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Distinct codes for environment structure and
symmetry in postrhinal and retrosplenial
cortices

Patrick A. LaChance 1 & Michael E. Hasselmo 1

Complex sensory information arrives in the brain from an animal’s first-person
(‘egocentric’) perspective. However, animals can efficiently navigate as if
referencing map-like (‘allocentric’) representations. The postrhinal (POR) and
retrosplenial (RSC) cortices are thought tomediate between sensory input and
internal maps, combining egocentric representations of physical cues with
allocentric head direction (HD) information. Here we show that neurons in the
POR and RSC of female Long-Evans rats are tuned to distinct but com-
plementary aspects of local space. Egocentric bearing (EB) cells recorded in
square and L-shaped environments reveal that RSC cells encode local geo-
metric features, while POR cells encode a more global account of boundary
geometry. Additionally, POR HD cells can incorporate egocentric information
to fire in two opposite directions with two oppositely placed identical visual
landmarks, while only a subset of RSC HD cells possess this property.
Entorhinal grid and HD cells exhibit consistently allocentric spatial firing
properties. These results reveal significant regional differences in the neural
encoding of spatial reference frames.

Place-based learning and navigation require the translation of first-
person (‘egocentric’) sensory information into amap-like (‘allocentric’)
reference frame1–6. This process may require the brain to combine
information about the egocentric bearings and distances of physical
cues with information about an animal’s allocentric head direction
(HD; Fig. 1A, B)2,7–10, resulting in an allocentric location signal similar to
those exhibited by hippocampal place11 and entorhinal grid12 cells. Two
brain regions that receive strong sensory input13–16 and send extensive
outputs to the hippocampal formation17–20 are the postrhinal (POR)
and retrosplenial (RSC) cortices. Both regions contain neurons that
indicate an animal’s spatial orientation relative to the surrounding
environment in both egocentric10,21,22 and allocentric23,24 reference
frames. However, despite anatomical differences in sensory and spatial
inputs to each area13,15,16,25, it is unknownwhether POR andRSCneurons
differ in their encoding of environmental geometry and landmark
cues, and how these potential coding differences might impact
downstream allocentric representations such as the entorhinal grid
code. Answers to these fundamental questions are critical for

understanding how the brain distills a highly complex world into basis
functions that can be manipulated to guide navigation and behavior.

In this work, we use tetrode recordings from single neurons in the
POR and RSC of the same group of freely moving rats to demonstrate
distinctneuronal responses in eachbrain region to the spatial cues that
make up the local environment. Recordings in square and L-shaped
environments reveal that egocentrically tuned PORneurons are largely
sensitive to the global extent of boundary geometry, while RSC neu-
rons respond to local features such as flat edges and corners. Further,
recordings in square environments with one or two salient visual cues
reveal that POR HD cells strongly incorporate egocentric visual infor-
mation, firing in two opposite directions with two opposite cues,
whereas RSC contains two distinct populations of HD cells, only one of
which fires in two directions. In contrast, HD and grid cells recorded
from the medial entorhinal cortex (MEC) or parasubiculum (PaS)
maintain clear allocentric firing properties despite environmental
manipulations. The significant differences among these brain regions
provide insight intohowdifferent streamsof egocentric information in
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Fig. 1 | Distinct egocentric responses to environmental symmetry in POR
and RSC. A Top-down schematic illustrating the measurement of allocentric head
direction (relative to East) and egocentric bearing (relative to the environment
center). B Color code for mapping of degrees to head direction (HD) (left) and
compass for measuring egocentric bearing (right). C Nissl-stained sagittal section
(left) and coronal section (right) from one rat showing electrode tracks (red dotted
lines) through regions of interest. Histology from the five additional rats used in the
study is included inSupplementary Fig. 15.D Example shapeswithdifferent degrees
of rotational symmetry. Black dot represents the center-of-mass (centroid) of the
shape. E Predicted directional autocorrelation functions for EB cells that may
encode different degrees of rotational symmetry. Note that four-fold symmetry is

the most anticipated result for cells that encode local geometric features in a
square environment. F Directional spike plot for an example POR EB cell (left)
recorded in the square environment, alongwith its egocentric bearing tuning curve
(right). (G) HD tuning curve for the cell in (F), with autocorrelation function inset.
H HD x location correlation matrix for the cell in (F). I GLM-derived radial distance
function (left) and rotation function (right) for the cell in (F), with autocorrelation
function inset alongside the rotation function. J–M Same as (F–I) but for a simul-
taneously recorded RSC EB cell. Note the presence of strong four-fold symmetry
across all domains for the RSC EB cell but not the POR EB cell (except for radial
distance).
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POR and RSC may interact with and support purely allocentric signals
in connected regions such as MEC.

Rotational symmetry coding in a square environment
We recorded 283 POR neurons and 519 RSC neurons from the same
group of rats (n = 6; Fig. 1C) as they freely foraged for sugar pellets in a
square (120 × 120 cm) enclosure with a single polarizing cue (large
white card) placed along the south wall (Fig. 1A). We used cross-
validation with a generalized linearmodel (GLM)10,26 as well as a shuffle
distribution (see Methods) to classify 85 POR cells (30%) and 210 RSC
cells (40%) as encoding the egocentric bearing (EB) of the center or
boundaries of the environment (EB cells; Fig. 1A, B; Supplementary
Fig. 1A,B). POR EB cells tended to have broad tuning profiles10 (mean
MVL: 0.32), whereas RSC EB cells were somewhat more sharply tuned
(mean MVL: 0.40; Supplementary Fig. 1C). Many EB cells in both
regions were classified as conjunctively encoding at least one other
behavioral variable, including HD (POR: 60%, RSC: 33%), egocentric
distance of the environment center/boundaries (POR: 22%, RSC: 21%),
and linear speed (POR: 24%, RSC: 24%) or combinations of these vari-
ables as shown in Supplementary Fig. 1A,B. Strength of tuning to each
of these variables varied along a continuum from non-tuned to
strongly tuned, suggesting that significantly tuned cells may not con-
stitute distinct ‘cell types’ despite showing consistent responses to a
given variable (Supplementary Fig. 2).

Previous studies recording separately from these regions in
square environments have suggested that POR EB cells are sensitive to
the global geometry of the surrounding environment (equivalent to
coding of the environment center)10, while RSC EB cells are more
sensitive to local geometric features such as the edges and corners of
boundaries21,27. However, these two populations have not been directly
compared in the same animals. We leveraged the inherent four-fold
rotational symmetry of the local geometric features (i.e. walls and
corners) in a square environment (Fig. 1D) to assess these sensitivities
in each region, and contrast this with global coding of the environ-
ment’s extended boundary geometry.

Four-fold symmetry of spatial firing was assessed across three
domains (see Methods, Four-fold symmetry analyses): 1) four-fold
symmetry in each cell’s HD tuning curve (Fig. 1G, K; Fig. 2A, B; Sup-
plementary Fig. 3), such that EB cells tuned to local geometric features
of the square environment walls should fire preferentially in four dis-
crete head directions; 2) four-fold symmetry in the correlation struc-
ture of location preferences across different head directions
(computed by creating an array of firing rate maps for periods when
the animal faced different HDs and calculating pairwise correlations
between the rate maps; Fig. 1H, L; Fig. 2C, D; Supplementary Fig. 3),
such that each of the four encoded head directions should be asso-
ciated with a discrete firing location; and 3) four-fold radial symmetry
about the center of the environment (Fig. 1I, M; Fig. 2E, F; Supple-
mentary Fig. 4), such that the four discrete firing fields related to local
features suchaswalls and corners shouldbe located at 90° offsetswith
respect to the environment center. Symmetry was assessed in each
domain by computing an autocorrelation function (Fig. 1E), which was
used to compute a symmetry score (similar to a grid score12; see
Methods). In addition to the expected four-fold symmetry, we also
computed scores for one-fold, two-fold, and three-fold symmetry
(Fig. 1E). While we expected RSC EB cells to display strong four-fold
symmetry related to local geometric features, we expected POR EB
cells to lack strong periodic symmetry, which may manifest in a larger
population of cells showing one-fold symmetry (i.e., any deviation
from circular symmetry would be non-periodic).

As expected, RSC EB cells tended to show strong four-fold sym-
metry across all domains (Fig. 1J–M, 2A–F; Supplementary Fig. 5), while
POR EB cells did not (Fig. 1F–I, 2A–F; Supplementary Fig. 6). We
computed an aggregate score, which combined the symmetry scores
across the three domains, and considered EB cells with aggregate

scores that exceeded the 95th percentile of a shuffle distribution to be
‘strongly symmetrical’. For RSC EB cells, 109/210 (52%) of RSC EB cells
crossed this threshold for four-fold symmetry, while only 6/85 (7%) of
POR EB cells did (Fig. 2G). In contrast, while only 8/210 (4%) of RSC EB
cells showed significant one-fold symmetry, 22/85 (26%) of POR cells
did (Fig. 2G). Neither region exhibited strong evidence for two-fold
(POR: 8%, RSC: 7%) or three-fold (POR: 2%, RSC: <1%) symmetry. While
48% of RSC EB cells did not pass the threshold for strong four-fold
symmetry, those non-symmetrical RSC cells still had significantly
higher four-fold symmetry scores than the full POR EB cell population
(Fig. 2H), suggesting that even RSC cells with subthreshold four-fold
symmetry scores are distinct from POR cells in their encoding of
environmental symmetry. Overall, RSC EB cells tend to exhibit strong
four-fold radial symmetry in a square environment, indicative of cod-
ing for local geometric features such as walls and corners, while POR
EB cells tend to lack periodic symmetry, indicative of coding for global
properties of environmental geometry.

Local vs. global coding in an L-shaped environment
To further put local and global geometric cues in conflict, we recorded
EB cells (46 POR, 177 RSC) as animals (n = 6) foraged in both the
120 × 120 cm square environment, and the same environment with
additional walls inserted to transform it into an L-shape (Fig. 3A). To
assess potential novelty effects of the inserted walls, two of the six
animals had been extensively habituated to the L-shape but not the
square (so they received the following set of sessions: L-shape 1,
Square, L-shape 2), while the other four had been extensively habi-
tuated to the square but not the L-shape (Square 1, L-shape, Square 2).

We used a previously developed GLM framework28 to distinguish
between local and global egocentric tuning in both the square and
L-shape (Fig. 3B), with a globality index (GI) indicatingwhether EB cells
weremore strongly tuned to the environment centroid (global tuning;
GI > 0) or nearby walls (local tuning; GI < 0). As these representations
are quite similar in a square environment21,28,29, we looked specifically
at the change in GI from the square to the L-shape. In agreement with
the symmetry analyses, POR EB cells tended to shift toward higher GI
values (more global; Fig. 3C, D; Supplementary Fig. 8), while RSC EB
cells shifted toward lower GI values (more local; Supplementary Fig. 7).
The same pattern was observed for animals extensively habituated to
either the square or L-shape (Supplementary Fig. 9), suggesting that
novelty did not strongly impact the egocentric tuning preferences in
either brain region.

In some animals (n = 3; all habituated to square), tetrodes were
advanced beyond the ventral POR border and grid cells (n = 64) were
recorded from the adjacent MEC or PaS in both the square and
L-shaped environments (Fig. 3E; Supplementary Fig. 10). To compare
EB cell responses to the L-shape with those of grid cells in these
downstreamareas, we assessed the change infiring rate for eachgroup
of cells in the vicinity of the inserted walls (within 20 cm). Both POR
and RSC EB cells showed a statistically significant increase in firing rate
near thewalls (but not away from thewalls), while grid cells showed no
overall change in firing rate (Fig. 3F, G), suggesting distinct mechan-
isms underlying EB cell and grid cell encoding of environmental geo-
metry. Interestingly, while the RSC increase in firing rate was observed
regardless of extensive habituation to either the square or L-shape,
only the POR EB cells of animals initially habituated to the square (but
not those habituated to the L-shape) showed a significant change
(Fig. 3H, I), suggesting that the increased firing rate of POR EB cells
near the inserted walls may be at least partially a result of novelty.

Incorporation of visual landmarks into the HD signal
The formation of allocentric spatial representations likely requires the
integrationof egocentric representationswith anallocentricHD signal.
Cells with HD correlates have been reported in all brain regions
investigated in the current study23,24,30. Of cells recorded in the square
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environment, HD cells included 97/283 POR cells (34%), 122/512 RSC
cells (24%), and 65/223 MEC cells (29%), meaning that they tended to
fire most when the animal faced one particular HD (preferred firing
direction; PFD; Fig. 1A; Fig. 4A; Supplementary Fig. 1). POR HD cells
tended to have broad tuning profiles (meanMVL: 0.32), while RSC and
MEC/PaS HD cells resembled more ‘classic’ HD units with narrow
tuning curves31 (RSC mean MVL: 0.49; MEC mean MVL: 0.59;

Supplementary Fig. 2, 11). PORHD cells could be further separated into
two categories, depending on their PFDs. Those with PFDs oriented
toward the familiar visual landmark tended to have a relatively sharp
peak in their tuning curves, while those with PFDs oriented away from
the landmark had relatively sharp troughs (distinguished by compar-
ing the R2 of upright vs. inverted von Mises curves fit to the tuning
curves23; seeMethods; Supplementary Fig. 11D, E). This result suggests
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that POR HD cells strongly incorporate egocentric information
regarding visual landmarks. In contrast, this distinction was not pre-
sent for RSCorMEC/PaSHD cells, which always exhibited strong peaks
regardless of whether the PFD was oriented toward or away from the
landmark (Supplementary Fig. 11E).

To further probe the incorporation of egocentric landmark sig-
nals into the HD correlates of each region, for the four animals habi-
tuated to the square environment, we duplicated a familiar landmark
(cue A, a white cue card along the south wall) along the opposite wall
(cue B; session order: A1, AB, A2; Fig. 4B; Supplementary Fig. 12). In this
AB condition with two cues, POR HD cells (n = 34) became strongly
bidirectionally tuned (Fig. 4C, D; Fig. 5A), although their firing rate
modulation by cue B was consistently smaller in magnitude than their
modulation by cue A (Fig. 4E). Interestingly, POR HD cells remained
slightly bidirectional in the A2 session, though to a lesser extent than
the AB session (Fig. 4D). Like POR, the overall population of RSC HD
cells (n = 37) became significantly bidirectional in the AB session, and
displayed a similar effect to the POR cells wherein they remained
slightly bidirectional in the A2 session, though to a lesser extent than
the AB session (Fig. 4F, G; Fig. 5B). As with POR, RSC HD cells were
more strongly modulated by the more familiar cue A than cue B in
the AB session (Fig. 4H). However, unlike in POR and RSC, HD cells in
MEC/PaS (n = 30) did not become bidirectional in the AB session
(Fig. 4I, J; Fig. 5C).

Despite the population shift toward bidirectionality, RSC HD cells
appeared to be segregated into a unidirectional subpopulation and a
bidirectional subpopulation (Fig. 4G; Fig. 5B). We found we could
predict whichRSC cells would becomebidirectionally tuned according
to the width of their extracellular waveforms, such that cells with
narrow waveforms (<200-μs peak-trough latency) did not become
bidirectional, while those with broader waveforms became bidirec-
tional to varying degrees (similar to previous findings in multi-
compartment environments32; Fig. 5D). Looking at the full population
of HD cells recorded in the square session, we found that cells with
narrowwaveforms tended to have higherMVLs and peak firing rates in
RSC (MVLs: narrow mean = 0.75, wide mean = 0.39; peak firing rates:
narrow mean = 17.41Hz, wide mean = 6.26Hz) and MEC/PaS (MVLs:
narrowmean = 0.76, widemean = 0.45; peak firing rates: narrowmean
= 6.99Hz, wide mean = 3.55Hz), but not POR (Supplementary Fig. 13).
This result suggests that cells with narrow waveforms may be mor-
phologically distinct and fire more similarly to ‘classic’ HD cells31.

In addition to HD cells, we also recorded 61 MEC/PaS grid cells in
the visual landmark experiment, which did not change their firing
patterns (Supplementary Fig. 14), again suggesting distinct mechan-
isms underlying POR/RSC HD signals and downstream MEC/PaS grid
cell representations.

Discussion
The results of this study indicate distinct but complementary ego-
centric representations of environmental structure and symmetry
in POR and RSC, which are further distinct from the largely allo-
centric firing properties of downstreamMEC/PaS cells. RSC EB cells
are strongly influenced by local geometric features, while POR EB

cells largely appear to reference their firing to the global structure
of the environment (Fig. 6A–F). The more global sense of space in
POR may be particularly suited to drive global allocentric spatial
firing in the downstream MEC/PaS, which was largely unaffected by
changes in local geometric features in our data (though grid cells
can be impacted by environmental geometry in other ways33,34).
However, in contrast with HD and grid cells in MEC/PaS, POR HD
cells were strongly modulated by duplication of a visual landmark
(becoming bidirectional), while RSC HD cells appeared to fall into
two discrete populations that either did or did not respond to the
duplicated landmark, whereas MEC HD cells did not show bidirec-
tional firing (Fig. 6G–I) suggesting a complex transformation
between upstream egocentric and downstream allocentric spatial
representations.

POR has been previously described as representing the sur-
rounding environment in terms of global shape parameters, such as
the centroid and principal axis (or slope) of the environment2,10. In this
framework, the centroid is represented by POR EB cells (sometimes
called ‘center-bearing cells’) and involves computing a vector average
of the distances andbearings of all physical cues in the environment2,10,
while the principal axis is represented by HD cells and appears to give
an estimate of the animal’s HD based on the global constellation of
stable landmarks2,10,35. Duplicating a familiar landmark along the
opposite wall introduces uncertainty into that estimate, causing the
HDcells tofire in twoopposite directions23. However,while the current
study reinforces the notion that that POR EB cells are sensitive to a
more global account of environmental geometry than RSC EB cells,
future experiments in more complex environments (e.g., trapezoid or
asymmetric triangle) will be necessary to determine if POR EB cells are
truly computing the environment centroid or if they more closely
follow some other global boundary-encoding framework. For exam-
ple, in a V-shaped or similar environment where the centroid lies
outside the navigable space, POR EB cells may encode the medial axis
of the shape36 instead of representing a single centroid, or could
potentially display more local geometric coding than that observed in
square and L-shaped environments. It has been previously demon-
strated that POR EB cells can vary in their tuning to local vs. global
aspects of environmental geometry28, so different cells may exhibit
distinct responses.

In contrast to the more global egocentric code in POR, RSC has
been described as representing specific local geometric features (such
as walls and corners21,27) and specific visual landmarks32,37,38, in addition
to displaying periodic activation patterns in both open field21 and
track39 environments. In agreement with this framework, RSC EB cells
are highly sensitive to the inherent rotational symmetry of the local
features of a square environment, and one population of RSC HD cells
is sensitive to the duplication of a familiar visual landmark. The dif-
ferences between global shape and local feature representations in
POR and RSC, respectively, mirror decades of behavioral studies that
provide evidence for both global and local accounts of spatial
processing36,40,41. The current study indicates that these local and glo-
bal reference frames areboth present in the rodent brain, and that they
are represented to different degrees in separate brain regions.

Fig. 2 | Population coding of rotational symmetry. A Normalized HD tuning
curves for all POR egocentric bearing (EB) cells (top left) and RSC EB cells (right)
recorded in the square environment, shifted for each cell such that the maximum
firing rate lies at 0° (‘shifted head direction’). Bottom left, mean tuning curve for
each brain area.BOne-fold, two-fold, three-fold, and four-fold symmetry scores for
the HD tuning curves of all RSC (N = 210) and POR EB (N = 85) cells. Red lines
indicate the 95th percentile of a shuffle distribution. C Mean HD x location corre-
lation matrix for all POR EB cells (left; N = 85) and RSC EB cells (right; N = 210)
recorded in the square environment. D Same as (B) but based on HD x location
correlation matrices (N = 85 POR cells, 210 RSC cells). E Normalized detrended
GLM-derived rotation functions for all POR EB cells (top left; N = 85) and RSC EB

cells (right; N = 210) recorded in the square environment. Bottom left, mean
detrended rotation function for each brain area. F Same as (B) but based on GLM-
derived rotation functions (N = 85 POR cells, 210 RSC cells).G Aggregate symmetry
scores basedonsumming individual scores from (B,D,F) (N = 85PORcells, 210RSC
cells).HHistogram of four-fold symmetry scores for RSC and POR EB cells that did
not pass threshold for significant four-fold symmetry (N = 79 POR cells, 101 RSC
cells). Note that the RSCpopulation is still significantly rightward-shifted compared
to the PORpopulation (dark purple color shows overlap between the distributions;
two-sided Wilcoxon rank-sum test, Z = 5.41, P = 6.14e-8). Source data are provided
as a Source Data file.
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Differences between RSC and POR cells may result from their
disparate inputs. Visual inputs to POR largely originate from superior
colliculus (SC; via the lateral posterior thalamic nucleus (LP))13,16, which
is an evolutionarily ancient visual structure that has been linked to a
number of ethologically relevant behaviors42,43. Recently, the rodent
SC has been suggested to process optic flow stimuli associated with
forward self-motion44. Optic flow along the boundaries of the envir-
onmentmaybe integrated over time to produce an egocentric bearing

signal in POR that can drive the animal to the center of the environ-
ment, similar to the honeybee’s centering response45–47. Activity in
brain regions that process optic flow stimuli has been shown to cor-
relate with navigational performance in humans48. POR also receives
afferentation from the HD cell-rich anterior thalamus (ATN)49,50,
although this input isminor compared to LP13. In contrast, RSC appears
to receive strong convergent inputs from primary visual cortex (V1)
and the ATN15,25,51, which may explain both the ‘classic’ HD tuning31 in
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RSC as well as the attraction of RSC EB cells to specific local geometric
features such as the edges and corners of boundaries, which may be
conveyed by edge detectors in V152. RSC egocentric boundary cells
have been modeled in this way previously53.

POR and RSC both send projections to the entorhinal cortex
and hippocampus17–20. POR (as with its human homolog, the para-
hippocampal cortex; PHC) is known to send particularly dense
inputs to MEC54,55. Grid cells in MEC are thought to embody a global
allocentric distance code56 that is mostly unaffected by local geo-
metric features, and this code may be best supported by inputs
from POR that reflect the animal’s position with respect to the
global structure of the environment. Likewise, the main hippo-
campal structure targeted by POR is the subiculum20, whose cells
are known to represent allocentric space with similar firing patterns
in environments with different local geometric structures57. As a
complement to these global POR inputs, the differential RSC
representation of local geometric features may be useful for
anchoring downstream allocentric spatial representations to parti-
cular physical cues. This principle has been previously used to
model the formation of grid cell firing patterns based on inputs
from RSC EB cells that code for local environmental features58.
Further, the communication between POR and RSC may create an
efficient representation of environmental geometry that relates
specific local geometric features to each other by computing their
position with respect to the environment centroid59.

In humans, damage to both PHC and RSC results in topographical
disorientation60–62, which could result fromdisrupting the associations
between egocentric and allocentric directional processing explored in
the current study. In particular, RSC damage has been associated with
deficits in orienting with respect to specific known landmarks62, while
PHC damage has largely resulted in patients being unable to orient
themselves in new environments61. These findings align with our cur-
rent results that RSC cells are sensitive to specific geometric features
and landmarks that may be helpful for orienting in familiar environ-
ments, while POR cells compute a more general sense of surrounding
space that may be more useful for orienting in new environments
where no familiar landmarks have been established.

Methods
Subjects
Subjects were 6 female Long-Evans rats (Charles River Laboratories)
aged 4-7 months and weighing 265–335 g prior to surgery. Rats were
individually housed in Plexiglas cages and maintained on a 12 h light/
dark cycle. Prior to surgery, food and water were provided ad libitum.
All experimental procedures involving the rats were performed in
compliance with institutional standards as set forth by the National
Institutes of Health Guide for the Care and Use of Laboratory Animals

and approved by the Boston University Institutional Animal Care and
Use Committee.

Electrode construction
Each animal was implanted with two moveable microdrives that each
consisted of a bundle of eight tetrodes. Tetrodes were constructed by
twisting together four strands of 17-μmnichromewire (Alleima), which
were subsequently threaded through a single 26-gauge piece of poly-
imide tubing affixed to the shuttle of a 3D-printed microdrive63 (print
designs taken from https://github.com/buzsakilab/3d_print_designs)
which could be advanced in the dorsal-ventral plane by turning a single
00-90 screw. The end of each wire was connected to one contact of a
32-channel electrode interface board (EIB; Neuralynx).

Electrode implantation
Animals were anesthetized with isoflurane. They were then placed into
a stereotaxic frame, and an incision was made in the scalp to expose
the skull. Two craniotomies were drilled: one above the retrosplenial
cortex (6mm posterior and 0.5mm lateral to bregma), and another
above the postrhinal cortex (1.9mm posterior and 4.6mm lateral to
lambda). Anchor screws were also drilled into the skull and secured
with a layer of metabond. One anchor screw placed above the cere-
bellumor frontal cortexwas used as a ground screw. The retrosplenial-
targeting tetrodebundlewas implanted6mmposterior to bregmaand
immediately lateral to the midline sinus, and just ventral enough for
the tetrode tips to penetrate the cortical surface (~0.5mm). This
bundle was also given a 10° angle in the medial-lateral plane, such that
the tetrode tips pointedmedially. The postrhinal-targeting bundlewas
implanted 4.6mm lateral to lambda, 0.40mm anterior of the trans-
verse sinus, and ~0.5mm ventral of the cortical surface. This bundle
was given a 10° angle in the anterior-posterior plane, such that tetrode
tips were pointed forward. Both drive bodies were secured to the skull
using dental acrylic, and were surrounded by a 3D-printed headcap63

which housed the EIBs and was also secured to the skull using dental
acrylic.

Recovery and behavioral training
Rats were allowed 7 days to recover from surgery, after which they
were placed on food restriction such that their body weight reached
85–90% of their pre-surgical weight. During this time, the rats were
also trained to forage for randomly scattered sucrose pellets (20mg,
chocolate flavor) within a 120 × 120 cm box with a black floor and
60 cm high black walls that was surrounded on all sides by a floor-to-
ceiling circular black curtain. For two of the rats, additional walls were
placed into the environment to block the northeast quadrant, such
that those rats were habituated to an L-shaped environment instead of
the square environment. The box itself was featureless except for a

Fig. 3 | Distinct encoding of global vs. local geometry by POR and RSC EB cells.
A Top-down schematic showing the transformation of the square into an L-shape
by inserting walls. B Top-down schematic of the frameworks used to model cell
firing based on a vector average of all geometric features (global/centroid model,
left) or only features within a certain distance of the animal (local/nearby walls
model, right). CDirectional spike plots (with color code for head direction (HD) on
right) for a simultaneously recorded POR egocentric bearing (EB) cell and RSC EB
cell pair in both square and L-shape sessions (same cells from Fig. 1F–M).D Plot of
globality indices (GI) for all POR (N = 46 cells) and RSC (N = 177 cells) EB cells
recorded in square and L-shaped environments (left), along with the change in GI
between the square and L-shape (right). Note that POR EB cells tend toward global
tuning, while RSC EB cells tend toward local tuning (two-sided Wilcoxon signed-
rank tests, POR:W = 289, P = 5.33e-3; RSC: W = 2986, P = 7.84e-13). * indicates
P <0.05. E Path and spike plot for an MEC/PaS grid cell recorded in square and
L-shapedenvironments.FAllocentric locationfiring ratemaps showing the average
change in normalized firing rates between the square and L-shape for POR EB cells
(left), RSC EB cells (middle), and MEC/PaS grid cells (right). G Change in firing rate

for individual cells (POR EB cells (N = 46), RSC EB cells (N = 177), MEC/PaS grid cells
(N = 64)) between the square and L-shape near (<20 cm) or far from (> 20 cm) the
inserted walls. Note that POR (two-sided Wilcoxon signed-rank test, W = 273,
P = 2.92e-3) and RSC (W = 3299, P = 2.01e-11) EB cells, but notMEC/PaS grid cells (all
remaining comparisons P >0.05), show increased firing near the inserted walls. *
indicates P <0.05. H Allocentric location rate maps showing the change in nor-
malizedfiring rate for POREB cells (left) andRSCEBcells (right) between the square
and L-shape, separated into animals initially trained in either the square or L-shape.
I Change in normalized firing rate near or far from the inserted walls for POR and
RSC EB cells of animals trained in either the square (left;N = 33 POR cells, two-sided
Wilcoxon signed-rank test, near walls: W = 118, P = 2.92e-3; away from walls:
P >0.05; N = 89RSCcells, nearwalls:W = 856,P = 2.72e-6; away fromwalls: P >0.05)
or L-shape (right; N = 13 POR cells, two-sidedWilcoxon signed-rank test, near walls:
P >0.05; away fromwalls: P >0.05;N = 88RSC cells, near walls:W = 804, P = 1.57e-6;
away fromwalls: P >0.05). Note that POR EB cells do not show increased firing near
the inserted walls for animals trained in the L-shape. * indicates P <0.05. Source
data are provided as a Source Data file.
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single white cardboard sheet (cue A) placed along the south wall. The
cue card was 50 cm in height and had a width of 72 cm, such that it
covered 60% of center of the horizontal extent of the wall. Neural
recordings began once the animals started showing uniform coverage
(>80%) of the entire arena.

Baseline recording sessions
Over weeks or months, tetrodes were ‘screened’ for units that dis-
playedwell-isolatedwaveforms as the animals foraged for sugarpellets
in the arena. Electrical signals were pre-amplified using unit-gain
operational amplifiers on an HS-36-LED headstage and sent to a Digital

Lynx SX acquisition system (Neuralynx). Signals from each tetrode
wire were then differentially referenced to a relatively quiet, low-noise
channel from a separate tetrode and bandpass filtered (600Hz to
6 kHz) using Cheetah acquisition software (Neuralynx). If signals on a
given tetrode exceeded a pre-defined amplitude threshold (typically
30 to 50 μV), they were time-stamped and digitized at 32 kHz for 1ms.
The headstage was also equipped with red and green light-emitting
diodes (LEDs) spaced approximately 6 cm apart over the head and
back of the animal, respectively. A color video camera positioned over
the arena captured video frames with a sampling rate of 30Hz, and
these were timestamped so they could be matched to the neural data.

Fig. 4 | Distinct HD cell responses to visual landmarks. A Directional spike plots
for example head direction (HD) cells recorded in the square environment from
POR (left; N = 34 cells), RSC (middle; N = 37 cells), and MEC/PaS (right; N = 30 cells).
B Top-down schematic illustrating the three sessions of the AB experiment.
CNormalized HD tuning curves for POR HD cells across all three sessions of the AB
experiment. D Change in bidirectionality for POR HD cells between the A1 session
and both the AB and A2 sessions (two-sided Wilcoxon signed-rank test, AB vs. A1:
W = 1, P = 2.33e-10; A1 vs. A2: W = 118, P = 1.57e-3; AB vs. A2, W = 9, P = 3.84e-9). *

indicates P <0.05. E Comparison of the degree of firing rate modulation attributed
to cue A or cue B for all POR HD cells recorded in the two-cue experiment (two-
sided Wilcoxon signed-rank test, W = 49, P = 3.53e-5). F–H Same as (C–E) but for
RSC HD cells (two-sided Wilcoxon signed-rank tests, bidirectionality: A1 vs. AB,
W = 111, P = 1.41e-4; A1 vs. A2, W = 187, P =0.012; AB vs. A2, W = 171, P = 5.62e-3;
modulation index:W = 3, P = 7.28e-11). I–K Same as (C–E) but for MEC/PaS HD cells
(two-sidedWilcoxon signed-rank test,W = 207, P =0.62). Source data are provided
as a Source Data file.
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Videos were further analyzed using DeepLabCut64 to obtain an accu-
rate estimate of the LED positions. If well-isolated waveforms were
visually apparent, a 20min baseline recording in the 120 cm square
box (for 4 animals) or a 15min baseline recording in the L-shaped
environment (for 2 animals) tookplace. Thedifference inbaseline time
corresponded to the difference in area of the environment, so
that time per unit area was constant. Otherwise, electrodes
were advanced ~50 to 100 μmand screened again at least 2 hours later
or the next day.

Spike sorting
Spike sorting was conducted offline, and began by automatically
clustering the collected spikes for a recording session using the
automated clustering programKilosort65. If cells were recorded across
multiple session in a day, automatic sorting was performed on a

merged dataset to ensure cluster continuity, after which the sessions
were separated again for manual curation and analysis. The manual
step involved visualizing waveform features such as peak, valley,
height, width, and principal components to visualize the character-
istics of individual spikes across multiple tetrode wire as a 3D scatter
plot (SpikeSort3D, Neuralynx). While not always required, adjustment
of automatically sorted clusters was performed by either merging
clusters or drawing a polygon around the visually apparent boundaries
of each cluster. Single-unit isolation was assessed using metrics
including L-ratio and isolation distance, as well as assessing temporal
autocorrelograms for the presence of a refractory period. As long as
tetrodes were advanced between recording sessions, cells recorded
across days were treated as independent units. Otherwise, the
recording session with the larger number of clusters was used for
baseline analyses.

Fig. 5 | Extracellular waveforms predict HD cell bidirectional symmetry in RSC.
AHDtuning curves for four example PORheaddirection (HD) cells recorded across
all three sessions of the AB experiment. Average extracellular waveform for each
cell is inset into each plot.B Same as (A) but for RSCHD cells. C Same as (A) but for
MEC/PaS HD cells. D Comparison of extracellular waveform width vs. change in

bidirectionality in the AB session for POR (left; N = 34), RSC (middle; N = 37), and
MEC/PaS (right; N = 30) HD cells. E Path and spike plots for two example grid cells
recorded across all three sessions of the AB experiment, which did not change their
firing properties.
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Histology
Once recordings were complete, animals were deeply anesthetized
with sodium pentobarbital, and small marking lesions were made at
the tetrode tips by passing a small anodal current (20μA, 7–10 s)
through one active wire from each tetrode. Animals were then

intracardially perfused with saline followed by 10% formalin solution,
after which the brains were removed from the skull and postfixed in
10% formalin for at least 24 h. The brains were then transferred to 30%
sucrose solution for at least 24 h, after which they were blocked such
that the posterior portion of the brain could be sliced sagittally (for

Fig. 6 | Summary of results. A Directional spike plots for two EB cells simulta-
neously recorded from POR and RSC. B Schematic illustrations of the three
domainsbywhichwe assessed rotational symmetryof EBcellfiring, specifically as it
relates to four-fold symmetry. C Four-fold symmetry scores for the full POR and
RSC EB cell population based on the three symmetry domains illustrated in (B)
(N = 210 RSC cells, 85 POR cells).D Schematic illustration of models used to assess
global vs. local geometric processing in an L-shaped environment. c = environment
centroid. E Directional spike plots for the two cells from (A) recorded in an
L-shaped environment. F Change in globality index between the square and

L-shaped environments for the full POR (N = 46) and RSC (N = 177) EB cell popula-
tion, demonstrating that POR cells shift toward global coding while RSC cells shift
toward local coding. * indicates P <0.05 for a two-sidedWilcoxon signed-rank test.
G Schematic illustration of the cue duplication paradigm used to test coding of
bidirectional symmetry by HD cells. H Example tuning curves for POR, RSC, and
MEC/PaS HD cells recorded in the cue duplication experiment. I Degree of bidir-
ectionality exhibited by POR, RSC, andMEC/PaS cells in the AB condition compared
to the A1 condition.
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POR andMEC/PaS placement) and the anterior portion could be sliced
coronally (for RSC placement). The brains were frozen and sliced into
40-μm sections using a cryostat, with sections mounted onto glass
microscope slides and subsequently stained with cresyl violet. Loca-
tions of individual cells were determined bymeasuring backward from
the most ventral portion of the marking lesions or electrode tracks (if
lesions were not visible; Supplementary Fig. 15). Delineations of para-
hippocampal regions were drawn mainly from66,67.

Environmental geometry manipulation recording sessions
On somedays, particularly if EB cells or grid cells were suspected in the
initial baseline recording session, cells were recorded during a sub-
sequent session where the boundary geometry was changed. For ani-
mals trained in the square (4 rats) this involved placing additionalwalls
into the environment to transform it into an L-shape for a 15min
recording session. This L-shape session was followed by a final session
in the square environment for 20min (session order: Square 1, L-shape,
Square 2). For animals trained in the L-shape (2 rats), the second ses-
sionwas one inwhich the insertedwalls were removed, transforming it
into a square arena for a 20min recording session. This square session
was followed by reinserting the walls for a final 15 min L-shape session
(session order: L-shape 1, Square, L-shape 2). Animals were removed
from the recording environment between sessions and placed either
into their home cage or a cardboard box outside the curtains while the
environment was manipulated by the experimenter. The floor of the
enclosurewas alsowiped downbetween sessions using veterinary-safe
disinfectant, to prevent buildup of tactile and odor cues.

Visual cue manipulation recording sessions
For the four animals initially habituated to the square environment, on
some days, especially whenHD cells or grid cells were suspected in the
initial baseline recording session, cells were recorded in a subsequent
20min recording session where a second identical white cardboard
sheet was placed along the north wall of the environment (cue B; AB
session). This session was followed by a final 20min recording session
where only cue A was present (session order: A1, AB, A2). As with the
geometry manipulation sessions, animals were removed from the
recording environment between sessions, and the floor was wiped
down to prevent buildup of uncontrolled local cues.

Initial cell classifications with a generalized linear model
Cells were classified as encoding up to four behavioral variables using
10-fold cross-validation with a Poisson generalized linear model
(GLM)10,26. Those variables were: allocentric HD, egocentric bearing of
the environment center, egocentric distance of the environment cen-
ter, and linear speed. For each model, the firing rate vector r for one
cell across the full recording session was modeled as follows:

r = exp
X

i

XT
i βi

 !
ð1Þ

where X is a matrix containing animal state vectors for a single beha-
vioral variable over time points T, β represents the parameter vector
for that behavioral variable (akin to a tuning curve), and i indexes
across behavioral variables included in the model. The parameter
vectors were optimized by maximizing the log-likelihood l of the real
spike train n given the estimated rate vector r across time points t:

l =
X

t

nt log rt
� �� rt � log nt !

� �
ð2Þ

A small smoothing penalty, P, was added to the objective function
to avoid artifacts and overfitting, which penalized differences between

adjacent bins of each parameter vector:

P =
X

i

S
X

j

1
2
� ðβi,j + 1 � βi,jÞ2 ð3Þ

Here, S is a smoothing hyperparameter (set to 20 for all variables), i
indexes over variables, and j indexes over response parameters for a
given variable. Response parameters were estimated by minimizing
(P – l) using SciPy’s optimize.minimize function. Thirty bins were used
for center bearing and allocentric head direction parameter vectors,
and ten bins were used for center distance and linear speed.

Data for a session was split into training (9/10 of the session) and
test (1/10 of the session) data (k = 10 folds). Parameter vectors were
computed by minimizing the objective function on the training data
using the full model with all four variables, in order to reduce potential
correlative artifacts between independent variables68. Log-likelihood
values for all possible variable combinations were computed. This
procedure was repeated until all parts of the data had been used as
test data.

Model selection followed a forward selection procedure26. Briefly,
the log-likelihood values from the best two-variable model were
compared to those from the best one-variable model. If the two-
variablemodel showed significant improvement from the one-variable
model (using a one-sided Wilcoxon signed-rank test), then the best
three-variable model was compared to the two-variable model, and so
on. If themore complexmodel was not significantly better, the simpler
model was chosen. If the chosenmodel performed significantly better
than a model that only included the cell’s mean firing rate, the chosen
model was used as the cell’s classification. Otherwise, the cell was
marked ‘unclassified’.

Local vs. global GLM frameworks
To determine the response of EB cells to local vs. global geometry, we
created a model using the Poisson GLM that took into consideration
the distance and bearing of the two walls closest to the animal at any
given point during the recording session (discussed in detail in ref.28).
We first calculated the egocentric distance and egocentric bearing of
the closest point along each of the two closest walls. For each wall, we
then created two animal state vectors Xbearingj

and Xdistj
, where j

indicates measurements made relative to the jth closest wall, that
specified thebearing anddistanceof thatwall at every timepoint in the
session. As with the classification GLM, 30 bins for bearing and 10 bins
for distance were used. HD and linear speed were also included in the
model. We then solved for the optimal parameter vectors βbearing and
βdist (along with HD and speed parameters) by optimizing the GLM as
noted above, this time modeling the cell’s firing rate as:

r =
X

j

ðexpðXT
distj

βdistÞ � expðXT
bearingj

βbearingÞÞ � exp
X

i

XT
i βi

 !
ð4Þ

such that the cell’s response to the bearing of each wall is scaled by its
response to the distance of each wall and then summed before being
multiplied by the responses to the other variables (HD and speed;
indexed by i). The centroidmodel for each cell was created in the same
way as the classification GLM, but without the smoothing component,
estimating parameters for center-bearing, center-distance, HD, and
speed. Because both two-wall and centroid models involved estimat-
ing the samenumber of parameters, we could compare thembased on
log-likelihood alone without imposing penalties on free parameters.

To test the explanatory power of each model, we trained and
tested the models using data from the full session. This procedure
involved the computation of a Globality Index (GI), which assesses the
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relative model fits for the two-wall and centroid models:

GI =
lcenter � ltwo�wall

lcenter + ltwo�wall
ð5Þ

where lcenter and ltwo�wall represent the log-likelihood increase for each
model (in bits/spike) compared to amodel that only contains the cell’s
mean firing rate. GI can theoretically range from -1 (only wall-tuned) to
+1 (only center-tuned), although due to the collinearity of centroid and
wall variables, they tend to be closer to 0.

Four-fold symmetry analyses
Coding of the inherent four-fold symmetryof a square environment by
EB cells was assessed using the following measures:
1. Four-fold symmetry of theHD tuning curve. EB cells sometimes

display HD tuning curves with four discrete peaks spaced 90°
apart in the square environment. To assess this property, we
computed an autocorrelation function for each cell’s HD tuning
curve. This involved creating a copy of the tuning curve, and
correlating it with the original curve at all different possible
directional lags (across bins of the tuning curve). The resulting
autocorrelation function was used to determine symmetry scores
(described below).

2. Four-fold HD x location correlation structure. EB cells some-
times display four discrete firing locations in the square envir-
onment, each associated with a different HD. To assess the
discreteness and four-fold symmetry of these firing fields in the
HDdomain,we created locational firing rate heatmaps for each EB
cell based on time points when the animal was facing a particular
HD (± 30°). Rate maps were created for HDs from 0–360° in 3°
increments, after which the rate maps for different HDs were
correlated with each other to produce a correlation matrix. A cell
with discrete firing fields associated with four equally spaced HDs
would be expected to show four discrete ‘blocks’ of high
correlation values along the diagonal of the matrix, with each
having a width of approximately 90°. An autocorrelation was
computed for the central 90° of this correlationmatrix by shifting
it along its main diagonal, which was used to calculate symmetry
scores (described below).

3. Four-fold radial symmetry of firing field placement. EB cells
with four-fold symmetry not only have four discrete firing fields
associated with four equally spaced HDs, but due to the
geometric structure of the square environment, those firing
fields are distributed radially about the center of the environ-
ment. To assess four-fold symmetry in the radial placement of
EB cell firing fields, we created a GLM for each EB cell which
attempted to recreate the spike train using a 1-dimensional (1D)
distance function and a 1D rotation function (along with
allocentric HD). The distance function could be projected
across the environment to create a pseudo-2D rate map, which
could be rotated about the center of the environment
according to the animal’s HD (Supplementary Fig. 3). The
rotation amount associated with each HD is dictated by the
rotation function. A cell without four-fold symmetry would be
expected to have a linear rotation function that changes
smoothly along with the animal’s HD; however, a cell with
four-fold radial symmetry would be expected to have a step-
wise rotation function that ‘snaps’ to a new rotation every 90°.
These distance and rotation functions were optimized using
the same GLM optimization framework used in the classifica-
tion GLM, with 30 bins used for each variable. An additional
penalty was imposed on the mean vector length of the rotation
function to encourage sampling of all possible rotations. Four-
fold symmetry of the optimized rotation function was assessed
by first detrending the function by subtracting a linear range of

angles from 0° to 360°, after which an autocorrelation was
computed for the detrended rotation function.

Symmetry scores
To assess the four-fold symmetry of each 1D autocorrelation function,
we took the lowest correlation value at 90°, 180°, or 270° and sub-
tracted the highest correlation value at 45°, 135°, 225°, or 315°. To
assess three-fold symmetry, we took the lowest correlation value at
120° or 240° and subtracted the highest correlation value at 60°, 180°,
or 300°. Similarly, two-fold symmetry was assessed by subtracting the
highest correlation value at 90° or 270° from the correlation value at
180°, while one-fold symmetry was simply computed as the difference
between the correlation value at 0° (always 1) and the correlation
value at 180°.

To assess significance of tuning to each degree of symmetry, we
compared the symmetry scores of real EB cells to scores computed
from EB cell spike trains that had been randomly shifted relative to the
behavioral data (shuffle distribution). Spike trains were randomly
shifted by at least 30 s, with spikes that extended beyond the end of
the session wrapped to the beginning. This procedure was repeated
100 times for each EB cell, and the 95th percentile for each symmetry
score was used as a cutoff for classifying EB cells as having significant
symmetrical tuning.

Assessment of trough vs. peak HD tuning
PORHDcells havebeenpreviously found to fall into oneof twogroups:
peak cells, which have their firing rate maximum in the general direc-
tion of the familiar cue card; and trough cells, which have their firing
rateminimum in the directionof the cue card23. These cell types canbe
distinguished by fitting both an upright (sharp peak) and inverted
(sharp trough) von Mises function to each cell’s tuning curve and
calculating the difference in R2

fit (R2
upright – R2

inverted), with peak cell
tuning curves better fit by an upright von Mises function and trough
cell tuning curves betterfit by an inverted vonMises function. To test if
RSC or MEC/PaS HD cells showed the same pattern, we compared
upright vs. inverted von Mises R2 values for HD cells with maximal
firing directions toward the cue card (180° <maximal direction <360°)
or away from the cue card (0° <maximal direction <180°).

Assessment of HD cell bidirectionality
To assess if HD cells fired in two opposite directions in the AB
experiment, we computed a bidirectionality index (discussed in detail
in23). Briefly, two tuning curves were constructed for each HD cell: one
based on the animal’s actual HD; and one where the animal’s HD had
been doubled first. Symmetrical bidirectional distributions can be
transformed into unidirectional distribution by doubling the asso-
ciated angles. The bidirectionality index was then computed as fol-
lows:

Bidirectionality Index ¼ ðMVLdoubled�MVLnormalÞ=ðMVLdoubled þMVLnormalÞ
ð6Þ

Cue modulation measures
To determine the extent to which HD cells incorporated the second
cue card in the AB session, we fit a bidirectional von Mises function
(two peaks or troughs separated by 180°) to each cell’s HD tuning
curve from the AB session23. Trough fits were used only for POR HD
cells with maximal firing directions oriented away from the cue card,
andRSC andMEC/PaS cells werefit with upright vonMises functions as
they didnot exhibit trough tuning.Modulationby cueAwas calculated
by finding the vonMises peakor trough thatwas closest to the cell’s A1
peakor trough, then computing the firing rate differencebetween that
peak or trough and the minimum or maximum of the fit curve,
respectively. This firing rate difference was transformed into a
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modulation index (MI) by dividing it by themaximum firing rate of the
fit curve (fr = firing rate):

MIA= ðpeak frA-min fr ðfit curveÞÞ=max fr ðfit curveÞ
for peak or non� POR cells
� � ð7Þ

OR

MIA= ðmax fr ðfit curveÞ-trough frAÞ=max fr ðfit curveÞ
for POR trough cells
� � ð8Þ

where A indicates the portion of the tuning curve associated with cue
A. The MI for cue B was calculated by performing the same compu-
tation on the peak or trough 180° opposite.

Assessment of waveform width
As discussed above, waveformswere captured at 32 kHz for 1ms, such
that each waveform had 32 samples. For each cell, the average wave-
form for each channel of the associated tetrode was computed, and
the channel with the largest amplitude was chosen for analysis. The
locations of the peak and trough were estimated using a cubic spline
(upsampled 100x) to give a more precise estimate of waveform width,
which was then calculated as the temporal difference between the
peak and trough.

Egocentric tuning curves and classification
Egocentric bearing tuning curves were constructed using 12° bins. For
each cell, a center-bearing tuning curve was constructed by dividing
the number of spikes associated with each bin by the amount of time
that bin was occupied. The mean vector length (MVL) and mean angle
of the tuning curve were computed to establish the cell’s tuning
strength and preferred bearing, respectively. A cell was considered an
egocentric bearing cell if it: i) passed the GLM classification procedure
for center-bearing tuning (discussed above); ii) hadanMVL thatpassed
the 99th percentile of a within-cell shuffle distribution (discussed
below) or 0.10,whicheverwas larger; and iii) had a peakfiring rate in its
center-bearing tuning curve that exceeded 1Hz.

Allocentric HD tuning curves and classification
Allocentric HD tuning curves and classifications followed largely the
same procedure as egocentric bearing tuning outlined above, but
using the animal’s allocentric HD. However, to prevent RSC cells with
strong four-fold symmetry being incorrectly classified as unidirec-
tional “HD cells,” two additional criteria were imposed to emphasize
cells with unidirectional firing preferences: i) a strict MVL minimum
threshold of 0.15 was used in addition to the 99th percentile shuffle
cutoff; and, ii) HD cells were only included in the AB experiment if their
preferred firing direction changed by <45° between the A1 and
A2 sessions.

Allocentric location firing rate maps
The animal’s two-dimensional location throughout the recording ses-
sion was divided into 4 cm×4 cm bins. For each cell, the number of
spikes associated with each bin was divided by the amount of time the
bin was occupied. The resulting firing rate map was smoothed with a
Gaussian filter.

Assessment of firing along inserted walls in L-shaped
environment
To assess the difference in firing rates between square and L-shaped
environments, firing rate maps for each session were first range nor-
malized to the highest and lowest value across both square and
L-shape sessions. Because some EB cells have their highest firing rates
in the center of the environment and their lowest firing rates along the
boundaries10,21, the firing rate maps for cells with this pattern were

inverted by subtracting the firing rate in each bin from the overall
maximum firing rate28. For all cells, the difference between the square
and L-shape rate maps in each spatial bin was then computed. The
mean change within 20 cm of the inserted walls was used to assess
increased firing in the vicinity of the inserted walls, while the mean
change > 20 cm away was used as a control measure.

Grid cell classifications
After computing a cell’s allocentric firing rate map, it was used to
compute a grid score12. A 2-dimensional autocorrelation was com-
puted by correlating a copy of the rate map with the original rate map
at all possible spatial shifts. A cell with hexagonally periodicfiringfields
would be expected to show a ring around the center of the auto-
correlation with six evenly spaced peaks. For each cell, we identified
the most probable inner and outer radii of this ring, and then com-
puted a 1-dimensional autocorrelation by correlating a copy of the ring
with the original ring at 3° rotational offsets from 0°to 180°. A grid
score was then computed from the 1D autocorrelation by taking the
lowest correlation value at 60° or 120° and subtracting the highest
correlation value at 30°, 90°, or 150°. Cells with grid scores > 0.4 were
considered grid cells.

Shuffling procedure for cell classifications
Each cell’s spike train was randomly shifted by at least 30 s, with time
points beyond the end of the session wrapped to the beginning, to
offset the spike data from the behavioral data while maintaining its
temporal structure. Relevant tuning scoreswere then computed based
on the shifted spike train. This procedure was repeated 400 times for
each cell, and awithin-cell 99th percentile cutoff was used to determine
tuning significance for individual cells.

Statistics
Statistical analyses were performed using Python code. All tests were
nonparametric and two-sided (except for GLM classification compar-
isons which were one-sided10,26) and used an α level of 0.05. Paired
comparisons were made using Wilcoxon signed-rank tests, while
unpaired comparisons used a rank-sum test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data needed to reproduce themain figure plots, as well as example cell
data for running symmetry analyses that are central to this paper, are
available at github.com/hasselmonians/LaChance_Hasselmo_POR_RSC
(doi.org/10.5281/zenodo.13502206). Data needed to reproduce the
main results and figure panels are provided with the manuscript as
Source Data. Source data are provided with this paper.

Code availability
All code needed to reproduce the main figure plots, as well as custom
code for running symmetry analyses central to the conclusions of this
paper, is available at github.com/hasselmonians/LaChance_-
Hasselmo_POR_RSC (https://doi.org/10.5281/zenodo.13502206). Code
for GLMclassification and local vs. global analyses have been uploaded
previously at github.com/taube-lab/POR_GLM (https://doi.org/10.
5281/zenodo.3173242) and github.com/taube-lab/LaChance_Taube_-
Curr_Biol_2023, respectively.
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