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Abstract

We investigated the importance of hippocampal theta oscillations and the significance of phase differences of theta modulation in the

cortical regions that are involved in goal-directed spatial navigation. Our models used representations of entorhinal cortex layer III (ECIII),

hippocampus and prefrontal cortex (PFC) to guide movements of a virtual rat in a virtual environment. The model encoded representations of

the environment through long-term potentiation of excitatory recurrent connections between sequentially spiking place cells in ECIII and

CA3. This encoding required buffering of place cell activity, which was achieved by a short-term memory (STM) in EC that was regulated by

theta modulation and allowed synchronized reactivation with encoding phases in ECIII and CA3. Inhibition at a specific theta phase

deactivated the oldest item in the buffer when new input was presented to a full STM buffer. A 1808 phase difference separated retrieval and

encoding in ECIII and CA3, which enabled us to simulate data on theta phase precession of place cells. Retrieval of known paths was elicited

in ECIII by input at the retrieval phase from PFC working memory for goal location, requiring strict theta phase relationships with PFC.

Known locations adjacent to the virtual rat were retrieved in CA3. Together, input from ECIII and CA3 activated predictive spiking in cells in

CA1 for the next desired place on a shortest path to a goal. Consistent with data, place cell activity in CA1 and CA3 showed smaller place

fields than in ECIII.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The theta rhythm consists of large amplitude 3–12 Hz

oscillations recorded in the EEG of the hippocampus of

different animal species during exploration and orientation

to stimuli (Buzsáki, Leung, & Vanderwolf, 1983). These

theta oscillations are associated with rhythmic changes in

a number of physiological variables, including neuronal

membrane potential (Fox, 1989), synaptic currents in

different layers (Brankack, Stewart, & Fox, 1993), the

magnitude of synaptic transmission (Wyble, Linster, &

Hasselmo, 1997) and the spiking activity of neurons (Fox,

Wolfson, & Ranck, 1986). In addition, extensive data

demonstrates that long-term potentiation of synaptic

strength can be induced more effectively with stimulation

at the peak of theta waves, while decreases in strength or

no change is observed with stimulation at the trough of

the theta wave (Hasselmo, Bodelon, & Wyble, 2002;

Hölscher, Anwyl, & Rowan, 1997; Huerta & Lisman,

1993; Pavlides, Greenstein, Grudman, & Winson, 1988).

This supports the hypothesis that theta rhythm allows

separate phases of encoding and retrieval. In rats, lesions

of the fornix remove much of the amplitude of theta

rhythm. This impairs the ability to learn reversal tasks, in

which a previously rewarded behavior must be replaced

with an opposite behavior. For example, rats have

difficulty learning a right turn response after initially

learning a left turn response (M’Harzi, Palacios, Mon-

maur, Houcine, & Delacour, 1987). Previous analytical

work has shown how performance in behavioral tasks

such as the reversal task could depend upon specific phase

relationships between physiological variables changing

during theta rhythm oscillations (Hasselmo et al., 2002).

The simulations presented here further demonstrate the

functional role of phase relationships in entorhinal cortex

and prefrontal cortex, as well as the functional role of

other physiological properties.
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We have utilized spiking network models of rat

entorhinal and hippocampal circuitry to analyze the

functional role of theta rhythm oscillations. These models

have been developed in two different software packages:

CATACOMB, developed by Cannon, Koene, and Hasselmo

(2002)) and KInNeSS, developed in the Hasselmo labora-

tory by Gorchetchnikov. The use of separate models

effectively tests the robustness of theoretical hypotheses

and allows analysis of individual details of function. In both

of these projects, the use of spiking neurons in network

simulations to guide movements of a virtual rat in a virtual

environment allow the network activity to be analyzed in the

same manner as spiking activity recorded from single

neurons in awake behaving rats. We will first discuss

research using CATACOMB.

Using CATACOMB, a spiking neuron model of rat

entorhinal and hippocampal circuitry (Cannon et al.,

2002) was implemented to investigate the significance of

these phasic changes while performing goal-directed

spatial navigation tasks in a T-maze. The roles of neuron

populations (ECII, ECIII, CA3, CA1) are based on

hypothesized functions of these individual regions in

spatial learning and recall tasks. Instead of static data

sets, environmental input to model networks changes in

accordance with task-specific behaviours that arise from

physical simulations driven by the network output (e.g.

when exploration of the T-maze leads to the discovery of

food-reward). A virtual rat is placed in a novel

environment, given an opportunity to learn the environ-

ment and then presented with the task to navigate to a

goal discovered in that environment.

The task was successfully learned, enabling the virtual

rat to find a shortest path to food-reward. Synchronized

learning in ECIII and CA3 was achieved with a STM buffer

that insured ordered repetition of sequences of place cell

spikes without the variability caused by differences in place

field traversal times. We improved our knowledge of the

connections between physiological and behavioural data

through our approach: studying task-specific behavioural

problems caused by the dynamic interaction of the neuronal

circuitry with the experimental environment. In this manner,

we demonstrated the well-known empirical phenomenon of

phase precession by recording simulated hippocampal place

cell firing. We also found that place fields produced in our

model exhibited the typical finer grain in CA1 and less

defined, coarser appearance in ECIII. Theta modulation in

ECIII and CA3 provided phases of encoding and retrieval

that operate in parallel without interference. Theta also

regulated episodic repetition in a STM buffer. Phase

differences betwen regions undergoing theta modulation

ensured the correctly timed propagation of activity. Theta

modulation in our model is, therefore, crucial in order to

accomplish each of these three aspects of the learning and

spatial navigation task.

2. Results

During initial encoding, a virtual rat follows prede-

termined exploratory trajectories in the environment (Fig.

1). Place cell activity is assigned with variable place field

sizes (Barnes McNaghton, Mizumori, Leonard, & Lei--

Huey, 1990; Eichenbaum, Dudchenko, Wood, Shapiro, &

Tanila, 1999; Frank, Brown, & Wilson, 2000; McNaugh-

ton, Barnes, & O’Keefe, 1983; Muller & Kubie, 1989;

Quirk, Muller, Kubie, & Ranck, 1992). Associations

between sequential place cell activity along the trajec-

tories as well as in the goal location is encoded on

recurrent fibres in ECIII and CA3 by LTP. During task

performance, retrieval in the spiking neuron network

produces output at the CA1 population that guides the

direction of movement.

During exploration, the interval between the initial

arrival of place cell spikes from adjacent place fields is

arbitrary. However, the window of spike intervals that elicit

effective LTP is less than 40 ms (Levy & Stewart, 1983) and

LTP elicited by the single initial spike input is not reliable

enough to produce strong Hebbian learning. Repetition of

the ordered presentation of neighbouring place cell spikes is

needed within the LTP window. A STM buffer can

accomplish this.

There are no initially known patterns and buffering

cannot be LTP-dependent, as the establishment of LTP

requires in excess of 100 ms (Bi & Poo, 1998). It is

hypothesized that intrinsic mechanisms may maintain firing

patterns, as initially proposed by Lisman (Lisman & Idiart,

1995). One such mechanism is ADP (calcium sensitive

cation currents induced by muscarinic receptor activation

(Klink & Alonso, 1997)), as shown below. Synchronized

timing can be achieved by regulating repetition through

theta modulation. This assures that STM reactivation

coincides with an encoding phase in both ECIII and CA3

(Fig. 2). Recurrent inhibition within the buffer can separate

the reactivation of sequential items to maintain order

(gamma rhythm) (Jensen & Lisman, 1996; Lisman & Idiart,

1995).

2.1. Reactivation in EC at gamma intervals within a phase

of theta oscillation may provide short-term memory

Spiking produced by afferent activity during the input

phase of the buffer is reactivated by the ADP during

subsequent repetition phases. Theta modulation of mem-

brane potential regulates the two phases. Theta oscillations

Fig. 1. Exploratory motions of a virtual rat generate place fields and

corresponding spiking activity.
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(8 Hz) are produced by regular activity originating in septal

populations (Brazhnik & Fox, 1999) believed to modulate

the GABAergic inhibition of pyramidal cells via networks

of interneurons (Alonso, Gaztelu, Bruno, & Garcia-Austt,

1987; Skaggs, McNaughton, Wilson, & Barnes, 1996;

Stewart & Fox, 1990). Recurrent gamma inhibition

produced by interneuronal networks (Bragin, Jando,

Nadasdy, & Hetke, 1995) in response to each item spike

imposes intervals that maintain the distinct and ordered

reactivation of items (Fig. 3).

Noise and slow-AHP gradually decay STM. Prior to such

decay, item replacement in the buffer is controlled by

inhibition at a specific theta phase when new input is

received. Replacement must retire the earliest item in the

buffer (FIFO). Retirement must be rapid to avoid changes in

repetition order that could become encoded in ECIII or

CA3. This carefully timed inhibition triggered in response

to the number of items in the buffer as well as the arrival of a

new item spike (shown in Fig. 4) completes the STM model

without the problematic input timing and ADP response

characteristics required in the Jensen et al. model (Jensen,

Idiart, & Lisman, 1996).

An interneuron population receives recurrent synaptic

input from the buffer cells as well as input propagated from

sources that supply afferent input to the buffer. Synaptic

efficacies establish a gating function, such that N recurrent

item inputs elicit subthreshold potentials in the interneur-

onal population, but an additional N þ 1th afferent input

elicits spiking. The consequent GABAergic inhibition on

the buffer is synchronized so that its hyperpolarizing effect

delays reactivation of the earliest item in the buffer long

enough for its ADP to subside (Fig. 4). The first item drops

out of the buffer and the new item assumes the last position

in the buffered sequence.

The STM buffer bridges large intervals between the

appearance of successive place cell spikes and achieves

extended repetition of paired spiking so that strong LTP can

be established. Sequential binding is, therefore, less

dependent on the speed of place field traversal and episodic

learning proceeds with correct unidirectional heteroasso-

ciativity. The STM provides input that conforms to the

encoding requirements of ECIII and CA3.

2.2. Encoding and retrieval can take place continuously in

consecutive phases of theta

The behavioural task requires ongoing acquisition of new

associations without interference from ongoing retrieval

using the same synapses. We, therefore, hypothesize that

learning and retrieval may take place in separate phases of

theta modulation (Hasselmo et al., 2002), 1808 apart to

avoid interference between the two modes (Fig. 5). This

hypothesis is supported by phase differences in different

Fig. 2. The STM buffer in ECII converts arbitrary input spikes into

synchronously repeated spike pairs for encoding in ECIII and CA3. Theta

modulation of ECII pyramidal cell membrane potentials and phase-locked

afferent and recurrent transmission modulations impose the repetition

frequency and ensure that new input enters the buffer at the theta trough.

This rhythmic modulation is regulated by a spike generator which

simulates data on theta rhythmic firing of neurons in the septum. While

the capacity is limited to two items in the current example, our STM model

can accommodate up to four items that are reactivated on the depolarizing

phase of each theta cycle. Items are separated by gamma intervals that are

imposed by a population of interneurons. Another population of

interneurons provides inhibition at the phase of the first item reactivation

when place cell spike input arrives at a full STM buffer. This ensures first-

in-first-out (FIFO) replacement of STM items.

Fig. 3. New input is added to the STM buffer and the sequence is repeated.

Reactivation of a buffered sequence occurs when ADP and the strongly

depolarizing phase of theta modulation combine to exceed the firing

threshold. Lateral inhibition maintains the separation of items in the buffer,

as reactivation causes a recurrent interneuronal network to spike at gamma

frequency (40 Hz). These recurrent GABAergic synaptic transmissions are

enabled during the high value phase of ‘recurrent transmission’ modulation,

while synapses receiving afferent input into the buffer are enabled during

the high value phase of ‘afferent transmission’ modulation.

Fig. 4. The STM buffer replaces items in a first-in-first-out (FIFO) manner

through targeted inhibition. When activity indicates a full buffer (N spikes),

this combines with the arrival of a new item spike to trigger interneurons

synchronized to spike so that the GABAergic effect on STM neurons

suppresses firing of the first item until its ADP has decayed. The new item

reactivates near the peak of theta modulation, thereby assuming the last

position in the buffered sequence.
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synaptic input currents from EC and CA3 observed in

current source density measures (Brankack et al., 1993;

Stewart & Fox, 1990).

Phase-precession is a phenomenon recorded during in

vivo experiments of spatial learning in rats (O’Keefe &

Recce, 1993; Skaggs et al., 1996). Data from these

experiments shows that the phase of theta at which a place

cell fires gradually shifts to earlier phases as a rat traverses a

known place field, as well as during learning. In the model,

we measured the firing of cells relative to theta rhythm. As

the virtual rat enters a place field the corresponding place

cell fires at late phases of theta in CA1—predictive spiking.

As the virtual rat crosses the place field, place cell firing

becomes earlier in theta in CA1—encoding spiking (Fig. 6).

During encoding phases in the model we simulate

suppression of recurrent fiber synaptic transmission via

increased interneuron activating presynaptic GABAB chan-

nels (Hasselmo et al., 2002). This prevents interference

from retrieval of existing associations (Fig. 7). Consistent

with experimental data (Hölscher et al., 1997; Wyble,

Hyman, Goyal, & Hasselmo, 2001), induction of LTP is

rhythmically modulated to occur during the encoding phase,

but not during the retrieval phase when recurrent synaptic

transmission is strong.

Known locations adjacent to the virtual rat are retrieved

in CA3 (Fig. 8), while associative retrieval in ECIII

represents known paths (Fig. 9). A PFC STM buffer stores

the location of goals that were discovered. PFC and

hippocampus must spike synchronously.

CA1 activity (Fig. 10) depends on a combination of sub-

threshold contributions from both CA3 (adjacent candi-

dates) and ECIII (association with a path to the goal).

Spiking in CA1 activates an interneuronal population that

provides recurrent inhibition to CA1. A winner-take-all

competition is accomplished (Fig. 11) in which one

successful candidate spikes to indicate the next desired

place on a shortest path to a goal.

Empirical data indicates that place fields in CA1 are

significantly smaller than place fields in EC (Barnes et al.,

1990; Frank et al., 2000; Quirk et al., 1992). Measurements

Fig. 5. When afferent synaptic input from EC to CA3 and EC to CA1 is

strong encoding is favoured. When recurrent synaptic transmission in CA3

and synaptic input from CA3 to CA1 is strong retrieval is favoured.

Fig. 6. Encoding and retrieval theta phases simulate theta phase precession.

Model results for each place cell in CA1 show that as the corresponding

place field is entered, the cell spikes in the retrieval phase of theta

modulation. The retrieval allows the virtual rat to predict the next desired

location on a path during navigation. As the virtual rat moves, spiking shifts

to earlier phases. Spiking of the place cell during this phase allows it to

participate in the episodic encoding of new paths.

Fig. 7. The matrix of connectivity in the model demonstrates that theta

rhythm is essential to the learning of correct paths as represented by ordered

episodes of place cell spikes. Left: Good function with theta rhythm. The

matrix on the left shows good connectivity resulting from separation of

encoding and retrieval into distinct theta phases. This allows path encoding

to take place without interference from retrieved spikes. The resulting

patterns of synapses strengthened by LTP show pairwise associations

between consecutive place cells along paths in the T-maze. Right: Poor

encoding without theta. Without theta modulation the order breaks down

and erroneous associations are formed between most locations.

Fig. 8. Current location drives retrieval in CA3. As the virtual rat moves up

the stem of the T-maze, a synchronization population ensures that spikes

representing current location arrive in CA3 at its retrieval phase. Strong

LTP on recurrent fibres then retrieves spikes for known adjacent locations.

Lateral inhibition through interneurons in CA3 limits the spread of

retrieval. Both the previous and next locations in the stem are retrieved.
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in the model show that activity is limited in CA3 and CA1,

but broad in ECIII, consistent with that data (Fig. 12)

(Cannon et al., 2002).

2.3. Phase differences in theta modulation between

prefrontal and medial temporal regions enhance functional

interaction

Given the need to propagate retrieval spikes from a

source population (e.g. ECII STM) at the encoding phase of

a target population (e.g. CA3), it is clear that specific theta

phase relationships must exist between the different regions.

In Fig. 13, the magnitude of modulation at theta frequency

in cellular membrane potentials and synaptic transmission

ratios shows the phase differences that allow PFC, ECII,

ECIII, CA3 and CA1 regions to interact successfully.

2.4. An alternative model implementation provides

additional support for our hypothesis of the role of theta

in navigation

Our theoretical model was also evaluated in a different

implementation with similar functional properties using the

KIn–NeSS simulation package. We selected single-com-

partment integrate-and-fire neurons in the CATACOMB

implementation above. In contrast, in KInNeSS each neuron

consists of a dendrite compartment governed by the voltage

equation and the standard approximation of the cable

equation (Bower & Beeman, 1995), plus a soma compart-

ment based on the canonical model of the type 1 neuron

(Ermentrout & Kopell, 1986; Hoppensteadt & Izhikevich,

1998). The details of the cell model are provided elsewhere

(Gorchetchnikov & Hasselmo, 2003), while we now

emphasize the differences between the two system

implementations.

Where a septal source of modulation at theta frequency is

assumed in the CATACOMB simulation, septal cell activity

in the KInNeSS simulation is derived from recurrent

interactions with the hippocampal area via fornix connec-

tions. Similar rhythmic behaviour and synchronization at

theta frequency emerges in both simulations. This synchro-

nization affects neuronal activity within the hippocampus,

as well as phase-locked spiking activity in the hippocampus

and PFC. In the simulation above, ECIII learned episodes of

place cell activity that represent navigable paths. In the

KInNeSS implementation, this requisite knowledge for

navigation is provided as sets of restrictions on certain

locations. Restrictions range from absolute prohibition (an

unreachable location behind a wall) to various degrees of

aversion (e.g. a representation of the scent of a predator),

established during the exploration of the environment.

Unexplored locations remain unrestricted, so that the model

can simulate path integration behaviour and attempt to take

short-cuts through those locations.

The representation of space in the CATACOMB

simulation is continuous in terms of the appearance of

place fields during exploration and the motion directed by

activity in CA1. In the KInNeSS simulation, space is

mapped onto a two-dimensional grid of cells that form the

centers of place fields. This approach is based on results by

Trullier and Meyer (2000), who demonstrated equivalent

performance with both a priori uniformly assigned place

fields and place fields that were generated dynamically to

Fig. 9. Known goal locations in the T-maze, stored in PFC, cause spiking in

ECIII which spreads from the goal along known paths. The Goal activity

elicits spiking in ECIII at its retrieval phase in each theta cycle. Retrieval

spreads away from the goal along associated known paths via recurrent

fibres previously strengthened by LTP.

Fig. 10. Spiking in CA1 predicts desired next location on a shortest path to a goal. Retrieval in ECIII of known paths to the goal combines with retrieval in CA3

of known adjacent locations. Where the two most rapidly coincide, a spike is elicited in CA1.
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reflect the complexity of the environment. Similarly, the

two different implementations of our theoretical model

demonstrate its robust performance, regardless of the

method chosen to generate place fields and their layout.

Finally, the KInNeSS simulation enables us to examine

performance in the case of multiple goals in a single

environment (a linear track, a maze or an open field).

Recurrent inhibition in CA1 is critical to the behaviour of

the model, as it underlies the competitive choice of a desired

move towards the nearest goal. In a linear track or maze

with narrow arms, the recurrent CA1 inhibition of the

KInNeSS simulation results in optimal winner-take-all

competition (Fig. 14). The situation is more complicated

in the open field, as multiple CA1 cells of neighbouring

locations in the general direction of the goal can spike

before the onset of the competitive inhibition. This will be

resolved through the inclusion of a head-direction system

that takes output from CA1 and computes an average

direction that can consistently drive the virtual rat’s

Fig. 11. Retrieved knowledge of paths in the T-maze and of adjacent locations causes predictive spiking that drives movement. The virtual rat is at the top of the

T-maze stem. Place cell spiking at the current location retrieves three adjacent locations (down, left, right) Synaptic responses to these spikes in CA3 cause a

slowly decaying depolarization in the corresponding cells in CA1. At the same time, a goal-spike received in ECIII elicits retrieval of known paths from the

goal location at the end of the left arm of the T-maze to the bottom of the stem, as well as to the end of the right arm. This activity coincides first with the

adjacency reponse in CA1 representing the adjacent location in the left arm of the T-maze. The resulting spike in CA1 predicts the next desired location and

suppresses further spiking through lateral inhibition. The virtual rat consequently moves into the left arm of the T-maze. There, a new current location spike in

CA3 continues the predictions that drive movement.

Fig. 12. The model replicates differences in place field sizes observed in

experiments. These plots show the locations in the T-maze at which

individual example place cells in each region were activated. The place

fields generated by spiking activity in ECIII are broad and overlapping. By

contrast, the place fields in CA1 are small and well defined.

Fig. 13. The function of the model requires specific phase relationships

between theta rhythmic modulation of membrane potentials and synaptic

transmission in different locations. During encoding (enc.), patterns spike in

the STM buffer during the depolarized membrane phase in ECII, and are

transmitted to ECIII and CA3 at their encoding phases (less depolarized

membrane potential) via afferent synapses in their phase of strong

transmission. During retrieval (retr.), the phase of membrane depolarization

in PFC activates a goal-representation that is transmitted to ECIII. During

retrieval, recurrent fibre synapses are at the phase of full strength and cause

spiking in ECIII and CA3 neurons, which are in their phase of somatic

depolarization. This leads to the retrieval of known associations. ECIII

retrieves known paths associated with the goal-location. These are

combined in CA1 with associations retrieved in CA3 that indicate known

place fields adjacent to current location of the virtual rat.
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movements. Empirical measurements support the existence

of such head-direction cells in regions receiving input from

CA1, such as the parasubiculum (Taube, 1995).

3. Conclusion

The model successfully enabled a virtual rat to learn its

environment and to navigate on a shortest path to a food-

reward goal encountered during exploration. By modeling

with a focus on the behavioural task and interactions with

the environment rather than individual regional functions,

new insight was gained into significant requirements

imposed by the dynamics involved. The manifestation of

problems specific to the behaviour allowed us to link

behavioural data with physiological data.

These insights support the hypothesis that theta modu-

lation is a functional necessity in an integrative model of a

realistic spatial navigation task: (1) It can impose distinct

phases of ongoing encoding and retrieval. (2) It can

maintain a STM buffer crucial to episodic learning. (3) It

synchronizes spiking so that specific phase relationships can

be achieved for the propagation of activity between cortical

regions. The inspection of simulated spiking neurons

resembles recording of place cells from hippocampus in

awake behaving rats, allowing phenomena such as phase

precession to be investigated and evaluated in terms of

existing data. The implementation of a STM buffer made

learning less dependent on the speed of motion and the

timing of place cell spiking, while it maintained the order in

which place cell spikes appeared for sequence learning.

Finally, place fields in model CA1 were found to be smaller

and more defined than those in ECIII.

In our upcoming work, we are adding a system of

neocortical ‘minicolumns’ that will enable the learning of

conditional relationships and task rules. This system will

interact with the hippocampus for the retrieval of episodic

memory items. A model that extends beyond the hippo-

campus will allow explicit separation of the components of

behavior requiring the hippocampus from those components

which are spared after hippocampal lesions.
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Buzsáki, G., Leung, L., & Vanderwolf, C. (1983). Cellular bases of

hippocampal EEG in the behaving rat. Brain Research, 287, 139–171.

Cannon, R., Hasselmo, M., & Koene, R. (2002). From biophysics to

behaviour: Catacomb2 and the design of biologically plausable models

for spatial navigation. Neuroinformatics, 1(1), 3–42.

Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H.

(1999). The hippocampus, memory, and place cells: Is it spatial

memory or a memory space? Neuron, 23, 209–226.

Ermentrout, G., & Kopell, N. (1986). Parabolic bursting in an excitable

system coupled with slow oscillation. SIAM Journal of Applied

Mathematics, 46, 233–252.

Fig. 14. Competitive decision making between two goals on a linear track

with six place fields. ECIII and CA3 panels show raster plots of cells

according to their locations on the track and their activity over time. The

two goals and current location (c.l.) are indicated. ECII and CA1 panels

show the recorded cell activity in respective areas. The spikes in ECIII and

CA3 marked with black circles almost coincide in time and produce a rapid

response in CA1—a correct choice. The spikes in the gray circles would

produce an incorrect choice. They are further separated in time, causing a

delayed response in CA1 that is suppressed by recurrent inhibition (black

arrowhead).

R.A. Koene et al. / Neural Networks 16 (2003) 577–584 583

http://askja.bu.edu
http://askja.bu.edu


Fox, S. (1989). Membrane potential and impedance changes in hippocam-

pal pyramidal cells during theta rhythm. Experimental Brain Research,

77, 283–294.

Fox, S., Wolfson, S., & Ranck, J. (1986). Hippocampal theta rhythm and

the firing of neurons in walking and urethane anesthetized rats.

Experimental Brain Research, 62, 495–508.

Frank, L., Brown, E., & Wilson, M. (2000). Trajectory encoding in the

hippocampus and entorhinal cortex. Neuron, 27(1), 169–178.

Gorchetchnikov, A., & Hasselmo, M. (2003). Timing of consecutive

traveling pulses in a model of entorhinal cortex. Proceedings of the

International Joint Conference on Neural Networks, in press.

Hasselmo, M., Bodelon, C., & Wyble, B. (2002). A proposed function for

hippocampal theta rhythm: Separate phases of encoding and retrieval

enhance reversal of prior learning. Neural Computation, 14(4),

793–817.

Hölscher, C., Anwyl, R., & Rowan, M. (1997). Stimulation on the positive

phase of hippocampal theta rhythm induces long-term potentiation that

can be depotentiated by stimulation on the negative phase in area CA1

in vivo. Journal of Neuroscience, 17(16), 6470–6477.

Hoppensteadt, F., & Izhikevich, E. (1998). Weakly connected neural

networks. New York: Springer.

Huerta, P., & Lisman, J. (1993). Heightened synaptic plasticity of

hippocampal ca1 neurons during a cholinergically induced rhythmic

state. Nature, 364, 723–725.

Jensen, O., Idiart, M., & Lisman, J. (1996). Physiologically realistic

formation of autoassociative memory in networks with theta/gamma

oscillations: Role of fast NMDA channels. Learning & Memory, 3,

243–256.

Jensen, O., & Lisman, J. (1996). Novel lists of 7 ^ 2 known items can be

reliably stored in an oscillatory short-term memory network: Interaction

with long-term memory. Learning & Memory, 3, 257–263.

Klink, R., & Alonso, A. (1997). Morphological characteristics of layer ii

projection neurons in the rat medial entorhinal cortex. Hippocampus, 7,

571–583.

Levy, W., & Stewart, D. (1983). Temporal contiguity requirements for

long-term associative potentiation/depression in the hippocampus.

Neuroscience, 8(4), 791–797.

Lisman, J., & Idiart, M. (1995). Storage of 7 ^ 2 short-term memories in

oscillatory subcylces. Science, 267, 1512–1515.

McNaughton, B., Barnes, C., & O’Keefe, J. (1983). The contributions of

position, direction, and velocity to single unit activity in the

hippocampus of freely-moving rats. Experimental Brain Research,

52(1), 41–49.

M’Harzi, M., Palacios, A., Monmaur, P., Houcine, O., & Delacour, J.

(1987). Effects of selective lesions of hippocampal connections on

learning set in the rat. Physiology and Behavior, 40, 181–188.

Muller, R. U., & Kubie, J. (1989). The firing of hippocampal place cells

predicts the future position of freely moving rats. Journal of

Neuroscience, 9, 4101–4110.

O’Keefe, J., & Recce, M. (1993). Phase relationship between hippocampal

place units and the hippocampal theta rhythm. Hippocampus, 3,

317–330.

Pavlides, C., Greenstein, Y., Grudman, M., & Winson, J. (1988). Long-term

potentiation in the dentate gyrus is induced preferentially on the

positive phase of theta-rhythm. Brain Research, 439(1/2), 383–387.

Quirk, G., Muller, R., Kubie, J., & Ranck, J. Jr (1992). The positional firing

properties of medial entorhinal neurons: Description and comparison

with hippocampal place cells. The Journal of Neuroscience, 12,

1945–1963.

Skaggs, W., McNaughton, B., Wilson, M., & Barnes, C. (1996). Theta

phase precession in hippocampal neuronal populations and the

compression of temporal sequences. Hippocampus, 6, 149–172.

Stewart, M., & Fox, S. (1990). Do septal neurons pace the hippocampal

theta rhythm? Neuron, 13, 163–168.

Taube, J. (1995). Place cells recorded in the parasubiculum of freely

moving rat. Hippocampus, 5, 569–583.

Trullier, O., & Meyer, J.-A. (2000). Animat navigation using a cognitive

graph. Biological Cybernetics, 83, 271–285.

Wyble, B., Hyman, J., Goyal, V., & Hasselmo, M. (2001). Phase

relationship of ltp induction and behavior to theta rhythm in the rat

hippocampus. Society for Neuroscience Abstracts, 27, 53719.

Wyble, B., Linster, C., & Hasselmo, M. (1997). Evoked synaptic potential

size depends on the phase of theta rhythm in rat hippocampus. Society of

Neuroscience Abstracts, 23, 508.

R.A. Koene et al. / Neural Networks 16 (2003) 577–584584


	Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation
	Introduction
	Results
	Reactivation in EC at gamma intervals within a phase of theta oscillation may provide short-term memory
	Encoding and retrieval can take place continuously in consecutive phases of theta
	Phase differences in theta modulation between prefrontal and medial temporal regions enhance functional interaction
	An alternative model implementation provides additional support for our hypothesis of the role of theta in navigation

	Conclusion
	Acknowledgements
	References


