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The use of spatial maps to navigate through the world requires a complex ongoing transformation of egocentric views of the
environment into position within the allocentric map. Recent research has discovered neurons in retrosplenial cortex and
other structures that could mediate the transformation from egocentric views to allocentric views. These egocentric boundary
cells respond to the egocentric direction and distance of barriers relative to an animal’s point of view. This egocentric coding
based on the visual features of barriers would seem to require complex dynamics of cortical interactions. However, computa-
tional models presented here show that egocentric boundary cells can be generated with a remarkably simple synaptic learn-
ing rule that forms a sparse representation of visual input as an animal explores the environment. Simulation of this simple
sparse synaptic modification generates a population of egocentric boundary cells with distributions of direction and distance
coding that strikingly resemble those observed within the retrosplenial cortex. Furthermore, some egocentric boundary cells
learnt by the model can still function in new environments without retraining. This provides a framework for understanding
the properties of neuronal populations in the retrosplenial cortex that may be essential for interfacing egocentric sensory in-
formation with allocentric spatial maps of the world formed by neurons in downstream areas, including the grid cells in
entorhinal cortex and place cells in the hippocampus.

Key words: egocentric boundary cells; hippocampus; learning; navigational system of the brain; retrosplenial cortex; vis-
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Significance Statement

The computational model presented here demonstrates that the recently discovered egocentric boundary cells in retrosplenial
cortex can be generated with a remarkably simple synaptic learning rule that forms a sparse representation of visual input as
an animal explores the environment. Additionally, our model generates a population of egocentric boundary cells with distri-
butions of direction and distance coding that strikingly resemble those observed within the retrosplenial cortex. This transfor-
mation between sensory input and egocentric representation in the navigational system could have implications for the way
in which egocentric and allocentric representations interface in other brain areas.

Introduction
Animals can perform extremely complex spatial navigation tasks,
but how the brain implements a navigational system to accom-
plish this remains largely unknown. In the past few decades,
many functional cells that play an important role in spatial cog-
nition have been discovered, including place cells (O’Keefe and
Dostrovsky, 1971; O’Keefe, 1976), head direction cells (Taube et
al., 1990a,b), grid cells (Hafting et al., 2005; Stensola et al., 2012),
boundary cells (Solstad et al., 2008; Lever et al., 2009), and speed
cells (Kropff et al., 2015; Hinman et al., 2016). All of these cells
have been investigated in the allocentric reference frame that is
viewpoint-invariant.

However, animals experience and learn about environ-
mental features through exploration using sensory input
that is in their egocentric reference frame. Recently, some
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egocentric spatial representations have been found in multiple
brain areas, such as lateral entorhinal cortex (Wang et al.,
2018), postrhinal cortices (Gofman et al., 2019; LaChance et al.,
2019), dorsal striatum (Hinman et al., 2019), and the retrosple-
nial cortex (RSC) (Wang et al., 2018; Alexander et al., 2020). In
the studies by Hinman et al. (2019) and Alexander et al. (2020),
a very interesting type of spatial cell, the egocentric boundary
cell (EBC), was discovered. Similar to allocentric boundary cells
(Solstad et al., 2008; Lever et al., 2009), EBCs possess vectorial
receptive fields sensitive to the bearing and distance of nearby
walls or boundaries, but in the egocentric reference frame. For
example, an EBC of a rat that responds whenever there is a wall
at a particular distance on the left of the rat means that the
response of the EBC not only depends on the location of
the animal but also its running direction or head direction (i.e.,
the cell is tuned to a wall in the animal-centered reference
frame).

Alexander et al. (2020) identified three categories of EBCs in
the rat RSC: proximal EBCs whose egocentric receptive field
boundary is close to the animal, distal EBCs whose egocentric
receptive field boundary is further away from the animal, and
inverse EBCs that respond everywhere in the environment
except when the animal is close to the boundary. Some examples
of proximal, distal, and inverse EBCs are shown in Figure 1.
Furthermore, EBCs in this area display a considerable diversity
in vector coding; namely, the EBCs respond to egocentric boun-
daries at various orientations and distances. Somewhat surpris-
ingly, there are also EBCs tuned to a wall that is behind the
animal (for an example, see Fig. 1b, bottom).

Although there is increasing experimental evidence that sug-
gests the importance of egocentric spatial cells, there have been
few studies explaining how EBCs are formed and whether they
emerge from neural plasticity.

In this study, we show how EBCs can be generated through a
learning process based on sparse coding that uses visual informa-
tion as the input. Furthermore, the learnt EBCs show a diversity
of types (i.e., proximal, distal, and inverse), and they fire for
boundaries at different orientations and distances, similar to that
observed in the experimental study of the vector coding for
EBCs (Alexander et al., 2020). As Bicanski and Burgess (2020)
pointed out in a recent review, the fact that some EBCs respond
for boundaries behind the animal suggests that these cells do not
solely rely on sensory input and appear to incorporate some
mnemonic components. However, our model shows that, by

solely taking visual input, without any mnemonic component,
some learnt EBCs respond to boundaries that are behind the ani-
mal and out of view. These boundaries can nevertheless be
inferred from the egocentric view of distal walls in front of the
animal that are informative of what is behind the animal, sug-
gesting that the competition introduced by sparse coding drives
different model cells to learn responses to boundaries at a wide
range of different directions.

We next show that the model based on sparse coding that
takes visual input while a simulated animal explores freely in a
2D environment can learn EBCs with diverse tuning properties
and these learnt EBCs can generalize to novel environments
without retraining.

Materials and Methods
The simulated environment, trajectory, and visual input
Environment
The simulated environment is programmed to match the experimental
setup of Alexander et al. (2020) as closely as possible. It consists of a vir-
tual walled arena 1.25 m � 1.25 m. One virtual wall is white and the
other three are black. The floor is a lighter shade of gray with RGB values
(0.4, 0.4, 0.4).

Trajectory
The simulated trajectory is generated randomly using the parameters
from Raudies and Hasselmo (2012). The simulated animal starts in the
center of the arena facing north with the white wall to the right. This is
used as the 0° bearing direction. The velocity of the animal is sampled
from a Rayleigh distribution with mean 13 cm/s while enforcing a mini-
mum speed of 5 cm/s.

The direction of motion is modeled by a random walk for the bear-
ing, where the change in bearing at each time step is sampled from a
zero mean normal distribution with SD 340° per second and scaled to
the length of the time step.

A complication for the simulation is how to deal with the walls.
Following Raudies and Hasselmo (2012), we encode the following. If the
simulated animal will approach within 2 cm of one of the walls on its
next step, its velocity is adjusted to halfway between the current speed
and the minimum speed (5 cm/s). Additionally, we change the bearing
by turning away from the wall by 90°.

Visual input
The simulated environment and trajectory above are realized using the
Panda3D game engine (www.panda3d.org), an open-source framework
for creating virtual visual environments, usually for games. The visual
input of the simulated animal is modeled using a camera with a 170°

Figure 1. Six example EBCs from Alexander et al. (2020). Left column, Plots represent the 2D spatial rate maps. Middle column, Plots represent trajectory plots showing firing locations and
head directions (according to the circular color legend shown above a). Right column, Plots represent the receptive fields of the respective EBCs (front direction corresponds to top of page). a,
Proximal EBCs whose receptive field is a wall close to the animal. The two example EBCs displayed here are selective to proximal walls of left and right, respectively. b, Distal EBCs whose recep-
tive field is a wall further from the animal. The two example EBCs displayed here are selective to distal walls of rear-right and behind, respectively. c, Inverse EBCs that fire everywhere, except
when there is wall near the animal. The two example EBCs displayed here only stop firing when there are walls in front of and on the left of the animal, respectively.
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field of horizontal view to mimic the wide visual
field of rat and a 110° field of vertical view. This
input is used to generate a grayscale 8-bit image
170� 110 pixels, which corresponds approxi-
mately to the visual acuity of the rat, namely,
1 cycle per degree (Prusky et al., 2000). The
camera is always facing front, meaning that the
head direction is aligned with the movement
direction for the simulated animal. The simula-
tion is run at 30 frames per second until 40,000
frames have been collected, which approxi-
mately corresponds to a running trajectory over
a period of 1300 s (21min, 40 s).

Model results shown in this paper are based
on the visual input with 170° field of view
(FOV), except in The width of visual field
affects the orientation distribution of learnt
EBCs where different FOVs (60°, 90°, 120°,
150°, and 170°) are simulated to investigate how
the width of FOV affects the distribution of
learnt EBCs.

Learning EBCs
Non-negative sparse coding
Sparse coding (Olshausen and Field, 1996,
1997) was originally proposed to demonstrate
that simple cells in the primary visual cortex
(V1) encode visual input using an efficient rep-
resentation. The essence of sparse coding is the
assumption that neurons within a network can
represent the sensory input using a linear com-
bination of some relatively small set of basis features (Olshausen and
Field, 1997). Along with its variant, non-negative sparse coding (Hoyer,
2003), the principle of sparse coding provides a compelling explanation
for neurophysiological findings for many brain areas, such as the retina,
visual cortex, auditory cortex, olfactory cortex, somatosensory cortex,
and other areas (for review, see Beyeler et al., 2019). Recently, sparse
coding with non-negative constraint has been shown to provide an
account for learning of the spatial and temporal properties of hippocam-
pal place cells within the entorhinal-hippocampal network (Lian and
Burkitt, 2021, 2022). In this study, non-negative sparse coding is used to
learn the receptive field properties of EBCs found in the RSC.

Model structures
As the simulated animal runs freely in the 2D environment, an image
representing what the animal sees is generated at every location. This
image is used as the visual stimulus to the simulated animal. To explore
where in the visual processing chain EBCs arise we investigate two mod-
els: (1) Raw Visual (RV) model, a control model that uses the raw visual
data (model structure shown in Fig. 2a); and (2) V1-RSC model, a more
biological model that uses the processed data corresponding to process-
ing in the early visual system and processing in the V1 before projecting
to the RSC (model structure shown in Fig. 2b).

The learning principle used in both the RV and V1-RSC models is
non-negative sparse coding. Given that the RV model is designed as a
control model to investigate whether raw visual input can give rise to
EBCs, while the V1-RSC model is a more biological model that incorpo-
rates visual processing in the early visual systems and V1, we use slightly
different implementations of non-negative sparse coding. Specifically,
the RV model uses a built-in function from the SciKit-Learn Python
package (Pedregosa et al., 2011), while the V1-RSC model uses the
implementation from our previous work (Lian and Burkitt, 2021).

RV model: using the raw visual data
In the RV model, the raw visual data are used as the input to the model,
which is a 40,000� 18,700 matrix. This contains the raw visual data
(170� 110) flattened for all 40,000 time steps. One sample of raw visual
input is displayed as the embedded “image” in Figure 2a. Non-negative
sparse coding of this model is implemented by applying non-negative

matrix factorization (Lee and Seung, 1999) with sparsity constraints
using the built-in function from the SciKit-Learn Python package
(Pedregosa et al., 2011). One hundred dictionary elements are generated,
which we identify with the model neuron responses used in the V1-RSC
model. In a machine learning context, sparse coding is optimized to
reconstruct the input data as accurately as possible and the whole dataset
is examined repeatedly until the weights and dictionary elements con-
verge. However, the simulated animal only has access to the visual data
as it is received, so the weights and dictionary elements for the 40,000 -
� 18,700 dataset are only generated once to simulate the early stages of
receptive field generation.

V1-RSC model: using a more biological model from V1 to RSC
Early visual processing. Processing in the early visual system

describes the visual processing of the retinal ganglion cells (RGCs). In
this study, this is done using divisively normalized difference-of-
Gaussian filters that mimic the receptive fields of RGCs in the early vis-
ual system (Tadmor and Tolhurst, 2000; Ratliff et al., 2010). For any
input image, the filtered image I at point (x, y) is given by the following:

Iðx; yÞ ¼ Icðx; yÞ � Isðx; yÞ
Idðx; yÞ ; (1)

where Ic, Is, and Id are the response of the input image filtered by
three unit-normalized Gaussian filters: center filter (Gc), surround filter
(Gs), and divisive normalization filter (Gd). Gc – Gs implements the typi-
cal difference-of-Gaussian filter that characterizes the center-surround
receptive field of RGCs and Gd describes the local adaptation of RGCs
(Troy et al., 1993). The receptive field size of RGCs is set to 9� 9. The
SDs of Gc, Gs and Gd are set to 1, 1.5, and 1.5, respectively (Borghuis et
al., 2008). RGCs are located at each pixel point of the input image, except
these points that are within 4 pixels of the edges of the input image. For
a given input image with size 170� 110, the processed image after the
early visual system has size 162� 102. One sample of raw visual input
and its corresponding processed input by the early visual system are dis-
played as the embedded “image” and “early visual” in Figure 2b.

V1 processing. Next, visual information processed by the early visual
system projects to V1 and is further processed by simple cells and

Figure 2. Structures of RV model and V1-RSC model. The simulated animal runs freely in the 1.25 m� 1.25 m simulated
environment. The simulated visual scene the animal sees at different locations is the visual stimulus to the simulated animal.
a, RV model: the raw visual input is directly used as the input to a network that implements non-negative sparse coding. b,
V1-RSC model: the raw visual input is preprocessed by the early visual system and then projected to V1 that involves simple
cell and then complex cell processing; complex cells in V1 then project to modeled EBCs in RSC, and a V1-RSC network is
implemented based on non-negative sparse coding (described in Eqs. 2 and 3).
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complex cells in V1 (Lian et al., 2019, 2021). The receptive field of a sim-
ple or complex cell is characterized by a 13� 13 image. Simple cells are
described as Gabor filters with orientations spanning from 0° to 150°
with step size of 30°, spatial frequencies spanning from 0.1 to 0.2 cycles
per pixel with step size of 0.025, and spatial phases of 0°, 90°, 180°, and
270°. In addition, a complex cell receives input from four simple cells
that have the same orientation and spatial frequency but different spatial
phases (Movshon et al., 1978a,b; Carandini, 2006). Therefore, at each
location of a receptive field, there are 6� 5 � 4= 120 simple cells and 6 -
� 5 = 30 complex cells. As the receptive field only covers a small part of
the visual field, the same simple cells and complex cells are repeated after
every 5 pixels. Given that an input image from the early visual system
has size 162� 102 and the size of a receptive field is 13� 13, there are
27� 20 = 540 locations that have simple cells and complex cells.
Overall, there are 120� 540 = 64,800 simple cells and 30� 540 = 16,200
complex cells in total. For a given visual stimulus with size 170� 110,
complex cell responses can be represented by a 16,200� 1 vector. After
the vision processing in V1, complex cell responses in V1 project to the
RSC.

Model dynamics. Similar to our previous work (Lian and Burkitt,
2021, 2022), we implement the model via a locally competitive algorithm
(Rozell et al., 2008) that efficiently solves sparse coding as follows:

t _u ¼ �u1ATI� Ys ;
s ¼ maxðu� l ; 0Þ; (2)

and

DA ¼ hðI� AsÞsT withA � 0; (3)

where I is the input from V1 (i.e., complex cells responses), s repre-
sents the response (firing rate) of the model neurons in the RSC, u can
be interpreted as the corresponding membrane potential, A is the matrix
containing basis vectors and can be interpreted as the connection
weights between complex cells in V1 and model neurons in the RSC,
Y ¼ ATA� 1and can be interpreted as the recurrent connection
between model neurons in the RSC, 1 is the identity matrix, t is the time
constant of the model neurons in the RSC, l is the positive sparsity con-
stant that controls the threshold of firing, and h is the learning rate.
Each column of A is normalized to have length 1. Non-negativity of
both s and A in Equations 2 and 3 is incorporated to implement non-
negative sparse coding. Additional details about the above implementa-
tion of non-negative sparse coding can be found in Lian and Burkitt
(2021).

Training. For the implementation of this model, there are 100 model
RSC neurons, and the parameters are given below. For the model dy-
namics and learning rule described in Equations 2 and 3, t is 10ms, l is
0, and the time step of implementing the model dynamics is 0.5ms. The
simulated visual input of the simulated trajectory that contains 40,000
positions is used to train the model. Since the simulated trajectory is
updated after every 30ms, at each position of the trajectory, there are 60
iterations of computing the model response using Equation 2. After
these 60 iterations, the learning rule in Equation 3 is applied such that
connection A is updated. The animal then moves to the next position of
the simulated trajectory. The learning rate h is set to 0.3 for the first
75% of the simulated trajectory and 0.03 for the final 25% of the simu-
lated trajectory. The model with l = 0 implements non-negative matrix
factorization (Lee and Seung, 1999), which is a special variant of non-
negative sparse coding. However, when l is set to a positive value such
as 0.1, the learnt EBCs display similar features, except that the neural
response is sparser.

Collecting model data
After the RV model and V1-RSC model finish learning using simulated
visual input sampled along the simulated trajectory, a testing trajectory
with simulated visual input is used to collect model responses for further
data analysis. The experimental trajectory of real rats from Alexander et
al. (2020) is used as the testing trajectory, and it contains movement

direction as well as head direction. In addition, for the experimental tra-
jectory, head direction is not necessarily identical to movement direction
because the animal is not head-fixed in the experiment. Simulated visual
input from the experimental trajectory is generated using the same
approach described above, except that the camera is not facing front but
aligned with the head direction from the experimental data. Both models
are rate-based; thus, the model responses are then transformed into
spikes using a Poisson spike generator with a maximum firing rate 30Hz
for the whole modeled population. Results displayed in the main text are
generated using model data collected from an experimental trajectory
that has different movement and head directions. However, results of
model data collected from a simulated trajectory where head direction is
aligned with movement direction are also given in the Extended Data
Figures 3-2 and 4-2.

Experimental methods
An electrophysiological dataset collected from the RSC of male rats per-
forming random foraging in a 1.25 m� 1.25 m arena was used from
published prior work (Alexander et al., 2020) to make comparisons
between model and experiment data of EBCs. For additional details
relating to experimental data acquisition, see Alexander et al. (2020). In
addition, the data analysis techniques from this experimental paper were
used to analyze the data from the simulations.

Data analysis
Two-dimensional (2D) spatial rate maps and spatial stability
The analysis of the neural activity in the simulation used the same tech-
niques that were used to analyze published experimental data from the
RSC (Alexander et al., 2020). Animal or simulation positional occupancy
within an open field was discretized into 3 cm� 3 cm spatial bins. For
each model neuron, the raw firing rate for each spatial bin was calculated
by dividing the number of spikes that occurred in a given bin by the
amount of time the animal occupied that bin. Spiking in the model was
generated by a Poisson spike generator. Raw firing rate maps were
smoothed with a 2D Gaussian kernel spanning 3 cm to generate final
rate maps for visualization.

Construction of egocentric boundary rate (EBR) maps
The analysis of EBRs used the same techniques used for published exper-
imental data (Alexander et al., 2020). EBRs were computed in a manner
similar to 2D spatial rate maps, but referenced relative to the animal
rather than the spatial environment. The position of the boundaries rela-
tive to the animal was calculated for each position sample (i.e., frame).
For each frame, we found the distance, in 2.5 cm bins, between arena
boundaries and angles radiating from 0° to 360° in 3° bins relative to the
animal’s position. Angular bins were referenced to the head direction of
the animal such that 0°/360° was always directly in front of the animal,
90° to its left, 180° directly behind it, and 270° to its right. Intersections
between each angle and environmental boundaries were only considered
if the distance to intersection was less than or equal to half the length to
the most distant possible boundary (in most cases, this threshold was set
at 62.5 cm or half the width of the arena to avoid ambiguity about the
influence of opposite walls). In any frame, the animal occupied a specific
distance and angle relative to multiple locations along the arena bounda-
ries; and accordingly, for each frame, the presence of multiple boundary
locations was added to multiple 3° � 2.5 cm bins in the egocentric
boundary occupancy map. The same process was completed with the
locations of individual spikes from each model neuron, and an EBR was
constructed by dividing the number of spikes in each 3°� 2.5 cm bin by
the amount of time that bin was occupied in seconds. Smoothed EBRs
were calculated by convolving each raw EBR with a 2D Gaussian kernel
(5 bin width, 5 bin SD).

Identification of neurons with egocentric boundary vector tuning
The identification of model neurons with significant egocentric boundary
vector sensitivity used the same criteria for identification of real neurons
showing this response (Alexander et al., 2020). The mean resultant, �R, of
the cell’s egocentric boundary directional firing, collapsed across distance to
the boundary, was calculated as follows:
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�R ¼ 1
nm

Xn
u¼1

Xm
D¼1

Fu ;De
iu

 !
; (4)

where u is the orientation relative to the rat, D is the distance from
the rat, Fu ;D is the firing rate in a given orientation � distance bin, n is
the number of orientation bins, and m is the number of distance bins.
The mean resultant length (MRL), �L, is defined as the absolute value of
the mean resultant and characterized the strength of egocentric bearing
tuning to environment boundaries. The preferred orientation of the EBR
map was calculated as the mean resultant angle (MRA), �f ,

�f ¼ arctan
=ð�RÞ
<ð�RÞ

 !
; (5)

where = and < are the real and imaginary parts of their arguments,
respectively.

The preferred distance was estimated by fitting a Weibull distribu-
tion to the firing rate vector corresponding to the MRA and finding the
distance bin with the maximum firing rate. The MRL, MRA, and pre-
ferred distance were calculated for each model neuron for the two halves
of the experimental session independently.

A model neuron was characterized as having egocentric boundary
vector tuning (i.e., an EBC) if it reached the following criteria: (1) the
MRL from both session halves were greater than the 99th percentile of
the randomized distribution taken from Alexander et al. (2020)
(�L.0:14); (2) the absolute circular distance in preferred angle between
the first and second halves of the baseline session was ,45°; and (3) the
change in preferred distance for both the first and second halves relative
to the full session was,50%. To refine our estimate of the preferred ori-
entation and preferred distance of each model neuron, we calculated the
center of mass of the receptive field defined after thresholding the entire
EBR at 75% of the peak firing and finding the largest continuous contour
(“contour” in MATLAB). We repeated the same process for the inverse
EBR for all cells to identify both an excitatory and inhibitory receptive
field and corresponding preferred orientation and distance for each
model neuron.

von Mises mixture models
Distribution of preferred orientation estimates was modeled as mixtures
of von Mises distributions using orders from 1 to 5 (“fitmvmdist” found
at https://github.com/chrschy/mvmdist). Optimal models were identi-
fied as the simplest model increasing model fit by 10% over the one-
component model. Theta of each von Mises component is reported, and
a distribution function of the optimal model was generated to visualize
mixture model fit.

Code availability
The code of implementing the model is made available at https://github.
com/yanbolian/Learning-EBCs-from-Visual-Input.

Results
Learnt EBCs are similar to those found in the experimental
study
Results using RV model
One hundred dictionary elements (model cells) of the RV model
were trained on a simulated trajectory and then tested on the ex-
perimental trajectory as described in Collecting model data; 38%
of these model cells possessed significant and reliable sensitivity
to the egocentric bearing and distance to environmental bounda-
ries. A similar but lightly larger percentage was observed when
these model cells were tested on the simulated trajectory (41%).
Figure 3 shows six examples of learnt cells that are proximal, dis-
tal, and inverse EBCs. Plots of the full set of 100 RV model cells
tested using experimental and simulated animal trajectories are
given in Extended Data Figures 3-1 and 3-2.

Results using V1-RSC model
One hundred model cells of the V1-RSC model were also trained
using a simulated trajectory and then tested on the experimental
trajectory, as described in Collecting model data. Of these cells,
85% possessed significant egocentric boundary vector sensitivity
when tested on the real animal trajectory, and a similar percent-
age was observed on the simulated trajectory (90%). Twelve
examples showing the activity of cells with learned EBC receptive
fields on the experimental trajectory are displayed in Figure 4.
The four sets of plots in Figure 4a depict representative examples
of proximal EBCs with different preferences for egocentric orien-
tation, and the four sets of plots in Figure 4b show representative
examples of distal EBCs, also showing different preferences for
egocentric orientation. The four sets of plots in Figure 4c show
examples of learned inverse EBCs. Each row consists of EBCs
with similar orientations. These examples illustrate that they
code for different orientations and distances in the animal-cen-
tered framework. Plots of the full set of 100 V1-RSC model cells
generated using experimental and simulated animal trajectories
are given in Extended Data Figures 4-1 and 4-2.

These result show that, after training, the learnt RSC cells ex-
hibit diverse egocentric tuning similar to that observed in experi-
mental data (Alexander et al., 2020), including the three different
types identified experimentally: proximal, distal, and inverse.
The results likewise show that the cells are activated by walls at
different orientations in the egocentric framework. In other
words, this model learns diverse egocentric vector coding,
namely, the learnt cells code for boundaries at different orienta-
tions and distances.

Figure 3. Examples of learnt EBCs recovered using experimental trajectory: RV model. Similar to Figure 1, each row with three images shows the spatial rate map, firing plot with head
directions, and egocentric rate map. Proximal EBCs (a), Distal EBCs (b), and inverse EBCs (c), with different preferences of egocentric orientation. All 100 RV model cells tested using experimen-
tal and simulated animal trajectories are given in Extended Data Figures 3-1 and 3-2.
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Population statistics of EBC orientation and distance
The EBCs that are learnt using RV model and V1-RSC model,
illustrated in Figures 3 and 4, show considerable similarity to
those found in experimental studies (Alexander et al., 2020).
After the model is trained on simulated visual data sampled from
a virtual environment with a simulated trajectory, model
responses are collected with both experimental trajectory (where
head direction is not necessarily aligned with moving direction)
and simulated trajectory (where head direction is the same as
moving direction); for details, see Collecting model data. Then
the egocentric tuning properties of all the model cells are investi-
gated using the technique in Data analysis.

A summary of percentages of cells that are classified as EBCs
for both experimental and model data are displayed in Table 1.
Alexander et al. (2020) reported 24.1% (n=134/555) EBCs in the
experimental data. RV model has 41% (n= 41/100) and 38%
(n=38/100) EBCs recovered by simulated trajectory and experi-
mental trajectory, respectively. V1-RSC model has 90% (n= 90/
100) and 85% (n=85/100) EBCs recovered by simulated trajec-
tory and experimental trajectory, respectively. Above all, our pro-
posed model is successful in learning EBCs from visual input.

The extent of the similarity between experimental and model
data are shown in Figure 5, which demonstrates that both RV
and V1-RSC models generate EBCs whose characteristics resem-
ble experimentally observed data on a population level. Thus, vis-
ual input alone may give rise to EBC-like receptive fields. The
vector coding of an EBC indicates the coding of orientation and
distance. Experimental data (Fig. 5, left) show that EBCs in the
RSC have a lateral preference for orientation and a wide range of

distance tuning. Learnt EBCs of both the RV model and V1-RSC
model have qualitatively similar distributions to the experimental
data of both preferred bearing and distance. That said, the distri-
bution of preferred orientations and distances in the experimen-
tal dataset significantly differed from EBCs in the V1-RSC
(Kuiper test for differences in preferred orientation; k= 3443;
p= 0.002; Wilcoxon rank sum test for differences in preferred
distance; p= 0.03) but not the RV model (Kuiper test for pre-
ferred orientation; k= 1644; p=0.05; Wilcoxon rank sum test for
preferred distance; p=0.49). These differences partly arise from
(1) an overall lack of V1-RSC EBCs with preferred egocentric
orientations in front of or behind the animal and (2) a more uni-
form distribution of preferred distances with lower concentra-
tion in the proximal range for V1-RSC model EBCs.

Different visual inputs imply different spatial information
about the animals’ position, so salient visual features may corre-
late with spatial tuning properties of neurons. By solely taking
visual input, the model based on sparse coding promotes diverse
tuning properties (different types of EBCs and diverse popula-
tion responses) because of the inherent competition of the
model. Difference between experimental and model data are dis-
cussed further in Comparison between experimental and model
data and Differences between RV model and V1-RSCmodel.

Learnt EBCs generalize to novel environments
EBCs are experimentally observed to exhibit consistent tuning
preferences across environments of different shapes or sizes
(LaChance et al., 2019; Alexander et al., 2020). We next exam-
ined whether learnt EBCs of the two models exhibited similar

Figure 4. Examples of learnt EBCs recovered using experimental trajectory: V1-RSC model. Similar to Figure 1, each row with three images shows the spatial rate map, firing plot with head
directions, and egocentric rate map. Proximal EBCs (a), Distal EBCs (b), and inverse EBCs (c), with different preferences of egocentric orientation. All 100 V1-RSC model cells tested using experi-
mental and simulated animal trajectories are given in Extended Data Figures 4-1 and 4-2. Extended Data Figure 4-3 shows two example V1-RSC model cells with overlapping wall responses
that are discussed in Comparison between experimental and model data.

Table 1. Percentages of EBCs of experimental and model data

RV model V1-RSC model

Experimental Simulated trajectory Experimental trajectory Simulated trajectory Experimental trajectory

EBC 24.1%, n= 134/555 41%, n= 41/100 38%, n= 38/100 90%, n= 90/100 85%, n= 85/100
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characteristics. To do so, we exposed
model units that were trained on the base-
line (1.25 m2) session to both a circular
and expanded (2 m2) novel environments.

We observed many learnt units that
continued to exhibit egocentric receptive
fields across environments (Fig. 6a–e).
However, there were notable differences in
the preferred egocentric bearing and dis-
tances of the receptive fields of individual
units as well as the generalizability of tun-
ing across environments between the
unprocessed (RV) and feature processed
(V1-RSC) models. The RV model tended
to have greater turnover of units with
EBC-like properties between the baseline,
circle, and expanded arenas, while the
population of EBCs in the V1-RSC model
overlapped substantially between environ-
ments (e.g., only 1 RSC-V1 unit was an
EBC solely in the baseline session; Fig. 6f).
Interestingly, both models exhibited more
robust egocentric bearing tuning in circu-
lar compared with square environments
(Fig. 6g) (Kruskal–Wallis test with post hoc
Tukey-Kramer; RV, x 2 = 42.3; V1-RSC,
x 2 = 63.5; both p, 0.001). Consistent
with this observation, RV model units were more likely to exhibit
EBC-like tuning in circular environments (Fig. 6b,f), while V1-
RSC model units showed no preference for environment shape
(Fig. 6f).

The RV and V1-RSC models also diverged when examining
the properties of egocentric boundary tuning curves across envi-
ronments. While there were fewer preserved EBC units in the
RV model across sessions, those that did maintain EBC-like tun-
ing tended to have the similar preferred orientations between
baseline, circular, and expanded arenas (Fig. 6h, left column;
Kuiper test for different preferred orientations; kcircle = 270; k2m
= 144; both p= 1). In contrast, V1-RSC units had significant dif-
ferences at the population level in preferred orientations between
the circular environment and baseline session (Fig. 6h, top right;
Kuiper test; kcircle = 1334; p=0.001). This likely arose from sub-
sets of V1-RSC units that exhibited movement of their preferred
egocentric bearing to the contralateral side of the agent between
arenas (Fig. 6d,h). V1-RSC units were extremely reliable in their
preferred orientation within both sized square arenas, indicating
that the egocentric receptive fields in this model were highly sen-
sitive to environmental geometry (Fig. 6h, bottom right; Kuiper
test; k2m = 1105; p=1). Indeed, small numbers of V1-RSC units
with EBC-like tuning in square environments exhibited a com-
plete disruption of egocentric receptive fields in circular environ-
ments consistent with experimental observations (Fig. 6e; A.S.A.,
unpublished).

Larger alterations to EBC receptive fields across environments
were observed for the distance component in both models. Many
units exhibited drastic changes to their preferred egocentric dis-
tance with a bias toward a shift further from the animal (Fig. 6h;
DPref Dist. = PDbaseline – PDmanip; signed rank test for 0 median
differences; all conditions and models, p , 0.05). This observa-
tion was especially apparent in the V1-RSC model and, in partic-
ular, in the arena expansion manipulation (Fig. 6h, bottom
right). In the 2 m2 environment, shifts in preferred distances that
moved receptive fields further away from the animal could

indicate that subsets of EBCs anchored their activity to the center
of the environment rather than boundaries, as reported in post-
rhinal cortices (Fig. 6d) (LaChance et al., 2019). These simula-
tions indicate that, in a manner consistent with experimentally
observed EBCs, most model-derived units exhibit consistent
EBC-like tuning between environments of different shapes and
sizes without retraining.

The width of visual field affects the orientation distribution
of learnt EBCs
The preferred egocentric bearings of EBCs from both experimen-
tal data and model simulations are concentrated at lateral angles
(Fig. 5) and overlap significantly with the facing direction of the
eyes. Thus, it is possible that the distribution of EBC-preferred
bearings reflects the visual field of the animal. We next examined
model EBC receptive field properties in simulations of agents
possessing varying FOVs (Fig. 7). Consistent with this hypothe-
sis, the distribution of preferred bearings is primarily forward
facing in simulations with convergent FOVs and spread in more
lateral orientations as the visual field approaches a more natural-
istic width. Indeed, at a 170° width FOV, the distribution of pre-
ferred orientations becomes bimodal in both models, with mean
angular preferences of each mode falling near 0/360° and 180° as
observed in experimental data (Fig. 5). Accordingly, the combi-
nation of visual sparse coding and physical constraints on animal
visual fields may define core properties of EBC receptive fields
and enable the prediction of preferred bearings in other species.

Furthermore, Figure 7 shows that both models generate more
behind-animal EBCs when FOVs are small (60°, 90°, and 120°).
Given that there is no mnemonic component in the model and
the wall behind the animal is completely out of its view when
FOV is small, the results here suggest that the model can use ego-
centric views of what is in front of the animal to infer what is
behind, and the competition generated by sparse coding pro-
motes the diversity of EBC tuning properties, although only vis-
ual input is used.

Figure 5. Population statistics of experimental and model data. Distributions of orientation (top row) and distance (bot-
tom row) in the RV model (middle column) and V1-RSC model (right column) resemble experimental distributions observed
in RSC (Alexander et al., 2020) (left column; blue and yellow histograms correspond to real neurons recorded in the right
and left hemispheres, respectively). Model data in this figure are collected using experimental trajectory.
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Discussion
Summary of key results
In this study, the results of two different learning models for RSC
cell responses are compared with experimental RSC cell data.
Both models take visual images as the input, using trajectories of
the environment that are either measured experimentally or
simulated. The RV model takes the raw visual images as the
input, while the V1-RSC model incorporates visual information
processing associated with simple and complex cells of the pri-
mary visual cortex (Lian et al., 2019, 2021). After learning, both
models generate EBCs that are proximal, distal, and inverse, sim-
ilar to experimentally observed EBCs in the RSC (Alexander et

al., 2020). Moreover, the learnt EBCs have similar distributions
of orientation and distance coding to the distributions measured
in experimental data. The learnt EBCs also show some extent of
generalization to novel environments, consistent with the experi-
mental study (Alexander et al., 2020). Furthermore, as the FOV
of visual input increases, the orientation distribution of learnt
EBCs becomes more lateral. Overall, our results suggest that a
simple model based on sparse coding that takes visual input
alone can account for the emergence and properties of a special
type of spatial cells in the navigational system of the brain, EBCs.
Compared with another recent model that describes the learning
of EBCs (Uria et al., 2022), our work based on a simplified

Figure 6. Model EBCs exhibit mostly consistent tuning when the environment is manipulated. a, Three examples of EBCs in the RV model across baseline (1.25 m2), circular, and expanded
(2 m2) environments. Left, Plots represent firing rate map as a function of position of the agent. Middle, Plots represent trajectory plot showing agent path in gray and position at time of spik-
ing as colored circles. Color represents heading at the time of the spike as indicated in the legend. Right, Plots represent EBR map. b, RV unit with EBC coding in circular but not square environ-
ments. c, Two examples of EBCs in the V1-RSC model across baseline (1.25 m2), circular, and expanded (2 m2) environments. Plots as in a. d, V1-RSC unit that has contralateral orientation
tuning between square and circular environments. e, V1-RSC unit that loses an EBC receptive field when moving from square to circular environments. f, Venn diagrams for RV (left) and V1-
RSC (right) EBCs across all simulated arenas. Overlaps indicate units with EBC tuning in multiple arenas. Numbers indicate total count out of 100 simulated units. BL, Baseline (1.25 m2); Circle,
circular; 2m, expansion (2 m2). g, Scatter plots of MRL for detected EBCs in each environment. Abbreviations are the same as in f. h, Changes to preferred orientation and distance in RV and
V1-RSC model EBC units between baseline and manipulation sessions. Rows are “baseline versus circle” (top) or “baseline versus 2 m” (bottom) comparisons. Left four plots, RV model with po-
lar plots depicting change to preferred orientation (DPref Orient. = PObaseline – POmanip) and histograms depicting change to preferred distance (DPref Dist. = PDbaseline – PDmanip). Radial and
y axes are the proportion of units with EBC-like tuning in both conditions. Negative values on the right histograms indicate receptive fields moving farther from the animal, vice versa for posi-
tive values. Right four plots, same as left plots but for the V1-RSC model.
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learning model explains how EBCs arise from visual input more
clearly and shows generalization to novel environments. In the
future, this framework can also be used to understand how other
visual input (e.g., landmarks, objects, etc.) affects the firing of
spatially coded neurons, as well as how other sensory input con-
tributes to the tuning properties of some neurons in the naviga-
tional system.

Comparison between experimental and model data
Although the model data indicate that both models can learn
EBCs similar to experimental ones and the population statistics
of orientation and distance coding resembles experimental data,
there are still some important differences between model and ex-
perimental data that can shed light on the mechanisms associ-
ated with EBC responses.

Experimental data show that the orientation distribution is
more skewed toward the back, while the distributions of model
data are more lateral (Fig. 5). There are many more behind-ani-
mal EBCs in the experimental study compared with the model
data when the FOV is 170° (Fig. 5), but we found that our model
can generate more behind-animal EBCs when the FOV is as nar-
row as 60° (Fig. 7), suggesting that the competition brought by
sparse coding promotes diverse EBC tunings solely based on vis-
ual input without any mnemonic component. The difference of
population responses among experimental data, RV model data,
and V1-RSC model data seems to indicate that a major source
of these differences is the extent to which the modeled visual
input corresponds to that in the visual system. Whether more

biophysically accurate simulated visual input could further
reduce these differences is discussed in Rat vision processing and
Differences between RV model and V1-RSC model.

Additionally, there is still a substantial difference in how cells
respond in the vicinity of corners of the environment. In simula-
tion, the allocentric rate maps of some learnt EBCs show overlap-
ping wall responses (see the bottom two examples in Fig. 4b and
examples in Extended Data Fig. 4-3), whereas the experimental
data seem to “cut off” the segments of overlapping response close
to the corner. Our models only use visual input, while the real
animal integrates a variety of different sensory modalities into
spatial coding. We infer that the integration of information from
different sensory modalities could be responsible for cutting off
the overlapping wall responses.

The percentage of EBCs for different datasets also differ, as
seen from Table 1. The overall percentage of EBCs was lower in
the experimental data than in both types of simulations. This
likely arises from the focus of the simulations on coding of static
visual input stimuli across a range of different positions and
directions in the environment. Although the cells created by this
focused simulation show striking similarity to real data, the RSC
is clearly involved in additional dimensions of behavior, such as
the learning of specific trajectories and associations with specific
landmarks. Previous recordings show that neurons in the RSC
code additional features, such as the position along a trajectory
through the environment (Alexander and Nitz, 2015, 2017; Mao
et al., 2018, 2020) and the relationship of landmarks to head
direction (Jacob et al., 2017; Lozano et al., 2017; Fischer et al.,

Figure 7. EBC preferred bearings as a function of FOV. a, Top row, distribution of preferred egocentric bearings for EBCs in the RV model as a function of width of FOV. Preferred bearings
move from forward to lateral facing as the visual field increases in width. Pink traces represent von Mises mixture model fits of preferred bearing distribution with mean angles depicted and
indicated on top left. Bottom row, Mean EBR maps across all EBCs identified for each simulation. Blue to yellow, zero to maximal activity. b, Same as in a, but for the V1-RSC model.
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2020). Human functional imaging also demonstrates coding of
position along a trajectory (Chrastil et al., 2015), as well as the
relationship of spatial landmarks to specific memories (Epstein
et al., 2007). The neuronal populations involved in these addi-
tional functions of RSC are not included in the model, which
could account for the EBCs making up a larger percentage of the
model neurons in the simulations.

Rat vision processing
Rats have very different vision from humans, in part because
their eyes are positioned on the side of their head, whereas
human’s eyes are facing front. Consequently, rats have a wide
visual field and a strong lateral vision. In this study, rat vision is
simulated by a camera with a 170° horizontal view and 110° ver-
tical view, except for the results in The width of visual field
affects the orientation distribution of learnt EBCs, wherein when
different horizontal FOVs are used, we found that the model can
generate more behind-animal EBCs with smaller FOV and the
orientation becomes more lateralized as the FOV increases.
Although the view angle of 170° is wider compared with human
vision, the simulated vision might not be as lateral as in real rats.
Because of the built-in limitations of the Panda3D game engine
used to simulate the visual input, we were unable to generate vis-
ual input at degrees more lateral than the 170 degree range used
here. Additionally, real rats have binocular vision instead of a
monocular vision simulated in this study. This will be investi-
gated in future studies, in which the rat vision will be mimicked
by simulating visual input using two laterally positioned cameras.
As a more biophysically accurate simulated visual input is used,
we infer that this could further reduce differences between model
and experimental data, including generating more behind-ani-
mal EBCs when the FOV is large.

Differences between RVmodel and V1-RSC model
Both the RV and V1-RSC models take the visual input and gen-
erate EBC responses using learning methods based on the princi-
ple of sparse coding. However, there are significant differences
between the two models. The RV model takes the raw image as
the input, while the V1-RSC model incorporates vision process-
ing similar to that of the brain that detects lines or edges in the
visual input. In other words, the RV model learns cells based on
the individual pixel intensities, while the V1-RSC model learns
cells based on the existence of visual features, such as lines or
edges. Because the environment consists of three black walls and
one white wall, this difference may result in the white wall affect-
ing the RV model more than the V1-RSC model. In particular,
this could explain why the learnt EBCs of the V1-RSC model
tend to be more omnidirectional in their firing for all four walls
compared with the RV model (see examples of both models in
Extended Data Figures 3-1, 3-2, 4-1 and 4-2), which may be
related to the role of RSC as the egocentric-allocentric “transfor-
mation circuit” proposed by Byrne et al. (2007) and Bicanski and
Burgess (2018) that transforms upstream egocentric spatial cells
(EBCs in this paper) into downstream allocentric spatial cells by
combining allocentric head direction information. Another dif-
ference lies in the percentage of learnt EBCs between two models,
where the V1-RSC model learns more EBCs (see Comparison
between experimental and model data). We infer that this differ-
ence also originates from the different visual input processing
conducted in the models. Geometries (lines or edges) seem to be
important for the EBC firing, so the ability to detect such features
in the V1-RSC model may help the model learn more EBCs. In
addition, the RV model shows more diverse tuning properties of

learnt EBC population than the V1-RSC model (Fig. 5), while
the V1-RSC model shows better generalization to novel envi-
ronments (Fig. 6), likely caused by the V1 preprocessing of the
model. Differences between the responses in the two models
also point to the effect that the processing of visual input con-
ducted in the early visual pathway (retina to primary visual
cortex) has on RSC cell responses (Lian et al., 2019, 2021).
Since the V1-RSC model is a better model of rat’s vision proc-
essing system, we infer that its model EBCs will be more simi-
lar to EBCs in the brain (see also Rat vision processing).
Furthermore, the model will better account for experimental
data as a more biophysically accurate simulated visual input
is used.

In conclusion, this study provides a framework for under-
standing how egocentric spatial maps in the navigational system
in the brain can arise from sparse coding of both raw visual input
and simulated V1 processing. The work shows that a learning
model with visual input can account for the properties of spatial
neurons (EBCs) in the RSC, suggesting that the visual system can
directly lead to the neural responses and properties in the naviga-
tional system. This may provide a framework to investigate how
other sensory modalities give rise to the functions of different
brain areas from the perspective of learning.
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