Þ−Eint½ �+
X3
i¼1

PSPpre, i tð Þ+0:42Uð0,1Þ
 !

, otherwise

8><>: ð22Þ
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To keep the firing rates of the layer II neurons in a reasonable

regime, the postsynaptic potentials (PSPs) coming from three layer I

neurons from the same group are used as the input to one layer II

neuron. Layer II neurons are modeled as leaky integrate and fire neu-

rons. The time evolution of the layer II neurons is given by Equation

(22), where Eint is the resting potential for the layer II neurons, τint is

the membrane time constant, PSPpre,i is the PSP coming from layer I

neuron i and a noise term U (0,1) represents a random number drawn

uniformly from (0,1). We added a background current to achieve a

0.42 mV voltage offset so that the layer II neurons are in their linear

regime, an essential point to ensure scale-invariance.

2.2.5 | Layer II cells project to output layer cells

PSPs generated by the layer II neurons with five different time con-

stants of the intermediate neurons are summed up and provide input

to the output layer neurons, as in Figure 4. The weight matrix WL is

implemented by different PSP amplitudes of individual layer II neu-

rons, which can be computed from Equations (11)–(15). We also

rescaled the individual PSPs so that the inputs to the different output

layer neurons have the same maximum. This ensures that the output

layer neurons are all in their linear regimes. A biophysical mechanism

to achieve such regime could be due to homeostatic synaptic scaling

in which the activity of neurons regulates the magnitude of synaptic

inputs (Turrigiano, Leslie, Desai, Rutherford, & Nelson, 1998). Later

we will elaborate that as the time constants of nearby neurons

become closer (i.e., si + 1 − si ! 0), the receptive field will closely

resemble an off-surround, on-center one.

2.2.6 | Output layer cells model the ef nodes in the
mathematical framework

The output layer neurons are also leaky integrate and fire neurons.

Their dynamics are described by Equation (23), where i indexes differ-

ent time constants and j indexes the different layer II neurons with

the same time constant.

Although CAN current is prevalent in pyramidal neurons, the

amount of persistent spiking in different populations of entorhinal

cortex neurons varies, with less persistent spiking in stellate cells

(Klink & Alonso, 1997). Thus, the CAN current may be present in dif-

ferent magnitudes in different neuronal populations. We have used

simple integrate and fire neurons in the output layer as a simplified ini-

tial representation, but future implementations could include a more

complex range of membrane currents.

We use alpha functions for modeling the synaptic potentials and

Euler's method with a time step of 0.1 ms in MATLAB 2016a to imple-

ment differential equations.

3 | RESULTS

There are two primary results in this article. The first is that the simu-

lated output layer neurons, like time cells, fire sequentially in response

to a delta function input and the sequential firing is approximately

scale-invariant. This property comes from receptive fields that can be

understood as off-center/on-surround in the projections to the output

layer units. The second is that the simulated neural sequence can be

rescaled by adjusting the gain of the layer I neurons. Before describing

those results, we first describe the activity profile of each of the layers

in turn.

3.1 | Layer I neurons showed exponential decay
with a range of time constants

The layer I neurons as shown in the bottom layer of Figure 4 are

driven by the input to the network. They are equipped with an inter-

nal CAN current and have persistent, exponentially decaying firing

rates. The decay time constants are logarithmically spaced between 2

and 50 seconds. This is achieved by adjusting the maximum CAN cur-

rent conductance gCAN and initial calcium concentration according to

Table 1 (Figure 5(a,b)).

FIGURE 4 Schematic of the architecture of the biological network.

Only a subset of the layer II neurons are drawn. Each blue circle
represents 12 layer I neurons. Each orange circle represents four

excitatory layer II neurons. Each orange triangle represents four
inhibitory layer II neurons. Each black circle represents one output
layer neuron. The direction of the ‘clock hands’ within the neurons
indicates the time constant of that neuron. In the actual simulation,
9 groups of 12 persistent spiking layer I neurons connect to five
output layer neurons (later identified as time cells) via weights
generated by a matrix representation of the inverse Laplace transform
WL. In order to satisfy Dale’s law, an excitatory/inhibitory layer II
neuron is placed on each positive/negative connection. In total, there
are 108 layer I neurons, 100 layer II neurons and 9 output layer
neurons [Color figure can be viewed at wileyonlinelibrary.com]

Vpost t+△tð Þ¼
Vreset,post, if Vpost tð Þ�Vt

Vpost t+△tð Þ¼Vpost tð Þ+ △t
τpost

− Vpost tð Þ−Epost½ �+
X5
i¼1

X4
j¼1

PSPint, i, j tð Þ
 !

, otherwise

8><>: ð23Þ
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The dotted lines are exponential functions; the degree to which

the firing rates align with these theoretical functions confirm that the

firing rates indeed decay exponentially. This is in accordance with the

activity of the F nodes in the mathematical model.

There are 9 groups of layer I neurons in total, each neuron within

a group has the same time constant. Within each group there are

12 layer I neurons with the same parameters. For every three of them,

their PSPs are summed up and sent as input to one layer II neuron, as

shown in Equation (22) and Figure 4.

3.2 | Layer II cells also decayed exponentially

The layer II cells shown in the middle layer of Figure 4 are leaky inte-

grate and fire neurons, with parameters given in Table 1. Driven by

upstream neurons with exponentially decaying firing rates, they also

display firing rates that decay exponentially, at least initially. At very

long times they maintain a background firing rate of around 1 Hz due

to the background current as described in Equation (22). This ensures

that the layer II neurons are always in the linear regime, which is cru-

cial for exact scale-invariance of the computation performed by this

neural circuit.

The PSPs of the layer II neurons contribute differently to the output

layer neurons due to the different amplitude of their individual PSPs.

The PSPs of layer II neurons with five different time constants provide

input to one output layer neuron, as shown in Figure 4. Since each layer

II neuron is only involved in one connection, Dale’s law is satisfied by

simply choosing the layer II neuron to be excitatory if it corresponds to a

positive weight, and vice versa. The model does not have constraints on

the specific type of synaptic transmitter used. For this particular simula-

tion, the excitatory neurons have NMDA receptors with a time constant

of 45 ms (Otis & Mody, 1992) and the inhibitory neurons have GABAA

receptors with a time constant of 15 ms (Perouansky & Yaari, 1993).

(a) (b)

(c) (d)

FIGURE 5 Neurons in layer I and layer II decay exponentially. (a) Layer I is composed of exponentially decaying persistent spiking neurons with

CAN current. These cells are driven by the network input. (b) Firing rates for layer I neurons. Nine example neurons with time constants
logarithmically spaced between 2 and 50 seconds are shown. (c) Layer II is composed of leaky integrate and fire neurons. They are driven directly
by the downstream persistent spiking layer I neurons. They serve the role of exciting and inhibiting the neural activity from layer I to the output
layer in order to complete the computation of the inverse Laplace transform. (d) Firing rates for 9 layer II neurons with different decay constants.
All firing rates are averaged over 100 trials [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Post-synaptic neurons fired sequentially and
were approximately scale-invariant

The post-synaptic cells shown in the top layer of Figure 4 are also

modeled as leaky integrate and fire neurons. When driven by the PSPs

from the layer II neurons, their firing rates resemble the mathematical

expression of Equation (7). As shown in Figure 6 their peak firing

times scale with the width of their firing fields. When rescaled accord-

ing to peak firing times, their firing rates overlap with each other

(Figure 6b). This indicates that the output layer neurons fire sequen-

tially and have a firing rate profile that is time-scale invariant.

3.4 | The weight matrix WL approximates an off-
center, on-surround receptive field when time
constants are densely spaced

In the above simulation we chose a specific series of time constants

and the neighboring index k = 2 in the inverse Laplace transform,

and the connectivity pattern is given by Equation (15). For any

choice of time constants and k value, the general form of connectiv-

ity can be derived from the matrix WL in Equation (15). We found

that as the time constants of nearby ef nodes become closer

(i.e., si + 1 − si ! 0), the receptive fields become more similar to a

symmetrical off-center, on-surround one. To this end, we ran an addi-

tional simulation with 99 (instead of 9) time constants logarithmically

spaced between 2 and 50 seconds. The results are shown in Figure 7.

The receptive fields for all the time cells have the same off-surround,

on-center shape, and their firing rates are still scale-invariant. In vision,

receptive fields like this can be learned from natural scene statistics

by maximizing statistical independence (Bell & Sejnowski, 1997) or

sparsity (Olshausen & Field, 1996). If temporal and visual information

processing reflect similar principles (Howard, 2018), it is possible that

the receptive field in our model could also reflect the adaptation of

our mechanism of temporal information processing to statistical prop-

erties of the world.

FIGURE 6 Our model produces scale-invariant time cells that resemble neural data. (a) The output layer consists of five leaky integrate and fire

neurons which we identify as time cells. (b) From top to bottom: Output layer firing rates for the five time cells generated by this network.
Rescaled version of the firing rates for the five neurons. It is clear that the firing rates coincide with each other when rescaled, showing that the
firing rates for the time cells are indeed scale-invariant. Firing rates are averaged over 100 trials. (c) Heatmap generated from 100 simulated time
cells. Compare to Figures 1, 2c, and 3c [Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | The network exhibits linearity in response to a
square wave input

In the above simulation we presumed that the time cells fire during a delay

period, whose start is signaled by some stimulus which we abstracted as a

delta function. In general we would be interested in the response of the

network to a temporally extended stimulus. To this end we ran the model

with a square wave input that lasted for 150 s. Since the Laplace trans-

form of a continuous function is just the convolution of that function with

the Laplace transform of a delta function, the response of the time cells in

theory would just be the convolution of the stimulus with the impulse

response given by Equation (7). As shown in Figure 8, the firing rates of

the layer I and layer II neurons faithfully represent the Laplace transform

of the square wave input, and the firing rates of the time cells agree with

the theoretical prediction (shown as solid lines in the figures).

3.6 | Time rescaling of time cells can be achieved by
globally changing f–I curves of layer I neurons

This mathematical approach can readily simulate the “time rescaling”

phenomenon, where the firing fields of time cells are rescaled by the

length of the delay interval (MacDonald et al., 2011; Mello et al.,

2015; Wang, Narain, Hosseini, & Jazayeri, 2018). In recurrent neural

network models, time rescaling manifests itself as a collective phe-

nomenon where the neural trajectory sweeps through similar neural

states but with different linear (Hardy, Goudar, Romero-Sosa, & Buo-

nomano, 2017; Wang et al., 2018) or angular (Goudar & Buonomano,

2017) speeds. In previous work based on reservoir computing frame-

works, rescaling requires learning new sets of weights. On the con-

trary in the current framework, rescaling of the neural sequence is

achieved simply by cortical gain control, that is, a global change in the

slope of the f–I curves among all the layer I neurons.

Figure 9 shows the results of two simulations where the speed of

the sequence was rescaled by α¼ 1
2 and α = 2, according to Equa-

tion (2). This is equivalent to the time constants of all the layer I neu-

rons being rescaled by 1
α¼2 and 1

α¼ 1
2 respectively. Notice that

according to Equation (21), the time constant is controlled by the max-

imum CAN current conductance gCAN, calcium influx after a spike kCa

and the charge required for a spike Q. These variables all affect the

slope of the f–I curves of the layer I neurons. Here we altered the con-

ductance (gCAN) of all the layer I neurons. This potentially reflects the

effect of acetylcholine on the activation of the muscarinic receptors. A

previous study has shown that activation of the muscarinic receptors acti-

vates a calcium-sensitive, nonspecific cation current (Shalinsky, Magis-

tretti, Ma, & Alonso, 2002) which induces persistent firing (Hasselmo &

McGaughy, 2004). High levels of acetylcholine are also associated with

attention, which is related to the change in cortical gain (summarized in

Thiele & Bellgrove, 2018). We focused on changes in CAN current con-

ductance because of this data on the effect of acetylcholine. Less data is

available on modulations of other physiological parameters.

Indeed as shown in Figure 9a,b changing the slope of the f–I

curves changes the time constants of layer I neurons. Figure 9c shows

the firing rates of the same time cells before and after the change in α.

Their firing fields appear rescaled by the scaling factor 1
α, in accordance

with observation (MacDonald et al., 2011; Mello et al., 2015).

Figure 9b shows the peak times of 55 time cells before and after

remapping. The sequentially activated time cells follow a straight line, indi-

cating that the time cells indeed code relative time during an interval.4

4 | DISCUSSION

We proposed a neural circuit that encodes the Laplace transform of

an input function and then approximately inverts the Laplace trans-

form to produce a series of sequentially firing cells. The time con-

stants and the peak firing times of the time cells range from a few

seconds to tens of seconds. Critically, the firing rates of the sequen-

tially activated time cells are scale-invariant. This provides a possible

neural substrate for the scalar timing behavior observed across a

wide range of timescales in behavioral tasks, and also approximates

the neurophysiological recordings of sequentially activated cells

that have been observed across a wide range of regions of the

FIGURE 7 Increasing the number of layer I neurons result in off-center,

on-surround receptive fields for time cells. We showed that as the
nearby time constants get closer, the shape of the receptive field
becomes similar to an off-center, on-surround one.We simulated the
network activity using an augmented version of the model with 99 time
constants for layer I neurons spanning 2–50 s. The resulting receptive
fields become almost off-center, on-surround ((a), right, distance indicates
the distance from the layer II neuron with the same label s as the output
layer neuron [black circles, (a) left], line thickness in (a) left schematically
represents the amplitude of the receptive fields). The firing rates of the
time cells still remain scale-invariant ((b) top, activity of 6 representative
time cells. (b) bottom: Firing rates rescaled along the x axis by peak time)
[Color figure can be viewed at wileyonlinelibrary.com]

4Note that in this simulation we used an augmented version of the model where

the layer I neurons span 99 time constants.
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cortex including the hippocampus (MacDonald et al., 2011; Salz

et al., 2016), PFC (Tiganj et al., 2017), and striatum (Adler et al.,

2012; Mello et al., 2015).

4.1 | Constraints on the neural circuit to preserve
scale-invariance

A biological constraint on the neural circuit that can cause deviation from

scale-invariance is the input–output function (f–I curve) of the layer II

neuron. Only when the layer II neurons are in their linear regimes can

they faithfully relay the temporal information from the presynatic neu-

rons to the output layer neurons. Since we modeled the layer II neurons

as leaky integrate and fire neurons, their f–I curves are discontinuous

near the threshold input value. Thus some background firing is required

for the layer II neurons to be in their linear regimes. Also some steady

background firing for the layer I neurons would not change the scale-

invariance property, since a constant shift in F(s,t) would not affect the

derivative that contributes to the inverse Laplace transform.

Alternatively, any type-I model neuron with a linear f–I curve

would satisfy the biological constraint imposed by scale-invariance,

with or without background firing. By appropriately modeling an adap-

tation current, a log-type f–I curve could be transformed into a linear

one (Ermentrout, 1998).

4.2 | Experimental evidence of decaying persistent
firing

Additional biological features of this model are the use of decaying

persistent spiking activity, which resembles the persistent firing

properties observed in intracellular recordings from slice prepara-

tions of the entorhinal cortex (Egorov et al., 2002; Jochems,

Reboreda, Hasselmo, & Yoshida, 2013; Klink & Alonso, 1997;

Tahvildari, Fransén, Alonso, & Hasselmo, 2007) and peririnal cortex

(Navaroli et al., 2011). Mechanisms of decaying persistent firing

have also been observed in other structures such as hippocampus

(Knauer, Jochems, Valero-Aracama, & Yoshida, 2013) and prefrontal

cortex (Haj-Dahmane & Andrade, 1996). In addition, there are

in vivo recordings showing a spectrum of timescales across cortex

(Bernacchia, Seo, Lee, & Wang, 2011; Meister & Buffalo, 2017;

Murray et al., 2014; Tsao et al., 2018).

4.3 | Alternative approaches to implementing the
mathematical model

There are other neural circuit models that produce sequentially acti-

vated neurons, but to our knowledge, the present model is the first one

that has the additional feature of scale-invariant neuronal activity. How-

ever, functionally identical models with different biological realizations

of the same equations might also be possible. For example, rather than

implementing long functional time constants via intrinsic currents, one

could construct an analog of Equation (2) using recurrent connections.

For example, Gavornik and Shouval showed that in a spiking recurrent

neural network trained to encode specific time intervals, units exhibit

persistent spiking activity (Gavornik & Shouval, 2011). Other neural cir-

cuits for computing the inverse Laplace transform are also possible. The

computation of the inverse Laplace transform amounts to a suitable lin-

ear combination of inputs from cells with exponentially decaying firing

rates. Poirazi, Brannon, and Mel (2003) showed, in a detailed

FIGURE 8 The network implements the Laplace transform and inverse for a temporally extended stimulus. We simulated the network activity

with a square wave input (top left). The network activity agrees with the theoretical prediction from the mathematical framework. The layer I
neurons and the layer II neurons exhibit the activity of a charging capacitor (5 representative layer I neurons, top right; 5 representative layer II
neurons, bottom left). The firing rates of time cells (bottom right, 5 representative time cells shown) agree with the prediction from the
mathematical framework (black line) [Color figure can be viewed at wileyonlinelibrary.com]
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compartmental model of a hippocampal CA1 pyramidal cell, that the

dendritic tree functions as a two-layer artificial neural network. Thus a

single dendritic tree could implement the weight matrix WL used here. It

is also within the realm of possibility that the exponentially decaying fir-

ing rates could be replaced with slow dendritic conductances.
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