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SUMMARY

Recent studies have reported the existence of hip-
pocampal ‘‘time cells,’’ neurons that fire at particular
moments during periods when behavior and location
are relatively constant. However, an alternative
explanation of apparent time coding is that hip-
pocampal neurons ‘‘path integrate’’ to encode the
distance an animal has traveled. Here, we examined
hippocampal neuronal firing patterns as rats ran in
place on a treadmill, thus ‘‘clamping’’ behavior and
location, while we varied the treadmill speed to
distinguish time elapsed from distance traveled. Hip-
pocampal neurons were strongly influenced by time
and distance, and less so by minor variations in loca-
tion. Furthermore, the activity of different neurons re-
flected integration over time and distance to varying
extents, with most neurons strongly influenced by
both factors and some significantly influenced by
only time or distance. Thus, hippocampal neuronal
networks captured both the organization of time
and distance in a situation where these dimensions
dominated an ongoing experience.

INTRODUCTION

Numerous studies have shown that the hippocampus plays a

crucial role in episodic memory in both humans and animals,

and a fundamental characteristic of episodic memory is the tem-

poral organization of sequential events that compose a particular

experience.Recent research has suggested that sequential orga-

nization of episodic memories may be supported by ‘‘time cells,’’

temporally tunedpatternsof neuronal activity in the hippocampus

(Gill et al., 2011; MacDonald et al., 2011; Manns et al., 2007; Pas-

talkova et al., 2008). However, it remains unclear what mecha-

nisms are driving the apparent temporal tuning of hippocampal

neurons. In experiments where time cells have been observed,

the animals either run continuously in place (in a running wheel)

(Pastalkova et al., 2008) or can move on a small platform (Gill

et al., 2011) or in a chamber (MacDonald et al., 2011), allowing

movement to play a substantial role in accounting for variations

in firing rate (Hasselmo,2009, 2012). Evenwhenstatisticalmodels

have extracted a temporal modulation from influences of location
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and speed (Lepage et al., 2012; MacDonald et al., 2011), it re-

mains possible that temporal tuning occurs only when the animal

ismoving. In addition, in previous studieswhen animals remained

in a relatively constant location, elapsed time was confounded

with the distance the animal traveled (the number of steps taken),

allowing for the possibility that variations in firing rate reflect an

integration of distance along an egocentrically defined path.

Indeed, several theoretical conceptions have proposed that

path integration is the primary function of hippocampal networks

(Etienne and Jeffery, 2004; McNaughton et al., 1991, 1996, 2006;

O’Keefe and Burgess, 2005; Samsonovich and McNaughton,

1997). To fully understand the extent to which time and distance,

as well as location, govern hippocampal neuronal firing patterns,

it is critical to disentangle these parameters.

Here, we distinguished influences of location, time, and dis-

tance by recording from multiple hippocampal neurons as rats

ran continuously in place at different speeds on a treadmill

placed in the stem of a figure-eight maze (Figure 1). On each trial,

the rats entered the central stem of the maze from one of two di-

rections (left or right), and then walked onto the treadmill where

they received a small water reward. After a short delay, the tread-

mill accelerated to a speed randomly chosen from within a pre-

determined range, and the rats ran in place until the treadmill

stopped automatically and another small water reward was

delivered. Subsequently the animals finished the trial by turning

in the direction opposite from their entry to the stem (spatial alter-

nation) to arrive at a water port at the end of a goal arm. Our strat-

egy in distinguishing behavior, location, time, and distance was

to ‘‘clamp’’ the behavior and location of the animal on the

maze, and vary the treadmill speed to decouple the distance

the rat traveled from the time spent on the treadmill. Multiple an-

alyses showed that the activity of most hippocampal neurons

that were active when the rat was on the treadmill could not be

attributed to residual variations in location, but were heavily influ-

enced by time and distance. Most neurons were influenced to

differing extents by both time and distance, but some were

best characterized as representing time but not distance and

others as representing distance and not time.

RESULTS AND DISCUSSION

Behavior and Location
During treadmill running, the rats’ headswere consistently facing

forward, and 75% of the time spent on the treadmill could be ac-

counted for by an area with a radius of approximately 3.3 cm

(average area: 35 cm2; standard deviation: 15.9 cm2; range: 12
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A B Figure 1. Figure-Eight Maze with Treadmill

(A) Picture of the figure-eight maze with treadmill

(gray belt) located in the center stem.

(B) Diagram of the figure-eight maze indicating the

dimensions and location of the water ports and

treadmill. Cyan line indicates right-to-left alterna-

tion; red line indicates left-to-right alternation.

See also Movie S1.
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to 59 cm2). This indicates that the location of the rats’ headswere

generally consistent despite fluctuations in position due to side-

to-side, forward, and backward shifts on the treadmill. Thus, our

‘‘clamping’’ of behavior and location was largely successful,

althoughminor variations persisted, andwere taken into account

in subsequent analyses. The variation in head and body location

during treadmill running can be visualized in the supplemental

movie (see Movie S1 available online). We refer to the area ac-

counting for 75% of the time spent on the treadmill in a particular

session as A75.

Neuronal Population
The following analysis focuses on 18 recording sessions from 6

rats, containing a total of 927 putative pyramidal cells (average:

52 per session; standard deviation: 25; range: 15 to 102). Units

with an average firing rate over the entire session of greater

than 8 Hz were considered putative interneurons and were

excluded from further analysis. Of the total population of putative

pyramidal cells, 400 (43%) had an average firing rate of at least

0.2 Hz and peak firing rate of at least 1 Hz during periods when

the treadmill was moving (average: 22 per session; standard de-

viation: 10; range: 9 to 50), while 625 (67%) had an average firing

rate of at least 0.2 Hz and peak firing rate of at least 1 Hz during

the remainder of the session (average: 35 per session; standard

deviation: 16; range: 9 to 65). The overlap of these populations

consisted of 312 (34%) cells that were active on both the tread-

mill and the remainder of the maze (average: 17 per session;

standard deviation: 8; range: 6 to 37). These results are similar

to those found by Pastalkova et al. (2008) and show that signifi-

cantly more neurons were active on the treadmill than would be

expected if they were simply hippocampal place cells with place

fields on the treadmill.

The remaining analysis focuses on the time between the start

and stop signal sent to the treadmill on each run and includes

only those neurons that were active during those periods on

the treadmill, unless stated otherwise. The center water port

was activated (producing an audible click) simultaneously with

the stop signal, so although the treadmill did not stop instanta-
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neously, spikes occurring after the stop

signal, during the deceleration of the

treadmill, were not included in our

analysis.

Hippocampal Neurons Fire in
Sequences during Treadmill
Running
Similar to previous reports (Gill et al.,

2011; MacDonald et al., 2011; Pastalkova
et al., 2008), the majority of neurons active on the treadmill fired

transiently at specific moments during running, rather than firing

continuously the entire time the treadmill was active. Figure 2

shows representative firing patterns from eight different neurons

during treadmill running. As an ensemble, these firing fields

spanned the entire time on the treadmill (Figure 3). Therefore,

at any one point during treadmill running a subset of hippocam-

pal neurons were firing, and the subset of neurons changed in a

regular sequence that repeated every treadmill run. Examples of

three neurons, recorded concurrently, are provided in Movie S1.

Across the entire population, the normalized peak firing time

(time of peak firing divided by the duration of each lap, see

caption for Figure 4) for each neuron occurred in the first, sec-

ond, third, fourth, and last 1/5 of the treadmill run in 38%,

17%, 13%, 13%, and 19% of the neurons, respectively (Fig-

ure 4A). Normalized firing field widths (duration of firing field

divided by the duration of each lap) ranged from 0.06 to 1 (6%

to 100% of the treadmill run) (Figure 4B). When considering

only the 256 neurons whose firing fields ended before the tread-

mill stopped, the normalized peak firing time and firing field width

for each neuron were linearly correlated (Pearson’s linear corre-

lation coefficient: 0.50; p = 23 10�17) (Figure 4C) with larger field

widths for fields occurring closer to the end of the treadmill run.

Hippocampal Activity during Treadmill Running Cannot
be Explained by Spatial Position
To visualize the space occupied by the rats as a function of time

on the treadmill, and to determine whether the spatial firing pat-

terns of a single neuron changed as time progressed on the

treadmill, we generated occupancy-normalized firing rate

maps (which we also refer to as spatial tuning curves) for each

neuron, both for the overall session on the treadmill, and again

for five evenly divided bins of time spent on the treadmill (Figures

5 and S1). The colored pixels in the image denote firing rates

within 1 cm2 spatial bins that were visited at least once during

treadmill running overall (first panel) or within one of the time

bins during treadmill running (remaining panels). We defined an

area—referred to as AAT (‘‘AT’’ stands for ‘‘all time-bins’’) to
1, June 19, 2013 ª2013 Elsevier Inc. 1091
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Figure 2. Treadmill Firing Fields

Firing patterns from eight different neurons active on the treadmill during

‘‘time-fixed’’ sessions. Each row on the raster plots represents one run on the

treadmill, aligned to the time the treadmill started. Rows are sorted with the

slowest treadmill speed on top and fastest speed on bottom. Black lines and

color bars represent average firing rates over all runs. Numbers indicate peak

firing rates in spikes per second (Hz). See also Movie S1.

0 452

1

41
distance (cm)

ne
ur

on

0 796

1

49
distance (cm)

ne
ur

on

0 16

1

21
time (s)

ne
ur

on

0 675

1

30
distance (cm)

ne
ur

on

Figure 3. Ensemble Activity Spans Entire Treadmill Run

Each panel includes data from a single session. Each row represents the

normalized firing rate of one neuron, sorted by the peak firing time. Neurons

were included if they fired R0.2 Hz averaged across the entire treadmill run,

with peak firing R1 Hz. The top two panels and bottom right panel are from

‘‘distance-fixed’’ sessions. The bottom left panel is from a ‘‘time-fixed’’ ses-

sion. In each row, blue represents no firing (zero spikes per second), and red

represents peak firing for that particular neuron.
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distinguish it from A75 defined earlier—containing all spatial bins

that were visited at least once in each time bin across the entire

treadmill run. The average size of AAT was 52 cm2 (standard de-

viation: 22.1 cm2; min: 20 cm2; max: 106 cm2), and the rats spent

on average 74% of their time on the treadmill within this area

(standard deviation: 10%; min: 55%; max: 89%). AAT contained,

on average, 82% of A75 (standard deviation: 14%; min: 57%;

max: 100%) indicating that the rats’ positions were relatively sta-

ble throughout the time spent on the treadmill, and each rat

spent a majority of their time in the same area throughout this

period.

The light gray outlines indicate the extent of AAT, and the dark

gray outlines indicate the extent of A75 for that session. Despite
1092 Neuron 78, 1090–1101, June 19, 2013 ª2013 Elsevier Inc.
some changes in spatial location across time bins, in each of the

neurons shown in Figure 5 the firing rate can be seen to vary from

one time bin to the next within AAT. A two-factor ANOVA of both

position and time indicated that 92% of neurons active on the

treadmill (366/400) significantly changed their firing rate across

time bins (significant main effect of time; p % 0.05), indicating

that the activity of these neurons was significantly influenced

by time (MacDonald et al., 2011).

To quantitatively evaluate the extent to which the observed

firing patterns could be explained based on location alone, we

used the spatial firing rate map of each neuron as a look-up table

to generate predicted firing rates for that neuron based on the

rat’s position at each moment in time (see Experimental Proce-

dures). We next generated two temporal tuning curves showing

the firing rate of that neuron as a function of time spent on the

treadmill for both the actual firing (the empirical temporal tuning

curve) and the firing predictions based solely on the spatial firing

ratemap (themodel temporal tuning curve) (Figure 6) (see Exper-

imental Procedures). If location is sufficient to explain the

observed firing patterns of each neuron, then the two tuning

curves for that neuron should match. Alternatively, if the rat

was perfectly stationary while on the treadmill, or if the firing of

that neuron was completely uncorrelated with location, the

model temporal tuning curve should be perfectly flat.

A bootstrap method was used to generate confidence inter-

vals around each temporal tuning curve and to identify regions

where the two curves were significantly different (see Experi-

mental Procedures). Although nearly all neurons showed some

degree of spatial tuning (indicated by a nonflat model tuning

curve), in each example shown in Figure 6, and in the majority

of hippocampal neurons, there was a region of significant
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Figure 4. Firing Fields Span the Entire Time on Treadmill

(A) Histogram showing the distribution of the normalized peak firing times. A

normalized time value of 1 indicates themoment the stop signal was sent to the

treadmill. In this figure, and the corresponding analysis, time was normalized

by dividing time by the duration of each individual lap, such that data from

‘‘distance-fixed’’ session was normalized based on distance traveled, while

data from ‘‘time-fixed’’ sessions was normalized based on time elapsed.

(B) Histogram showing the distribution of normalized field widths (defined as

the extent of firing at least 20% of the peak rate). A field width of 1 indicates the

field extended across the entire treadmill run.

(C) The normalized field widths plotted against the normalized peak firing time.

The neurons are subdivided based on whether their firing fields ended before

the treadmill stopped (black dots) or whether the edge of the field reached the

end of the treadmill runs (gray circles). Peak time and field width were corre-

lated among the fields that did not reach the end of the treadmill run (Pearson’s

linear correlation coefficient: 0.50; p = 2 3 10�17). The distinct pattern seen

among the fields observed at the end of the treadmill run is a result of many of

those fields being truncated when the treadmill abruptly stopped, such as in

the bottom two examples in Figure 2.
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difference between the empirical and model tuning curves, indi-

cating that information about location was not sufficient to

explain the firing activity seen on the treadmill.

Each neuron was assigned a ‘‘difference score’’ ranging from

0 (identical) to 2 (nonoverlapping), quantifying the difference be-

tween their empirical andmodel tuning curves (see Experimental

Procedures). This difference score was compared to the results

from the generalized linear model discussed below (Figure S5).

Hippocampal Activity during Treadmill Running Is
Influenced by Both Distance and Time
On each trial, the treadmill speed was randomly selected from

within a predetermined range over which the rat’s behavior

was consistent (typically 35 to 49 cm/s). By randomizing the

treadmill speed, we were able to decouple the distance the rat

traveled on the treadmill from the time spent on the treadmill,

and evaluate the effects of each variable on firing patterns. Fig-

ure 7 shows raster plots for four different neurons (one neuron

per row) plotted as a function of both the time since the treadmill

started (left panels) and distance traveled since the treadmill

started (right panels). Although the speeds were randomly pre-

sented during the recording session, the rows in the raster plots

represent treadmill runs sorted in order of slowest speed (top

row) to fastest speed (bottom row) to highlight the effects of vary-

ing speed on firing patterns. Within an individual session, either

the time spent on the treadmill (‘‘time-fixed’’ sessions) or the dis-

tance traveled on the treadmill (‘‘distance-fixed’’ sessions) was

held fixed for each run. All examples shown in Figures 2, 5, 6,

and S1 were recording during time-fixed sessions, but statistics

in the text and Figures 3 and 4 included both time-fixed and dis-

tance-fixed sessions. It is important to note that it is impossible

to completely separate time and distance as long as the rat is still

running on the treadmill. Moreover, the effects of varying speed

becomesmore pronounced as time elapses, making the effect of

aligning to time versus distance more easily visualized at the end

of the treadmill run than the beginning. For this reason, the most

visually distinct examples among those included in Figures 7 and

S2 typically fire at the end of the treadmill run.

Figures 7A and 7B show two example neurons whose firing is

best accounted for as occurring at the same time regardless of

the treadmill speed. Although the firing fields were aligned with

each other when plotted as a function of time (left panels),

when the same data were plotted as a function of distance (right

panels) the fields shifted toward longer distances as the speed

increased, suggesting that these neurons were more accurately

encoding time. Figures 7C and 7D show two neurons whose

firing is best accounted for as occurring at the same distance,

regardless of the time it took the rat to travel that distance.

Note that when the firing fields were plotted as a function of

time the fields shifted toward shorter times as the speed

increased, suggesting that these neurons were more accurately

encoding distance.

If a neuron ismore accurately reflecting time than distance, the

temporal tuning curve for slow runs should align with the tempo-

ral tuning curve for fast runs (Figures 7A and 7B). However, the

same tuning curves plotted as a function of distance should be

shifted toward longer distances on fast runs when compared

to slow runs (i.e., if the treadmill is moving faster, the rat travels
Neuron 78, 1090–1101, June 19, 2013 ª2013 Elsevier Inc. 1093



time range on treadmill (s)

All

6.2 Hz 

10 cm

0.0 s − 3.2 s 3.2 s − 6.4 s 6.4 s − 9.6 s 9.6 s − 12.8 s 12.8 s − 16.0 s

All

9.5 Hz 

10 cm

0.0 s − 3.2 s 3.2 s − 6.4 s 6.4 s − 9.6 s 9.6 s − 12.8 s 12.8 s − 16.0 s

All

16 Hz 

10 cm

0.0 s − 3.2 s 3.2 s − 6.4 s 6.4 s − 9.6 s 9.6 s − 12.8 s 12.8 s − 16.0 s

All

8.5 Hz 

10 cm

0.0 s − 3.2 s 3.2 s − 6.4 s 6.4 s − 9.6 s 9.6 s − 12.8 s 12.8 s − 16.0 s

Figure 5. Spatial Distribution of Firing Rates

on the Treadmill Depends on Time

Each row represents the spatial distribution of

firing rates for a single neuron during treadmill

running. The left-most panel on each row shows

the overall firing rate map (spatial tuning curve) for

the entire time on the treadmill. The remaining five

panels show the firing rate map for each of five

evenly divided bins of time spent on the treadmill.

The light gray and dark gray outlines indicate the

extent of AAT and A75 (respectively) for that ses-

sion. Both outlines are duplicated across panels to

aid comparison. In each rate map: white repre-

sents areas that were not visited by the rat during

that period of time; blue represents no firing (zero

spikes per second) in a visited location; red rep-

resents peak firing for that particular neuron. The

number in the upper-left corner of the first panel

indicates peak firing rate in spikes per second (Hz).

The color scale is consistent across panels within

a row to allow for comparison across panels. See

Figure S1 for additional examples.
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farther in the same amount of time). However, if the neuron is

more accurately reflecting distance than time, the temporal tun-

ing curve for fast runs should be shifted toward shorter times

when compared to slow runs (i.e., if the treadmill is moving

faster, it takes less time to travel the same distance) (Figures

7C and 7D). Additional examples are included in Figure S2.

These results demonstrate the existence of both hippocampal

cells that more accurately encode the time the rat has spent on

the treadmill and hippocampal cells that more accurately encode

the distance the rat has run on the treadmill. The firing activity of

these cells during periods when the rat was traversing the maze,

excluding periods of treadmill running, can be seen in Figure S3.

Of note, neurons identified as responding more accurately to

time ormore accurately to distance based on their activity during

treadmill running often expressed standard place fields in other

regions of the maze when the treadmill was off.

Hippocampal Neuronal Activity Reflects Location, Time,
and Distance
While the results from the previous section indicated whether

neurons were more accurately representing time or distance,

this method did not take into account possible influences of

spatial location. To simultaneously and quantitatively examine

the extent to which each neuron was influenced by location,

time, and distance, we fit the spiking of each neuron to a gener-
1094 Neuron 78, 1090–1101, June 19, 2013 ª2013 Elsevier Inc.
alized linear model (GLM) that included

treadmill time, treadmill distance, spatial

position (x and y room coordinates),

treadmill speed, and spike history as co-

variates (see Experimental Procedures)

(Lepage et al., 2012; MacDonald et al.,

2011). We then refit the data using six

nested models (Figure S4A). Each nested

model removed one ormore categories of

covariates (time, distance, or space) from

the full model. The first three nested
models (space and time [‘‘S+T’’], time and distance [‘‘T+D’’],

and space and distance [‘‘S+D’’]; middle row, Figure S4A)

removed only one category of covariates (distance, space, and

time, respectively). The remaining three nested models (time

[‘‘T’’], space [‘‘S’’], and distance [‘‘D’’]; bottom row, Figure S4A)

removed two categories of covariates. The deviance of each

nested model compared to the full model quantified the effect

of removing that category of covariates on the quality of the

model fit. Covariates related to treadmill speed and spike history

were included in all nested models.

We first tested the space (‘‘S’’) nested model, which included

covariates from space (as well as speed and spike history), but

excluded time and distance covariates. The deviance of the

‘‘S’’ model from the full model quantified the effect of removing

both time and distance covariates from the full model, while ac-

counting for any influence due to spatial movement. Thus,

comparing the ‘‘S’’ model to the full ‘‘S+T+D’’ model measured

the combined importance of distance and time in the model.

The results from this model indicated that for 380/400 neurons,

combined information about time and distance on the treadmill

significantly improved the model fit (95%; c2
10 > 18.3; p %

0.05) (Figure S4B). A similar comparison of the time and distance

(‘‘T+D’’) nested model to the full model indicated that 371/400

neurons showed spatial modulation (93%; c2
5 > 11.1; p %

0.05) in addition to the modulation due to time and distance
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Figure 6. Spatial Activity Cannot Account for Temporal Activity

The letters (A) through (F) indicate individual neurons recorded from different

recording sessions. For each neuron there are two panels. The left panel is a

spatial firing rate map, while the right panel includes two temporal tuning

curves. The blue curve is the observed (empirical) temporal tuning curve of a

single neuron, calculated based on the actual firing of that neuron. The red

curve is the model-predicted temporal tuning curve based on the spatial firing-

rate map given in the left panel of each pair. Shaded region denotes 95%

confidence bounds on firing rate calculated using a bootstrap method. A bin

size of 1 pixel 3 1 pixel with a standard deviation of 3 pixels was used for this

analysis (see Experimental Procedures). See Figure S5B for a comparison of

the results from this analysis to the results from the GLM. The difference score

calculated for each neuron is indicated in the upper-right corner of the right

panels and in Figure S5B. The colored circles next to each neuron correspond

to the colored circles in Figure S5B.
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(Figure S4C). These results are consistent with the results above

(Figure 5), and show that although many neurons did demon-

strate spatial tuning as a result of minor residual variations in

location, the majority of neurons demonstrated time and dis-

tance tuning in addition to spatial tuning.

Like the tuning curve method used earlier to show that hippo-

campal activity during treadmill running cannot be explained by

spatial position (Figure 6), the ‘‘S’’ GLM used only spatial cova-

riates to account for the firing properties of each neuron. The dif-

ference score from the earlier turning curve method measured

how different the model prediction (using only space) was from

the actual firing, and larger values indicated a larger role of

time and distance in driving firing. Similarly, the deviance of the
‘‘S’’ GLM (using only space) from the full model (including time

and distance) measured the importance of time and distance

in the quality of the model fit (Figure S4B). These two distinct ap-

proaches model the firing of neurons using very different as-

sumptions. The tuning curve method is a nonparametric method

that builds a spatial firing rate map without making assumptions

about the shape of that map (Figure 6). The GLM, however, at-

tempts to fit the spatial firing rate map of the neuron to a function

with five parameters (see Experimental Procedures, Equation 4).

We found a strong correlation between the difference score and

the deviance of the ‘‘S’’ model from the full model (Pearson’s

linear correlation coefficient: 0.49; p = 2 3 10�24) (Figure S5B)

indicating that the results from these two methods agree with

one another, and the finding that hippocampal activity during

treadmill running cannot be explained by spatial position does

not depend upon the assumptions made by either model.

As noted previously, it is impossible to completely separate

time and distance as long as the rat is running on the treadmill,

and the results from analyzing the ‘‘S’’ model refer to the com-

bined influences of time and distance. However, the randomized

treadmill speed did allow us to also consider the components of

time and distance that were independent from one another. The

space and time (‘‘S+T’’) and space and distance (‘‘S+D’’) nested

models allowed us to determine the influence on the model fit of

adding information about distance to a model that already

included time (‘‘S+T’’ versus ‘‘S+T+D’’) or adding time to amodel

that already included distance (‘‘S+D’’ versus ‘‘S+T+D’’) to show

the independent effects of each variable. This analysis indicated

that distance (in addition to time and space) was informative in

314/400 neurons (79%, c2
5 > 11.1, p% 0.05), while time (in addi-

tion to distance and space) was informative in 326/400 neurons

(82%, c2
5 > 11.1, p % 0.05) (Figure 8A). Both distance and time

were independently informative in 284 neurons (70%), while

neither distance nor time were independently informative in 44

neurons (11%). Of particular note are 42 neurons (11%) that

showed distance but not time as informative, and 30 neurons

(8%) that showed time but not distance as informative (Fig-

ure 8A). These results demonstrate that while the majority of

neurons were influenced by both time and distance, individual

neurons varied in their degree of tuning to either time or distance.

At the extremes of this distribution, some neurons exclusively

signaled time and other neurons exclusively signaled distance.

For all 356 neurons that showed a significant contribution of

either time or distance, we subtracted the deviance of the

‘‘S+T’’ model from the deviance of the ‘‘S+D’’ model to obtain

a measure of the tuning of each neuron for either time or dis-

tance. Values greater than zero indicate a stronger tuning to

time whereas values less than zero indicate a stronger tuning

for distance. Using this metric, 220/356 neurons (62%) were

more tuned to time and the remaining 136 neurons (38%) were

more tuned to distance (Figure 8B). We used a similar analysis

to compare the effects of space to time and space to distance

(Figures S4D–S4G), showing that 240/380 neurons (63%) were

more heavily influenced by time than space, while 236/380 neu-

rons (62%)weremore heavily influenced by distance than space.

To determine whether time and distance were being repre-

sented concurrently or whether the hippocampus was switching

between separate representations of time and distance (Jezek
Neuron 78, 1090–1101, June 19, 2013 ª2013 Elsevier Inc. 1095
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Figure 7. Hippocampal Coding for Time and

Distance

Examples of two cells that were more strongly

influenced by time (A and B) and two cells that

were more strongly influenced by distance (C and

D). For each neuron, the same firing activity is

plotted both as a function of time since the

treadmill started (left panels) and distance traveled

on the treadmill (right panels). Blue, brown, and

green ticks (and tuning curves) represent the

slowest 1/3 of runs, middle 1/3 of runs, and fastest

1/3 of runs, respectively. Numbers in blue, brown,

and green indicate the peak firing rate in spikes per

second (Hz) of the corresponding group of runs.

The rows in the raster plots represent treadmill

runs sorted in order of slowest speed (on top)

to fastest speed (on bottom). Colored squares

to the left edge of each neuron correspond to

colored squares in Figures 8A and S3. See Fig-

ure S2 for additional examples. The activity of

these neurons on the remainder of the maze can

be seen in Figure S3.
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et al., 2011), we examined whether neurons at opposite ex-

tremes of the distribution seen in Figure 8 were active together

within the same theta cycles (see Supplemental Experimental

Procedures). We found that even neurons only responding

significantly to time (distance not informative in the GLM analysis

described above) fired within the same theta cycle as neurons

only responding significantly to distance (time not informative),

suggesting that the hippocampus is representing both time

and distance simultaneously (Figure S6).

Overall, these results demonstrate that hippocampal neurons

are capable of encoding a range of contextual variables—

including time and distance as well as spatial location—and

that each individual neuron is influenced to a different degree

by each of these variables. However, in this behavioral paradigm,

where spatial location was held relatively fixed, time and dis-

tance played a larger role in driving hippocampal firing.

Time versus Path Integration in Hippocampal Neurons
In 1987, Muller and colleagues introduced the ‘‘random

foraging’’ task, in which rats search continuously in all directions

and locations to find food scattered throughout their environ-

ment (Muller et al., 1987). Their aim was to ‘‘clamp’’ behavior
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(as foraging) and vary direction randomly

to determine whether a spatial signal

would emerge in hippocampal neuronal

firing patterns. This strategy was highly

successful in that hippocampal place

fields were readily identified. Notably, in

this situation where head and movement

direction were unsystematic and irrele-

vant to the task, the firing patterns of

hippocampal neurons were not influ-

enced by head or movement direction.

However, when direction becomes

meaningful, such as in the radial maze

(McNaughton et al., 1983), the linear track
(Huxter et al., 2003), or in open fields as animals run specific tra-

jectories (Markus et al., 1995; Wiener et al., 1989), direction be-

gins to influence these firing patterns. Furthermore, across many

experimental paradigms, hippocampal neuronal activity reflects

the relevant stimulus and behavioral regularities that charac-

terize the task at hand (e.g., Ranck, 1973; Eichenbaum et al.,

1990; Lenck-Santini et al., 2008; reviewed by Eichenbaum

et al., 1999). In a task where rats were required to remember

odors across multiple locations in an open field, hippocampal

firing patterns reflected to an equivalent extent the odors and lo-

cations, and most cells were tuned variably to both parameters

(Wood et al., 1999).

During the treadmill running described in the present experi-

ment, we held behavior and location relatively constant while

systematically varying time and distance. We found that hippo-

campal neurons fired transiently at specific moments during

treadmill running, and that this firing could not be explained by

residual variations in location.

As with previous experiments that examined hippocampal

firing during task delays (Gill et al., 2011; MacDonald et al.,

2011; Pastalkova et al., 2008), at any one point during treadmill

running, a subset of hippocampal neurons were firing and the
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Figure 8. GLM Comparison of Time versus Distance
(A) x values are the deviances of the space and distance (‘‘S+D’’) model from

the full (‘‘S+T+D’’) model (the result of removing time from the full model, hence

the label ‘‘STD-T’’). A larger x value indicates a more significant contribution

from time. y values are the deviances of the space and time (‘‘S+T’’) model

from the full (‘‘S+T+D’’) model (the result of removing distance from the full

model, hence the label ‘‘STD-D’’). A larger y value indicates a more significant

contribution from distance. Each point represents a single neuron. The red

lines indicate the minimum thresholds for significance. Points in the upper-

right quadrant had a significant influence of both distance and time. Points in

the upper-left quadrant had a significant influence of just distance. Points in

the lower-right quadrant had a significant influence of just time. Points in the

lower-left quadrant were not significantly influenced by either time or distance.

Points along the diagonal have an equal contribution from distance and time.

Colored squares correspond to the examples shown in Figure 7.

(B) Histogram of the y values from (A) subtracted from the x values from (A).

More positive values indicate a larger contribution from time; more negative

values indicate a larger contribution from distance. Red line is at 0 (equal

contribution of time and distance, the diagonal line in (A)). This figure shows

that while the majority of neurons were influenced by both time and distance,

individual neurons varied in their degree of tuning to either time or distance,

with some neurons responding exclusively to time and other neurons re-

sponding exclusively to distance.

See Figure S4 for additional results from the GLM. See Figure S5B for a

comparison of the results from the GLM to the results from Figure 6.
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subset of neurons changed in a regular sequence that repeated

during every treadmill run. This sequential firing could underlie

the ability of the hippocampus to encode temporal aspects of

episodic memory, by serving as a time-based template upon

which newmemories are stored and later recalled. This is impor-

tant for disambiguating memories that share spatial locations

(Hasselmo, 2009, 2012).

By systematically varying time and distance, we were also

able to separate the influences of time and distance on firing

and measure the extent to which each variable influenced firing.

Our main finding is the prevalent observation of both cells that

more accurately encoded the distance the rat has run on the

treadmill and cells that more accurately encoded the time the

rat has spent on the treadmill. The observation of distance cod-

ing in this task indicates that hippocampal neurons can integrate

the length of a path even in the absence of visual cues usually

associated with movement through space. Also, the presence

of cells that signal distance indicates that these neurons are

not driven entirely by network dynamics without the influence

of either idiothetic or allothetic cues, as suggested by Pastalkova

et al. (2008) (see also Itskov et al., 2011), as the neurons must be

responding to the treadmill speed, or self-motion cues influ-

enced by the treadmill speed, in order to encode distance. In

addition, the observation of cells whose activity was significantly
influenced by only time indicates that these neurons are also not

exclusively driven by path integration (Etienne and Jeffery, 2004;

McNaughton et al., 1996, 2006). Rather, in the present study

where both of these dimensions are prominent, our results

show that the hippocampus represents both the distance trav-

eled and time elapsed simultaneously. Furthermore, a large frac-

tion of hippocampal neurons combine information about these

dimensions to varying extents, such that different neurons

largely reflected distance or time and others equivalently re-

flected the combination of these dimensions.

Due to the residual correlation between time elapsed and dis-

tance traveled, we cannot say with certainty whether those neu-

rons that were influenced by both time elapsed and distance

traveled were encoding both time and distance simultaneously

or whether the hippocampus was shifting between types of rep-

resentations (such as was demonstrated in Jezek et al., 2011).

However, we found that cells significantly influenced by only

time and those significantly influenced by only distance regularly

fired together (Figure S6), showing that both time and distance

are being represented simultaneously in the hippocampus, and

strongly suggesting that the remaining cells are conjunctively en-

coding both time and distance at all times.

In this experiment, when behavior and location were held rela-

tively constant, time and distance predominated in their influ-

ence over the firing patterns of hippocampal neurons. However,

other neurons, and many of the same neurons that were active

on the treadmill, had place fields elsewhere on the maze (see

Movie S1 and Figure S3), indicating that during other compo-

nents of the task, where locations on the maze were important

to task success, space was a strong influence over firing pat-

terns of even the same neurons. These observations support

the view that hippocampal neuronal activity reflects both the

temporal and spatial regularities, along with other salient fea-

tures of experience, all of which are reflected in our capacity

for episodic memory.
EXPERIMENTAL PROCEDURES

Subjects and Behavioral and Electrophysiological Procedures

Subjects were sixmale Long-Evans rats kept on food andwater restriction and

monitored closely tomaintain good health and aminimum of 85% free-feeding

weight. All animal procedures were approved by the Boston University Institu-

tional Animal Care and Use Committee.

On the first day of training rats were allowed to wander freely around a

figure-eight maze consisting of a 122 cm3 91 cm (48’’3 36’’) rectangular track

bisected lengthwise by a 122 cm (48’’) long central stem (Figure 1). A 41 cm

(16’’) segment of the center stem was removed and replaced with a treadmill

adapted from a commercially available treadmill (Columbus Instruments).

Two ports for delivering water reward were located in the corners of the

maze closest to the start of the central stem, and a third water port was located

at the end of the treadmill. The water ports produced an audible click when

they were activated.

For clarity, the term ‘‘session’’ is used to refer to an entire training or testing

session (typically 40–60 min), ‘‘trial’’ is used to refer to one full lap on the maze

(starting and ending at either the left or right water port), and ‘‘run’’ is used to

refer to one period during which the treadmill was moving (from the moment

the treadmill starts to the moment the stop command is sent to the treadmill).

Beginning on the second day of training, rats started each session by being

placed at the start of the central stem. Throughout training the rats were

prevented from turning around. Once the rats progressed forward so their

hind legs were on the treadmill they were given a small water reward and
Neuron 78, 1090–1101, June 19, 2013 ª2013 Elsevier Inc. 1097
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allowed �2 s to drink. The treadmill was then turned on at a low speed

(5–10 cm/s). The rat was blocked from running forward off the treadmill while

the treadmill was moving. The treadmill run was manually aborted (and the

treadmill stopped immediately) if the rat either turned around or if his hind

legs reached the back edge of the treadmill. The treadmill run was restarted

(using the same settings but restarting the elapsed time) once the rat returned

to the treadmill facing forward. Aborted runs occurring during recording ses-

sionswere ignored in subsequent analyses. The rat was rewardedwith another

small water reward for running continuously until the treadmill stopped auto-

matically. This reward typically caused the animal to spend the majority of

its time on the treadmill with its mouth positioned close to the water port.

The rat was then allowed to either remain on the treadmill, or to exit the tread-

mill and finish the lap. If the rat remained on the treadmill, the treadmill was

started again using the same rules as before. When the rat exited the treadmill,

he was forced to turn either left or right and rewarded for reaching the water

port in the corner of the maze. Another trial was started when the rat reached

the center stem.

During the first few trials, each run lasted only 5–10 s. As the rat grew accus-

tomed to the treadmill, both the treadmill speed and the time required to

receive a reward were gradually increased until the rat was consistently

running 49 cm/s (maximum speed) for greater than 16 s. The rats took between

6 and 15 training sessions to reach this criterion. At this point, the protocol was

changed to either a ‘‘distance-fixed’’ or a ‘‘time-fixed’’ protocol, and the rat

was required to complete one trial for each run on the treadmill. In both proto-

cols the speed on each lap was randomly selected from within a predeter-

mined range. The treadmill speed was held constant throughout each full

treadmill run, and a new speed was randomly selected at the start of each

treadmill run. In the ‘‘distance-fixed’’ protocol, the duration of each run was

adjusted so that the distance traveled was constant regardless of the treadmill

speed. In the ‘‘time-fixed’’ protocol, the duration of each runwas kept constant

regardless of the speed. Theminimum speed was chosen based on the lowest

speed in which the individual rat ran smoothly on the treadmill. If the treadmill

runs too slowly, the rat stops running smoothly and instead repeatedly runs

forward then rides the treadmill back. The maximum speed was limited by

the endurance of the rat, and the need to run enough laps to fully sample

the range of available speeds.

Once the rat was comfortable with the randomly varying speeds, the rats

were trained to alternate from the left reward arm to the right reward arm until

they consistently met criterion of steady running on the treadmill through the

range of speeds used, for at least 40 trials per session, with at least 75% ac-

curate alternation. The rats took between 2 and 7 training sessions to reach

75% accuracy, and as the addition of alternation often slowed down the ani-

mals, between 3 and 15 sessions to reach the combined requirement of 40 tri-

als with 75% accuracy.

Following training, rats were implanted with microdrives containing 24

independently drivable tetrodes aimed bilaterally at the pyramidal cell layer

of dorsal hippocampal CA1 (anterior-posterior [AP] = �3.2 mm; medial-lateral

[ML] = ± 1.9 mm). Each tetrode consisted of four strands of 0.0005’’ (12.7mm)

Stablohm 800 wire (California Fine Wire Company, Grover Beach, CA)

gold-plated to reduce impedance to between 180 and 220 kU at 1 kHz. At

the end of surgery, each tetrode was lowered �1 mm into tissue. Rats

were allowed at least one week recovery before training resumed and the

tetrodes were lowered into the CA1 layer. The amplitude and phase of theta

waves, the amplitude and sign of sharp-wave events, and the presence of

theta modulated complex spiking cells were used to localize CA1. After

recordings were concluded, 40 mA of current were passed through each

electrode for 30 s before perfusion and histological confirmation of tetrode

placement.

Once any tetrode reached CA1, rats were tested for 40–60 min, including at

least 40 laps per recording session. Electrical recordings were made using a

96 channel Multichannel Acquisition Processor (MAP) (Plexon Inc.). Each

channel was amplified and band-pass-filtered for both high-frequency

spiking activity (154 Hz–8.8 kHz) and low-frequency local field potentials

(1.5 Hz–400 kHz). One local field potential per tetrode was continuously digi-

tized at 1 kHz. Spike channels were referenced to another ipsilateral electrode

to remove movement related artifacts. Action potentials were detected by

threshold crossing and digitized at 40 kHz. Following recordings, action poten-
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tials belonging to single neurons were isolated (‘‘cluster cutting’’) using Offline

Sorter (Plexon Inc).

Each day, 5 min of data were acquired while the rat rested on a stool prior to

recording, and the peak value of eachwaveformon each electrodewas plotted

against the peak value of the waveform on other electrodes within the same

tetrode. The decision to record on that day was based on whether a visual in-

spection of the clusters identified units that had not been previously recorded.

To reduce the likelihood of analyzing the same neuron across multiple

recording sessions, the data analyzed in this paper do not include any sessions

recorded less than three days apart.

For three of the six rats, recordings were made during both ‘‘distance-fixed’’

and ‘‘time-fixed’’ sessions. With these rats, the initial recordings were made

using the same protocol used during the final stage of training (either ‘‘dis-

tance-fixed’’ or ‘‘time-fixed’’). After several recordings with the initial protocol,

the protocol was switched from ‘‘distance-fixed’’ to ‘‘time-fixed’’ (or vice

versa). The protocol was never changed mid-session, and the recording

from the first full session with the new protocol was not included in the analysis

for this paper. For the remaining three rats the same protocol was used

throughout the life of the animal (for training and recording sessions).

Analysis Methods

Following cluster cutting, all data analysis was performed using custom scripts

for MATLAB. Tuning curves indicating the average firing rate of a single unit as

a function of spatial position, time spent on the treadmill, or distance traveled

on the treadmill (Figures 2, 3, 5, 6, 7, S1, S2, and S3), were calculated by first

binning the respective variable, and counting the spikes occurring and the

amount of time spent in each bin. The spike counts and occupancy times in

each bin were independently smoothed by convolving with a Gaussian

smoothing kernel, then the spike counts were divided by the occupancy times

to calculate the average firing rate. For spatial tuning curves (also referred to as

spatial firing rate maps) in Figures 5 and S1, we used 1 cm 3 1 cm bins and a

circularly symmetrical Gaussian kernel with a standard deviation of 3 cm. For

spatial tuning curves in Figure 6 and corresponding analysis we used 1 camera

pixel square bins (approximately 0.2 cm3 0.2 cm) with a standard deviation of

3 pixels. For spatial tuning curves in Figure S3we used 2 cm3 2 cm bins with a

standard deviation of 6 cm. For temporal tuning curves (time spent on the

treadmill, Figures 2, 3, 6, 7, and S2), we used 200 ms bins and a Gaussian

kernel with a standard deviation of 600ms. For distance (traveled on the tread-

mill) tuning curves (Figures 3, 7, and S2), we used 5 cm bins and a Gaussian

kernel with a standard deviation of 15 cm.

In the ensemble temporal tuning curves presented in Figure 3, each row rep-

resents the temporal tuning curve for a single neuron, normalized by dividing

by the peak firing rate of that neuron. For distance-fixed sessions, activity

was plotted in units of distance, and for time-fixed sessions activity was

plotted in units of time. All neurons active on the treadmill during a single ses-

sion were included, sorted by their peaking firing time or distance.

To quantify a rat’s movement through physical space during treadmill

running, we divided the space occupied during treadmill running into 1 cm 3

1 cm bins and counted the number of video frames the rat spent in each spatial

bin. We then ranked the bins in order of decreasing time and counted the num-

ber of bins required to reach 75% of the total time spent on the treadmill. This

number was then multiplied by the area of each bin (1 cm2) to get the area that

accounted for 75% of the time spent on the treadmill. We refer to this area as

A75, and the smaller the value of A75, the less the rat moved through space

while on the treadmill.

We next quantified the degree to which the rat’s location systematically var-

ied as a function of the time spent on the treadmill. To do this, we took either

the distance (for distance-fixed sessions) or the time (for time-fixed sessions)

spent on the treadmill and divided it into five evenly divided ‘‘time’’ bins. We

then counted the number of spatial bins that were occupied at least once in

each ‘‘time’’ bin and multiplied that number by 1 cm2 to get the area that

was visited consistently across the entire treadmill run. We refer to this area

as AAT (‘‘AT’’ stands for ‘‘all time bins’’) to distinguish it from A75. If the rat’s po-

sition systematically changed over the time spent on the treadmill, then AAT

would be much smaller than A75. However, if the rat’s movements were small

and uncorrelated with time, then both A75 and AAT would be small and would

largely overlap one another (Figures 5 and S1).
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To determine whether the spatial tuning curve of a single neuron changed as

time progressed on the treadmill, we used a two-factor ANOVAwith spatial bin

and ‘‘temporal’’ bin as two factors (MacDonald et al., 2011). We included only

those spatial bins that were occupied at least once in each ‘‘time’’ bin (bins

located within AAT) in the ANOVA. We considered a neuron as having a signif-

icant change in firing rate as a function of time when the ANOVA produced a

main effect of time (p % 0.05).

To test the theory that the observed temporally-modulated firing patterns

could be entirely explained by the movement of the rat through space (i.e.,

place fields), we used the spatial tuning curve for each individual neuron to pre-

dict the firing rate of that neuron at each point in time. We started by using the

rat’s actual spatial position (x and y room coordinates) and spike counts

(sampled at 30 Hz) to generate a traditional occupancy normalized spatial

tuning curve based on the firing of each neuron as described above (using 1

camera pixel square bins [approximately 0.2 cm3 0.2 cm] and a standard de-

viation of 3 pixels). Thenwe used the spatial tuning curve as a look-up table: for

each video frame we looked up the rat’s actual spatial coordinates in the

spatial tuning curve to predict the firing rate of the neuron in that video frame.

The result is two vectors for each neuron: one containing the actual spike

counts for each video frame and another containing the predicted firing rate

based purely on the spatial tuning curve and the rat’s trajectory. We then

divided the time spent on the treadmill into 200ms bins and generated two oc-

cupancy-normalized temporal tuning curves for each neuron: (1) an empirical

temporal tuning curve which gave the actual average firing rate of the neuron

for each time bin and (2) a model temporal tuning curve which used the pre-

dicted firing rates to calculate the average firing rate for each time bin. We

then used a bootstrap method to generate confidence intervals around each

temporal tuning curve. We generated N (N = 1,000) bootstrap samples by

randomly sampling (with replacement) a subset of all the treadmill runs. For

each bootstrap sample, we calculated a temporal tuning curve for both the

actual (empirical) firing rates and predicted (model) firing rates, and then calcu-

lated the difference between these two tuning curves for each time bin. The

result was N empirical tuning curves, Nmodel tuning curves, and N difference

curves which were used to generate 95% confidence bounds on each tempo-

ral tuning curve and the difference curve (Figure 6).

We considered significant any time bins in which zero fell outside the confi-

dence bounds of the difference curve, and we considered the empirical and

model curves different if they were significantly different in at least one time

bin. To quantify the difference between the empirical and model tuning curves

for each neuron, both curves were normalized so the area under each curve

was 1, then the area between the curves was calculated to assign each neuron

a ‘‘difference score’’ ranging from 0 (identical) to 2 (nonoverlapping)

(Figure S5).

Generalized Linear Model (GLM)

A GLM framework was used to quantify the effects of time, distance, and po-

sition on neural activity (Dobson, 2002; Lepage et al., 2012; MacDonald et al.,

2011; McCullagh and Nelder, 1989; Truccolo et al., 2005). For this analysis the

spiking activity was modeled as an inhomogeneous Poisson process with the

firing rate a function of various covariates that modulate spiking activity (Lep-

age et al., 2012; MacDonald et al., 2011). During treadmill running, the spiking

activity was modeled as

lS+T+DðtÞ= ltimeðtÞ$ldistanceðtÞ$lspaceðtÞ$lspeedðtÞ$lhistoryðtÞ (Equation 1)

Here ls+ t +dðtÞ is the probability of a spike within each 1 ms time bin (‘‘S,’’

‘‘T,’’ and ‘‘D,’’ stand for ‘‘space,’’ ‘‘time,’’ and ‘‘distance,’’ respectively).

lnðltimeðtÞÞ is a fifth-order polynomial of time relative to the start of each tread-

mill run (Equation 2), lnðldistanceðtÞÞ is a fifth-order polynomial of the distance

the belt moved since the start of each treadmill run (Equation 3), lspaceðtÞ is a

Gaussian shaped place field composed of five parameters (Equation 4),

lnðlspeedðtÞÞ is a first-order polynomial of the treadmill speed (Equation 5),

and lhistoryðtÞ contains the spiking history of the neuron (Equation 6).

ltimeðtÞ= e
P5

i=1
aitðtÞi (Equation 2)

ldistanceðtÞ= e
P5

i=1
bi dðtÞi (Equation 3)
lspaceðtÞ=eg1xðtÞ+g2xðtÞ2 +g3yðtÞ+g4yðtÞ2 +g5xðtÞyðtÞ (Equation 4)

lspeedðtÞ= ed1 + d2sðtÞ (Equation 5)

lhistoryðtÞ= e
P5

i= 1
qinðt�ðiÞms;t�ði�1ÞmsÞ+

P11

i= 6
qi nðt�ð25i�120Þms;t�ð25i�145ÞmsÞ (Equation 6)

In Equation 2, tðtÞ refers to the time since the treadmill last started, and the

five a’s are parameters that control the degree to which the spike rate is modu-

lated by time. In Equation 3, dðtÞ refers to the distance the treadmill belt has

moved since the start of each treadmill run, and the five b’s are parameters

that specify the influence of this distance on spike rate. In Equation 4, xðtÞ
and yðtÞ refer to the spatial position (x and y room coordinates) of the rat at

time t and five g’s specify the influence of space on spike rate. In Equation 5,

d1 is a constant representing the mean firing rate, sðtÞ refers to the treadmill

speed at time t, and d2 specifies the influence of speed on spike rate. In Equa-

tion 6, nðt1; t2Þ is the number of spikes that occurred between times t1 and t2.

The eleven history terms represent five 1 ms bins going back 5 ms (0–1 ms,

1–2 ms, 2–3 ms, 3–4 ms, 4–5 ms) and six 25 ms bins going back an additional

150ms (5–30ms, 30–55ms, 55–80ms, 80–105ms, 105–130ms, 130–155ms).

Each history term is modulated by one q parameter.

Equation 1 represents the full model encompassing the influence of space,

time, and distance on spiking activity (‘‘S+T+D’’ model). We similarly defined

six nested models (Figure S4A):

lS+TðtÞ= ltimeðtÞ$lspaceðtÞ$lspeedðtÞ$lhistoryðtÞ (Equation 7)

lT+DðtÞ= ltimeðtÞ$ldistanceðtÞ$lspeedðtÞ$lhistoryðtÞ (Equation 8)

lS+DðtÞ= ldistanceðtÞ$lspaceðtÞ$lspeedðtÞ$lhistoryðtÞ (Equation 9)

lDðtÞ= ldistanceðtÞ$lspeedðtÞ$lhistoryðtÞ (Equation 10)

lSðtÞ= lspaceðtÞ$lspeedðtÞ$lhistoryðtÞ (Equation 11)

lTðtÞ= ltimeðtÞ$lspeedðtÞ$lhistoryðtÞ (Equation 12)

Equation 7 defines the space and time (‘‘S+T’’) model, Equation 8 defines the

time and distance (‘‘T+D’’) model, Equation 9 defines the space and distance

(‘‘S+D’’) model, Equation 10 defines the distance (‘‘D’’) model, Equation 11 de-

fines the space (‘‘S’’) model, and Equation 12 defines the time (‘‘T’’) model.

The parameters for each model were estimated using an iterative Newton-

Raphson method to maximize the likelihood function, as described in Lepage

et al. (2012). The resulting maximum likelihoods ðGiÞ for each model (li ) were

then used in likelihood ratio tests to compare each nested model to the full

model to determine whether the additional covariates provided significant in-

formation about spiking.

DðS+T+DÞ�S = 2ðlnðGS+T+DÞ � lnðGT+DÞÞ (Equation 13)

DðS+T+DÞ�ðT+DÞ = 2ðlnðGS+T+DÞ � lnðGSÞÞ (Equation 14)

DðS+T+DÞ�T = 2ðlnðGS+T+DÞ � lnðGS+DÞÞ (Equation 15)

DðS+T+DÞ�D = 2ðlnðGS+T+DÞ � lnðGS+TÞÞ (Equation 16)

Equations 13 and 14 calculate the deviance of the ‘‘T+D’’ model and ‘‘S’’

model respectively from the full model due to the removal of the covariates

missing from the nested model. The results are shown in Figures S4B and

S4C. Note thatDðS+T +DÞ�S is calculated using GT +D (the likelihood of themodel

with time and distance, but without space), such that the larger the value of

DðS+T +DÞ�S, the larger the influence of space on spiking activity. Under the

null hypothesis, that the addition of space to the nested model containing

time and distance does not provide more information about spiking activity,

the test statistic DðS+ T +DÞ�S has a c2-distribution with 5 degrees of freedom.

Similarly, under the null hypothesis that the combination of time and distance

do not provide more information about spiking activity to the nested model

already containing space, the test statistic Dt +dDðS+T +DÞ�ðT +DÞ has a
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c2-distribution with 10 degrees of freedom (as time and distance encompass

10 covariates in the full model). The test statistics DðS+T +DÞ�T and DðS+T +DÞ�D

(Equations 15 and 16) indicate whether time (in addition to distance) or dis-

tance (in addition to time) provided more information about spiking activity,

and under the null hypothesis both have a c2-distribution with 5 degrees of

freedom. Figure 8A plots the value of DðS+ T +DÞ�D against the value of

DðS+T +DÞ�T . We next subtractedDðS+T +DÞ�D fromDðS+T +DÞ�T to obtain a mea-

sure of the influence of time compared to the influence of distance (Lepage

et al., 2012; MacDonald et al., 2011; Figure 8B).

DDT�D =DðS+T+DÞ�T � DðS+T+DÞ�D

DDT�D = 2ðlnðGS+T+DÞ � lnðGDÞÞ � 2ðlnðGS+T+DÞ � lnðGTÞÞ
DDT�D = 2ðlnðGTÞ � lnðGDÞÞ

(Equation 17)

The value of DDT�D will be negative if DðS+ T +DÞ�D >DðS+ T +DÞ�T , indicating a

stronger influence of distance than time on the spiking activity. Similarly,

DDT�D will be positive if DðS+T +DÞ�T >DðS+T +DÞ�D, indicating a stronger influ-

ence of time on the spiking activity (Figure 8B).

As the subtraction in Equation 17 is only valid when both nested models

have the same number of degrees of freedom, to directly compare space

with just time, or space with just distance, we calculated the deviance of the

‘‘S’’ and ‘‘T’’ models from the ‘‘S+T’’ model and the deviance of the ‘‘S’’ and

‘‘D’’ models from the ‘‘S+D’’ model, as shown in Equations 18, 19, 20, 21,

22, and 23.

DðS+TÞ�T = 2ðlnðGS+TÞ � lnðGSÞÞ (Equation 18)

DðS+TÞ�S = 2ðlnðGS+TÞ � lnðGTÞÞ (Equation 19)

DðS+DÞ�D = 2ðlnðGS+DÞ � lnðGSÞÞ (Equation 20)

DðS+DÞ�S = 2ðlnðGS+DÞ � lnðGDÞÞ (Equation 21)

DDS�T =DðS+TÞ�S � DðS+TÞ�T (Equation 22)

DDS�D =DðS+DÞ�S � DðS+DÞ�D (Equation 23)

Figures S4D and S4F plot the value ofDðS+TÞ�T against the value ofDðS+TÞ�S

and the value of DðS+DÞ�D against the value of DðS+DÞ�S, respectively. Figures

S4E and S4G show a histogram of the resulting values of DDS�T and DDS�D,

respectively.

The GLM analysis was performed twice, first on the data from the entire time

the treadmill was running and then again using only data from spatial bins

located within A75. The second version of the analysis was conducted to elim-

inate the influence of the times when the rat’s behavior violated our assump-

tion of constant and steady running (by momentarily shifting outside A75).

The results of both analyses were qualitatively the same. The data presented

in the text and figures are from the second version of the analysis.
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