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The orbital frontal cortex appears to be involved in learning the
rules of goal-directed behavior necessary to perform the correct
actions based on perception to accomplish different tasks. The
activity of orbitofrontal neurons changes dependent upon the
specific task or goal involved, but the functional role of this activity
in performance of specific tasks has not been fully determined.
Here we present a model of prefrontal cortex function using
networks of integrate-and-fire neurons arranged in minicolumns.
This network model forms associations between representations of
sensory input and motor actions, and uses these associations to
guide goal-directed behavior. The selection of goal-directed actions
involves convergence of the spread of activity from the goal
representation with the spread of activity from the current state.
This spiking network model provides a biological implementation of
the action selection process used in reinforcement learning theory.
The spiking activity shows properties similar to recordings of
orbitofrontal neurons during task performance.
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Introduction

The orbitofrontal cortex plays an important role in goal-

directed behavior (Wallis et al., 2001). Lesions of the orbito-

frontal cortex impair the ability of animals to learn which stimuli

are associated with reward (Bechara et al., 1994, 1997; Frey and

Petrides, 1997; Miller and Cohen, 2001; Pears et al., 2003;

Izquierdo and Murray, 2004). Recordings from orbitofrontal

cortex neurons demonstrate that spiking activity in response to

sensory stimuli changes dependent upon the association of

a stimulus with a reward in both non-human primates (Thorpe

et al., 1983; Schultz et al., 2000) and rats (Mulder et al., 2003;

Schoenbaum et al., 2003). The orbitofrontal cortex appears to

be particularly important when the generation of specific

actions depends upon the context of particular sensory stimuli

(Miller and Cohen, 2001). Here we focus on behavior directed

toward a specific goal; we do not yet deal with decisions about

the relative value of different goals (Balleine and Dickinson,

1998; Tremblay and Schultz, 1999).

Here we present a computational model that is applicable to

multiple regions of the prefrontal cortex (PFC), demonstrating

how populations of spiking neurons could mediate goal-directed

behavior. In particular, we demonstrate how representations of

specific motor actions can be used for goal-directed behavior in

multiple different circumstances, dependent upon the context of

specific sensory stimuli. This modeling effectively simulates the

behavior and pattern of activity of orbitofrontal cortex neurons

described in an experiment by Schultz et al. (2000) — neurons

that show response to sensory stimuli, to reward and to expec-

tation of reward. This task involves the differential generation of

Go versus NoGo responses to randomly presented visual cues.

Recordings demonstrated that some neurons in the orbitofrontal

cortex do indeed fire selectively for the transition from one

specific state to another. Schultz et al. (2000) identified these

neurons, labeling them as selective for the instruction that

initiates a specific trial, as well as predictive for a specific action.

Previous models of frontal cortex function have used neurons

with sigmoid input--output functions which represent firing of

populations of neurons (Cohen and Servan-Schreiber, 1992;

O’Reilly and Munakata, 2000). In order to model the patterns of

spiking activity more directly during behavioral tasks, we use

integrate-and-fire neurons (Stein, 1967; Gerstner, 2002; Gerst-

ner and Kistler, 2002) with Hebbian spike-timing-dependent

synaptic plasticity (STDP) (Levy and Stewart, 1983). Integrate-

and-fire neurons simulate the membrane potential response to

the build-up of synaptic input over time and emit a spike when

the potential crosses threshold. The model shows how in-

tegrate-and-fire neurons can perform the functions described in

equations for a circuit model of the PFC (Hasselmo, 2005). The

structure of the model was motivated by anatomical evidence

suggesting the organization of neural circuits into minicolumns

(Lund et al., 1993), cell assemblies of highly interconnected

neurons found in the PFC. In our model, different minicolumns

responded to both sensory input and motor actions, consistent

with evidence (Fuster, 1973, 2000; Fuster et al., 1982; Funahashi

et al., 1989; Quintana and Fuster, 1992) that activity in the PFC

represents two types of perception: (i) the perception of past

sensory stimuli available due to short-term buffers and current

sensory stimuli; and (ii) the proprioceptive sensation and

prediction of motor actions. The organization into minicolumns

was motivated by evidence for strong excitatory and inhibitory

connectivity within local circuits of cortical neurons (Mount-

castle, 1997; Lübke and von der Malsburg, 2004). The rapid

strengthening of associations between sensory states, motor

actions and reward is motivated by studies showing rapid

changes in functional interactions between populations of

prefrontal neurons during learning (Thorpe et al., 1983;

Schoenbaum et al., 2000; Mulder et al., 2003).

The structure of this model closely resembles features of

reinforcement learning (Schultz et al., 1997; Sutton and Barto,

1998), so we will commonly refer to sensory information from

the environment as ‘state’. We will refer to motor output as

‘actions’ and to the desired goal as ‘reward’. However, this model

does not focus on the temporal difference learning rule (Sutton,

1988), a rule that uses the difference between successive

outputs as error measure. Instead it focuses on mechanisms of

action selection associated with specific sensory states and

reward. This demonstrates how integrate-and-fire neurons can
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perform the circuit mechanism of action selection proposed in

a more abstract model of the PFC (Hasselmo, 2005).

In the following sections we simulate the proposed mecha-

nism of the prefrontal minicolumn circuitry and apply that to

the delayed Go/NoGo task with its reward protocol for different

stimuli. We focus on explaining selective neuronal activity, as

recorded by Schultz et al.½AQ1� , with our model.

Materials and Methods

This model focused on replicating neuronal activity and behavior in the

experiments by Schultz et al.. In these experiments, an initial visual

stimulus indicates one of three possible trials (Fig. 1A): (i) rewarded

movement stimulus (Srm), whereby reward is given if the monkey

presses a key; (ii) rewarded non-movement stimulus (Srnm), whereby

reward is given if the monkey chooses not to press the key; (ii)

unrewarded movement stimulus (Surm), whereby the reward is not

given but the key press is still required. Unless the movement is

performed in the Surm trial, another unrewarded Surm trial follows. The

decision to move or not to move followed a delay of 2 s, when a trigger

signal was given, which was identical in each trial. Schultz et al. found

that orbitofrontal neurons that showed task related activity fired

selectively. Some responded with increased firing rates to a specific

instruction cue, some responded with increased firing rates predictive

of Go/NoGo choice according to the expectation of reward, and some

responded with increased firing rates to reward received.

We propose that goal directed behavior is learned by associating

states and actions that are separately represented by the population of

neurons of individual minicolumns. A state is indicated by the

perception of specific sensory stimuli or the perception of reward

received, while an action is indicated by proprioceptive input about

motor activity. According to our hypothesis, the initial states Srm, Srnm

and Surm, as well as the Reward state, are represented by activity in

individual minicolumns in the PFC, while activity in a further two

minicolumns represents action selections Go (move to press a key) or

NoGo. During learning of goal-directed behavior, STDP strengthens

connections within and between minicolumns so that state and action

representations are associated. Because activity that corresponds to

consecutive states and actions may appear at arbitrary time intervals,

a short-term buffer based on persistent spiking due to after-depolariza-

tion (ADP) of membrane potential (Andrade, 1991; Klink and Alonso,

1997b) is used to enable encoding with STDP (Lisman and Idiart, 1995;

Jensen et al., 1996; Koene et al., 2003).

We propose that the retrieval of goal-directed behavior depends on

the spread of activity through strengthened connections from a mini-

column that represents the reward state and from the specific state

minicolumn activated by current input. Consistent with this hypothesis,

experimental evidence indicates that retrieval in the PFC produces goal-

directed activity that is initiated by the desire for a goal (Schultz, 1998;

Schultz and Dickinson, 2000; Miller and Cohen, 2001). In our model, the

spread of activity from the representation of current state is gated by the

spread from a desired goal. When the gated spread produces output

from the minicolumn that represents the current state, the correct next

action is selected. Hence, the convergence of activity from a current

state representation and from a goal representation governs goal-

directed behavioral responses.

Given the representation of states and actions, the transition from one

state to another state via a specific action can be encoded uniquely if

there is specific neural activity that occurs only for that action and only

when the action is initiated in a particular state. This requirement leads

to the presupposition that a functional minicolumn contains popula-

tions of input neurons and populations of output neurons that form

connections with other minicolumns, and that the neurons in those

populations are connected in a structured manner to other minicol-

umns (in this simulation to exactly one). Since the combination of

activity at a specific input neuron and a specific output neuron of an

action minicolumn represents the transition from a preceding state to

a following state, that information gives the model the Markov property

(Sutton and Barto, 1998). With this property, one-step dynamics enable

us to predict the next state and expected reward for a specific action.

We developed simulations of the Schultz et al. task with Catacomb2

(Cannon et al., 2003) that replicated the actions of an agent (monkey)

within an environment, as well as integrate-and-fire neuron dynamics in

PFC. With our approach (which we call ‘design-based’ modeling), data

from a simulated operant task protocol was linked with simulated

neuronal circuitry for sensory processing and functions of the PFC (see

Fig. 1B). Further details of the neurophysiology were modeled explicitly

where needed for specific functional requirements, such as the after-

depolarization experienced by specific neuron populations that may

enable persistent firing.

The integrate-and-fire neurons in our model of PFC minicolumns have

a resting and reset potential of –60 mV and an exponential decay time

constant of 10 ms. The firing threshold is –50 mV and action potentials

have a duration of 1 ms, followed by a 2 ms refractory period and

subsequent strong after-hyperpolarization with reversal potential –90mV

and exponential decay time constant 30 ms. We used dual-exponential

functions for the responses of synaptic conductances. Unless the

description of a specific synaptic connection indicates otherwise, the

time constant for the rise of the dual-exponential response function was

2 ms and the time constant for the fall was 4 ms. Excitatory synaptic

connections had a reversal potential of 0 mV and inhibitory synaptic

connections had a reversal potential of –70 mV.

In the simulation of the operant task environment, stimuli produced

by visual cues and reward, as well as proprioceptive sensation of motor

activity are conveyed as spike trains (top of Fig. 2) that are produced by

specific neurons [signal pathway (a) in Fig. 1B]. The simulation of

perceptual processing circuitry receives those spike trains and trans-

forms them into reliable sequences of state--action spike pairs (bottom

of Fig. 2). Every time that a spike train corresponding to a new state or

a new motor action is detected, a pair of spikes is generated that

represents the most recent state and the most recent action. The

individual spike times of a state--action spike pair are separated by

several cycles of theta rhythm to insure that persistent spiking of the

most recent two spike inputs to the short-term buffer occurs over

a suffcient duration to achieved strong associative connections through

reward
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NO−GO

unrewarded

GO

Srm Srnm Surm
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Figure 1. (A) Summary of the Schultz et al. task. Three visual stimuli indicated above
(fractal images) and different types of behavioral trials as in the simulation. (B) Design
of the simulation. The simulation includes the experimental environment of the operant
task in terms of the task protocol, visual stimuli and motor actions. (a) The output of
that simulation goes into the perceptual segment of the simulation. Perceptual stimuli
are represented by spike trains, which are processed to produce spike pairs that are
used as an internal representation. (b) The resulting neuronal spikes cause activity in
a simulation of minicolumns in the PFC that includes specifics of relevant
neurophysiology and neuroanatomy. (c) Feedback from the output of the simulated
PFC directs motor action in the operant task. The functions of integrate-and-fire
neurons and other essential components were implemented in Catacomb2.
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STDP. To simplify the readability of the graphs, an identity matrix is used

for input connections to the set of PFC minicolumns instead of a learned

mapping [signal pathway (b) in Fig. 1B]. Motor action in the operant task

is driven by the output of prefrontal minicolumns [signal pathway (c) in

Fig. 1B]. In this manner, the seven trials shown in Figure 2 are simulated

during encoding so that all relevant rules are learned in the network of

prefrontal minicolumns.

Specific Neuron Populations within Prefrontal Minicolumns
Achieve the Gating of the Forward Spread of Activity by
Spread from the Goal
Retrieval and encoding of associations between prefrontal minicolumns

that represent states and actions are assumed to take place in opposite

phase intervals of rhythmic modulation at 8 Hz (Hasselmo et al., 2002)

that represents theta rhythm found in the PFC and hippocampus (Manns

et al., 2000). This enables both to occur at any time during a task. The

modulation supports different dynamics in the two modes. We will

therefore discuss the distinct functions of encoding and retrieval

separately, even though they alternate continuously during a simulated

task. The modulating rhythm also serves to insure that activity in

different simulated brain regions is properly synchronized, as described

in our previous work (Koene et al., 2003). The plot of membrane

potential for the buffer neuron abuf (Rew) in Figure 6B provides an

example of the modulation by theta rhythm and clearly demonstrates

rhythmic changes at 125 ms intervals.

As shown in Figure 3, we distinguish five populations of pyramidal

neurons in each presupposed functional minicolumn of PFC: a, gi, go, ci
and co. Of these, each a neuron connects exclusively to other neurons

within the same minicolumn and plays an important role during

encoding of associations between minicolumns. These a neurons

represent neurons that receive thalamic input in layer IV of PFC. The

neurons of a population labeled go experience suprathreshold de-

polarization during encoding in response to input from a (with a fixed

conductance of 5.2 nS and time constants 1 ms for the rise and 2 ms for

the fall of the synaptic response), but during retrieval go is inhibited by

an interneuron network that is driven by a. A spike in a during encoding

also provides subthreshold depolarization to all neurons of a population

labeled gi (with a fixed conductance of 1.0 nS and time constants 12 ms

for the rise and 20 ms for the fall of the synaptic response).

The output of each neuron in the go population projects to one of the

other minicolumns in the PFC network. In the gi population, each

neuron receives one connection from a go neuron located in another

minicolumn. Synaptic weights are modifiable on these connections

between different minicolumns and are the elements of a matrix Wg.

When strengthened, the Wg connection can fire a unit gi if the

presynaptic unit go is active. Such a connection indicates that a rule

was learned that expresses the knowledge that activity in the mini-

column containing the presynaptic neuron gi preceded activity in the

minicolumn of the connected go neuron.

Similarly, each neuron of a population co makes one connection to

a neuron in a ci population of another minicolumn, so that activity in the

co population can target any one of the other minicolumns specifically.

Again, the synaptic strengths of such connections are modifiable and

make up elements in a matrix Wc. Unlike the effect of synaptic weights

in Wg, postsynaptic depolarization due to input through a connection

with the maximum strength in Wc is subthreshold, so that spiking in ci
remains dependent on additional input. The additional input to neurons

in ci, which can elevate their membrane potential over threshold, is

supplied by one-to-one connections (an identity matrix) from neurons

in go (with a conductance of 2.5 nS and time constants 1 ms for the rise

and 2 ms for the fall of the synaptic response). The activity of go
therefore fulfills a gating role with regard to spike propagation to ci.

Within a minicolumn, every neuron in gi connects to every neuron in

go through modifiable synapses with weights in Wig, while every neuron

in ci connects to every neuron in co through modifiable synapses with

weights in Wic. The maximum depolarization caused by a connection

encoded in Wig is suprathreshold, while depolarization caused by

strengthened connections in Wic is limited to subthreshold values.

Figure 2. Input spike trains of sensory input (top) and membrane potential showing spike pairs that are the internal representation of changes of state or action (bottom). Vertical
lines separate trials (after which buffers are cleared). Rules are learned by exposure to both rewarded and non-rewarded conditions in seven different trials: (1) NoGo following Surm
does not lead to reward; (2 & 5) Go following Surm leads to rewarded trial; (3) Srm and Go leads to reward; (4) Srm and NoGo does not lead to reward; (6) Srnm and NoGo leads to
reward; (7) Srnm and Go does not lead to reward.
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Additional depolarization is provided to co by one-to-one connections

from neurons in gi (with a conductance of 2.5 nS and time constants 1

ms for the rise and 2 ms for the fall of the synaptic response). This

provides a gating function for decisions about which action is selected

based on convergence. The fan-out of connections within a minicolumn

between gi and go and between ci and co enables the encoding of

multiple routes between minicolumns. The following sections will first

describe the retrieval process and then describe encoding.

Retrieving Behavioral Rules in The PFC
Miller and Cohen propose that the top-down processing in which

behavior is guided by internal states or intentions (cognitive control)

stems from the active maintenance of patterns of activity in PFC that

represent goals and the means to achieve them. They suggest that these

patterns provide a bias that guides activity affecting behavior, a gating

function and support their theory with neurobiological, neuroimaging

and computational studies (Miller and Cohen, 2001).

In our simulation, associations that form known rules are encoded in

PFC. A desire for reward then elicits a spread of activity from the

minicolumn representing that reward state (see dashed lines in Fig. 3a

and left arrows in Fig. 3b). The neurons of the go population within that

Reward minicolumn spike simultaneously in response to rhythmic input

at an 8 Hz theta frequency. Those spikes propagate along connections

with strengthened synaptic weights in Wg and produce a spike in the

targeted gi neurons of minicolumns that immediately preceded the

Reward minicolumn in a known rule. Within such a preceding mini-

column (a minicolumn that represents an action) a spike elicited at

a neuron in the gi population fans out across strengthened connections

to neurons in the go population of that minicolumn. Through those

connections with strengthened synaptic weights in Wig, suprathreshold

depolarization is elicited at the target go neuron. This same process is

repeated in other consecutive minicolumns to spread activity through

the gi and go populations of consecutive action and state minicolumns.

As the spread branches out, it follows multiple reverse paths through

connections that associate states and actions. Once the spread of

activity reaches the minicolumn that represents the current state, the

convergence of current state and goal spread allows selection of action.

In addition, spikes in go neurons are inhibited (‘end-stopping’) by the

synchronous activity of interneurons (with time constants 1 ms for

the rise and 10 ms for the fall of the synaptic response of the input)

elicited by input that identifies the current state.

The selection of action is indicated by an interaction of the goal

spread with current state. The input that identifies the current state also

targets the neurons in the co population of the same current state

minicolumn. The excitatory input produces a subthreshold depolariza-

tion of co neurons. In addition to this input, the spiking of neurons in the

co population is gated by population gi activity in the same minicolumn

due to the spread of activity from the goal. Those co neurons that receive

additional depolarization from spiking neurons in the gi population fire.

The present simulation uses only the first step of the forward spread

to determine output that controls goal-directed behavior in the task, so

the forward gating only has an effect on the co of the minicolumn

representing current state. The output of neurons in the co populations

of state minicolumns that target action minicolumns is connected to the

motor circuitry of the simulation. A spike in co thereby drives motor

output of the corresponding action (thick black arrow in Fig. 3a). A

spike in co also causes spiking in interneurons that provide lateral

inhibition to the remaining neurons in co, so that a clear winner-takes-all

behavioral response is obtained.

For other applications, the minicolumn model also enables a forward

spread of activity for known associations encoded in the PFC (see

dotted lines in Fig. 3a and right arrows in Fig. 3b). The spikes that

propagate through connections with strengthened synaptic weights in

Wc cause subthreshold depolarization of a ci neuron in the associated

action minicolumns. Again, forward spread of activity is gated by the

spread from the goal, since a neuron in the ci population needs

additional depolarization from a corresponding neuron in the go
population to fire. The spike of a ci neuron fans out through connections

with strengthened synaptic weights in Wic to co neurons that are gated

by the dependence on activity in gi neurons in the same minicolumn.

Figure 3a includes an example of rule retrieval in a rewarded move

trial. Neurons that spike as activity spreads are represented by gray

circles. The example points out the importance of neuron populations

gi, go, ci and co, in which individual neurons make connections with

other minicolumns. As shown in Figure 3a, desire for reward causes all

neurons in the go population of the Reward minicolumn to fire. The

activity then spreads to associated minicolumns, including Go, NoGo

and all sensory input minicolumns. In the same trial, when the Srm

stimulus is perceived, the co population of the Srm minicolumn is

depolarized. In the Srm minicolumn, the specific depolarized co neuron

that corresponds with a spiking neuron of the gi population fires, so that

activity spreads forward along a route from minicolumn Srm to

minicolumn Go. The firing of the co neuron is used to generate the

Go response. An analogous approach would be to use the spikes of a ci
neuron in the Go minicolumns to generate the Go response. During

this process, the go population of the Srm minicolumn is inhibited
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Figure 3. During training, associations are learned between state and action
minicolumns. The network of minicolumns (A) is shown with the connections between
them. Activity spreads along associations directed both from the minicolumn
representing the goal (dashed arrows) and forward from the minicolumn representing
the current state (dotted arrows). To simplify the schematic, populations of neurons,
gi, go, ci and co as shown in the Surm minicolumn were reduced in the other
minicolumns to display only those neurons that are involved in encoded associations.
The numbers in brackets correspond to the marked training trials in Figure 2, in which
an associative connection is established by STDP. Here, activity in the neuronal
populations of the minicolumns is indicated by shaded neurons. This is shown for
retrieval of the correct action that leads to reward from a current state, Srm, in which
the rewarded move stimulus was perceived. Neurons that spike are circles shaded
gray. A separate diagram (B) shows a linear representation of the associative
connections that are strengthened during rule learning (numbers in brackets again
correspond to training trials in Fig. 2). The Go and Reward minicolumns each fulfill two
roles in the encoded rules.
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(end-stopping). Figure 3a shows that the spread of activity from the goal

is stopped there.

In the example, spreading activity from the Reward minicolumn

involves two different known paths that include the Go minicolumn.

One path retrieves the associated items Reward--Go--Srm, the other

retrieves the associated items Reward--Go--Surm and a separate path

through NoGo retrieves Reward-- NoGo--Srnm. [The retrieval of rules

resembles the sequence of transitions in a finite state machine (Harel,

1987) and the recurrent connections that lead to two visits of the Go

minicolumn in trials initiated by the Surm stimulus are reminiscent of

connectionist Elman networks (Elman, 1990, 1991).] Since the spread of

activity through different known paths elicits spikes at separate gi
neurons, they do not interfere with each other½AQ2� . And since the neurons in

ci and co populations also maintain separate connections with other

minicolumns, the activity in gi correctly allows the gated forward spread

to propagate only on a path from a state receiving current input. Thus,

the structure of our model allows mapping through the same action

from different states. While retrieval activity spreads forward along

known paths to reward, those spikes elicited in the co population of the

current state minicolumn that target action minicolumns also trigger

the output of PFC. In Figure 3a, the spike propagation through the

connection from minicolumn Srm to minicolumn Go is therefore

marked as a thick black arrow. This output generates the correct ‘Go’

response, thereby guiding successful goal-directed behavior.

Encoding Behavioral Rules in The PFC
The above section described retrieval. This section describes encoding.

During encoding, the neuron labeled a in the model of a minicolumn

fires when input that matches the item represented by the minicolumn

is received. For example, when an input spike indicates that a rewarded-

move stimulus, Srm, is detected, that input causes neuron a(Srm) to

spike. Here, it is assumed that stimuli activate minicolumn n after

minicolumn n – 1. Encoding is achieved by STDP (Levy and Stewart,

1983; Markram et al., 1997; Bi and Poo, 1998) that corresponds to the

long-term potentiation (LTP) of synaptic responses (Bliss and Lømo,

1973; Bliss and Collingridge, 1993). The four steps described below take

place sequentially in each encoding cycle.

Reverse Associations between Minicolumns are Encoded in
Weight Matrix Wg at synapses from go(n) onto gi(n – 1)
A short-term memory (STM) buffer maintains spiking that corresponds

with the two most recent inputs to the network of minicolumns. During

this reactivation in encoding phases of PFC minicolumns, a(n) spikes

less than 20 ms after a(n – 1). As shown in Figure 4a, the neuron a(n – 1)

provides subthreshold depolarization to all the neurons of the gi
population in minicolumn n – 1. And all neurons in the go population

in minicolumn n receive suprathreshold depolarization through synap-

ses from a(n). As the neurons in go(n) spike, that neuron in the gi
population of minicolumn n – 1 which is connected to a neuron in go(n)

receives subthreshold depolarization, due to the initial value of synaptic

strengths in weight matrix Wg. The neuron in gi(n – 1) that receives

input from both a(n – 1) and go(n) spikes a few milliseconds later than

the presynaptic neuron in go(n), so that STDP is elicited. Thus, the

amplitude of the corresponding synaptic response is increased in Wg.

After several repetitions in the STM buffer, encoding establishes

a suprathreshold connection between go(n) and gi(n – 1) (Fig. 4a).

Forward Associations between Minicolumns are Encoded in
Weight Matrix Wc at Synapses from co(n – 1) onto ci(n)
Rhythmic input modulates the membrane potential of neurons in co.

During the encoding phase, the rhythmic depolarization of neurons in

co(n – 1) is such that excitatory input through one-to-one connections

from gi(n – 1) in the same minicolumn causes postsynaptic spiking. The

spiking in gi(n – 1) that is described in the encoding step above

therefore drives spiking in co(n – 1), as shown in Figure 4b. The neurons

in ci(n) receive subthreshold (gating) depolarization through one-to-

one input from neurons in go (n). In the presence of rhythmic

depolarization as above and given small initial values in Wc, the neuron

in ci(n) that is connected to a neuron in the co population of minicolumn

n – 1 spikes due to the combined subthreshold inputs from both go (n)

and co(n – 1). Again, STDP is elicited, since the postsynaptic neuron in

ci(n) spikes a few milliseconds after it receives input from the

presynaptic neuron in co(n – 1). After repetition, a subthreshold

connection is established between co(n – 1) and ci(n), which propagates

spikes if input is received from the corresponding neuron in the gating

go (n) population, even when rhythmic depolarization is absent in

retrieval phases.

Rules that Associate Preceding with Possible Ensuing Activity
are Encoded within a Minicolumn by the Weight Matrix Wic at
Synapses from ci(n – 1) onto co(n – 1)
During encoding, the activity of the ci population is driven by an STM

buffer that maintains the activity of ci populations of the twomost

recently active minicolumns. [The buffer holds two items so that the

buffered activity ci(n) can replace ci(n – 1) as the memory of preceding

activity in ci when the next association with minicolumn n + 1 is

encoded.] As Figure 4c shows, neurons in ci(n – 1) spike several

milliseconds before spiking of neurons in co(n – 1) is driven by

gogi Wg
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Figure 4. The four steps, (a--d), of rule encoding in the PFC. Rectangles indicate the
nth minicolumn that activates and the one that precedes it at n � 1. Thin arrows
indicate connections between neuron populations (lowercase letters within the
rectangles) that may result in subthreshold postsynaptic depolarization (marked sub),
while thick arrows indicate connections that may result in suprathreshold de-
polarization (marked SUP). The matrix of synaptic weights that is updated in an
encoding step is indicated by Wg, Wc, Wic and Wig below an arrow that represents
connections with synapses that are being modified.
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corresponding spikes in population gi(n – 1) (with a synaptic conduc-

tance of 6.0 nS), as described above. STDP is elicited and repetition

increases synaptic strengths in Wic from initial values near zero to

subthreshold amplitudes.

Associations that Enable the Spread of Activity from the
Representation of a Goal are Encoded by the Weight Matrix Wig

at Synapses from gi(n – 1) onto go (n – 1) within a Minicolumn
During encoding, spiking in a subpopulation of go that is identified as

g specific
o in minicolumn n – 1 is driven by input from ci(n – 1), as shown in

Figure 4d. A delay in the synaptic transmission from ci(n – 1) insures that

the spikes at g specific
o occur several milliseconds after spiking in gi(n – 1).

At connections that repeatedly experience STDP due to this sequence

of spiking, the synaptic strength inWig is increased from near zero to

suprathreshold values.

The population g specific
o and a population of neurons known as g diffuse

o

provide separate encoding functions, but as shown in Figure 5, they act

together as go during retrieval. In the retrieval mode, transmission from

ci(n – 1) to neurons in g specific
o is suppressed, while input from gi is

received through connections with synaptic strengths Wig. The pattern

of spikes in gi and suprathreshold synaptic strengths established in Wig

therefore determines retrieval spiking in g specific
o . That spiking is

duplicated in g diffuse
o during retrieval, since transmission is then enabled

through strong one-to-one input connections from g specific
o . By contrast,

all neurons in the g diffuse
o population of a minicolumn are driven by

a during encoding modes, so that they provide the diffuse output of go
(n) that is used to encodeWg andWc, as described above. In this manner,

the two sub-populations of go can spike in separate patterns that satisfy

the different needs of encoding protocols for synapses within a mini-

column (Wig) and between minicolumns (Wg and Wc). This function

could alternatively be obtained by very tightly regulating the activity of

go at different phases.

Short-term Memory Based on Persistent Spiking Enabled Spike
Timing Dependent Potentiation to Encode Associations
As described, encoding in our model of the PFC depends on STDP in

Wg,Wc,Wig andWic, and on the buffered activity of populations a and ci. A

Hebbian model of STDP that is based on the long-term potentiation

observed at many synapses requires multiple instances in which pre-

synaptic spiking precedes postsynaptic spiking by <40 ms (Levy and

Stewart, 1983; Markram et al., 1997; Bi and Poo, 1998), while input to the

PFC may arrive with arbitrary large time intervals. As mentioned

previously, we therefore presuppose that firing patterns may be

reactivated in a persistent manner by intrinsic neuronal mechanisms,

such as after-depolarization (ADP) of membrane potential (Fig. 6A),

caused by calcium sensitive cation currents that are induced by

muscarinic receptor activation (Andrade, 1991; Klink and Alonso,

1997a). We also presuppose that a common brain rhythm may produce

oscillatory modulation in different regions that provides synchronization

of activity. The reactivation of firing patterns by ADP in one population of

neurons at specific phases of the brain rhythm can thereby reliably

provide input to other populations in the PFC where STDP can occur in

an encoding mode (Fig. 6B). Using rhythmic modulation and ADP, we

provide short-term memory (STM) in a manner similar to the STMmodel

first proposed by Lisman and Idiart (1995) and Jensen and Lisman (1996).

Recurrent inhibition within such a buffer separates the reactivation of

sequential items to maintain their order. The STM may reside in the PFC

or may be provided by input from the entorhinal cortex.

The membrane potentials of three neurons of an STM buffer are

plotted in Figure 6B. In the hippocampus, regular activity originating in

the septum (Brazhnik and Fox, 1999) is believed to cause 8 Hz

oscillations of the membrane potential by modulating the GABAergic

inhibition of pyramidal cells via networks of interneurons (Alonso et al.,

1987; Stewart and Fox, 1990). A similar mechanism appears to cause

theta rhythm oscillations in limbic cortices due to rhythmic activity of

basal forebrain neurons Manns et al. (2000). Those oscillations define

two functional phases of the buffer neurons. We call the phase interval

of greatest rhythmic depolarization the reactivation phase of STM and

the remaining interval the input phase of STM. The plots show that

spiking produced by afferent activity during the input phase of the

buffer is reactivated by the ADP during subsequent repetition phases.

The duration of the rise of the ADP matches the period of oscillation.

This means that the ADP of the earliest neuron to spike in one cycle

allows that neuron to reach threshold first in the following cycle. The

order of spikes is maintained during reactivation in STM. As spikes

caused by the buffer occur in pre- and postsynaptic neurons of

modifiable connections in the PFC, an asymmetric function of spike-

timing dependent potentiation takes into account the order of spikes.

This ensures that STDP is elicited in specific connections so that

a direction of causality is inferred during rule learning. Furthermore, the

separation of consecutive spikes is maintained in STM by recurrent

inhibition that is caused by the activation of an interneuronal network

(Bragin et al., 1995) each time a buffer neuron spikes.

In the absence of input, the contents of an STM buffer decay gradually,

due to noise and a slow-afterhyperpolarization (AHP). But when a full

buffer receives new input, such as when rule learning involves a long

sequence of states and actions, the earliest item in the buffer needs to

retire so that the new item is maintained. The item replacement must

also avoid changing the order of items. To achieve this, we propose that

the appearance of a new item leads to inhibition at a specific phase of

the rhythmic oscillation (see dashed box in Fig. 6C). Inhibition at that

specific phase suppresses the reactivation of the first item (Koene et al.,

2003) until its ADP has subsided, as shown in Figure 6C. The new item,

represented by action potentials in the plot of the membrane potential

of the third cell, assumes the last position in the sequence of

reactivation.

Each neuron in an STM buffer projects output to a corresponding

target neuron in a or ci. Current and preceding activity are therefore

available for encoding, as shown in Figure 7 for the membrane potential

of a neurons throughout the network. The activity in a corresponds to

current and preceding input, as pairs of state and action spikes are

received in PFC during the seven simulated encoding trials of rule

learning (Fig. 2).

Results

The network described above effectively encoded the different

rules of the task and showed effective behavioral performance

when tested with different stimuli, generating a Go response to

Srm, a NoGo response to Srnm and a Go response to Surm

stimuli. This behavior was guided by spiking activity that

matches the data obtained by Schultz et al. (2000).

In the seven training trials (Fig. 2), the necessary associations

for stimulus gated selection of action were encoded with

go
diffuse

a

ic (n−1)

filter

gi

transmission
modulated for
encoding

gigo
specific

Wg Wig

initially near 0

transmission modulated for retrieval

Figure 5. Subdivision of the go population into functional gdiffuseo and gspecifico neuron
populations. Neurons in gdiffuseo all spike in response to activity in a, while the spiking of
neurons in gspecifico reflects the specific patterns of spikes received through one-to-one
connections from ci(n � 1). Spiking in the filter population relies on rhythmic
depolarization, so that only ci(n � 1) activity in the short-term memory buffer of ci
drives gspecifico during encoding. This way, the strength of unique connections in Wg to
other minicolumns is encoded separately from the encoding ofWig in accordance with
the mapping of a pattern of spikes in gi to a pattern of spikes in g

specific
o . During retrieval,

strong one-to-one connections from gspecifico to gdiffuseo drive the entire go population
as one.
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strengthening of connections using STDP at synapses in Wg, Wc,

Wig and Wic. Six trials were used to test performance with all

possible initial stimuli. For these trials, the spike trains that

represent the sensation of the initial stimulus were provided as

input and the model-generated motor commands that lead to

behavioral responses and the sensation of reward received were

observed. The network showed the correct behavior in the task.

The correct action followed each initial state during tests of task
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Figure 6. (A) ADP supports persistent firing. Each spike causes initial AHP of the membrane, which is followed by a slow ADP. That depolarization can ultimately lead to another
spike. (B) A buffer based on persistent firing receives afferent input during one phase of its rhythmic cycle and reactivates items (separated by competitive inhibition) in order in each
cycle. (C) First-in-first-out (FIFO) item replacement. In a full buffer, afferent input plus retrieval activity elicit inhibition synchronized to suppress reactivation of the first item. The input
is added at the end of the sequence.
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performance. Inspection of individual neuronal responses

reveals that the three main types of responses observed by

Schultz et al. were also found in the present simulations: (i)

neurons that respond selectively to a trial-specific initial

stimulus; (ii) neurons that respond prior to reward in a specific

trial and may indicate a chosen course of action; and (iii)

neurons that respond selectively to predicted and obtained

reward. In addition to these, several more specialized responses

were observed, providing predictions of the model.

During performance of the operant task, a desire for reward

begins at the onset of every trial in the form of regular

suprathreshold input to all neurons of the go population of

the minicolumn that represents the goal. When trial input

stimuli appear in different trials they are maintained as

persistent spikes of buffer neurons that cause the spiking of

a(Srm), a(Srnm) and a(Surm) in Figure 8. These input stimuli

also provide subthreshold input to the co population of the

minicolumn that represents the current state. Converging with

the spread of activity from the goal minicolumn, spiking co
neurons drive goal-directed behavior, resulting in the genera-

tion of output which in turn causes proprioceptive feedback of

the correct action in each sequence in Figure 8, as well as the

perception of reward received.

Activity Underlying Selective Responses in the Model

Membrane potentials of those neurons within a minicolumn

that are involved in the choice of action demonstrate the

decision process that is based on a forward spread of activity

that is gated by the spread of activity from the goal. This is

shown in Figure 9, in which membrane potentials of relevant a,

gi and co neurons in the minicolumn that represent the Surm

instruction state are plotted during an interval within an Surm

trial (the convergence looks the same for the Srm example in

Fig. 3). The plots show that neurons in the co population of that

minicolumn experience subthreshold depolarization due to

current state input from a. This contribution is joined by

converging input from a specific neuron in the gi population

that spikes due to the spread of activity from the minicolumn

that represents the goal (dashed arrows in Fig. 3). When the

inputs converge a neuron of the co population fires (bottom of

Fig. 9). Activity in co was gated by activity in gi, and recurrent

inhibition assured that only the first spike in co led to a behavioral

response. The chosen behavior was determined by the mini-

column that was targeted by that spike, in this example a Go

motor command for the simulated task environment.

For the six test trials, the spike trains that represent the

sensation of the initial stimulus, motor commands that lead to

behavioral responses and the sensation of reward received are

shown in Figure 10. The spike trains show that Srm stimuli were

followed by Go responses and reward, Srnm was followed by

NoGo responses and reward, and Go action responses followed

Surm stimuli and led to subsequent rewarded trials. The

network can perform correctly regardless of the order of

presented test stimuli.

Schultz et al. plotted the recorded spikes of three orbito-

frontal neurons during many rewarded move (Srm) and un-

rewarded move (Surm) trials. We compare our simulation

results with those of the experiment by Schultz et al. by

displaying results for the three main categories of neuronal

responses described by Schultz et al. side by side in Figure 11.

These plots show spikes in individual trials (short vertical lines)

aligned to specific parts of the task.

As in the Schultz et al. results, our results showed that

individual neurons activate specifically when one of the three

0 5000 10000 ms

bufa (Rew)

bufa (Go)

bufa (NoGo)

bufa (Surm)

bufa (Srnm)

bufa (Srm)

URM URM RM RM URM RNM RNM

Figure 7. The membrane potential of neurons in the a population, responding to input from the short-term memory buffer during the training stage (encoding) of the visual
discrimination task in a sequence of six trials.

Page 8 of 19 Prefrontal Cortex Model d Koene and Hasselmo



cue stimuli is perceived. In our model, this is caused by the

current state response of the a population (Fig. 11A,D). We also

found individual neurons that activate for a chosen behavioral

response. This activity results when neurons of the co popula-

tion in the current state minicolumn receive gating activity from

gi neurons due to the spread of activity from the goal

minicolumn (Fig. 11B,E). We also found neurons that activate

specifically when reward is received. This activity is caused by

the current state activation of the a neuron in the goal

minicolumn in our model (Fig. 11C,F).

As in the Schultz et al. data, there is spiking in Figure 11E

during Srm and Surm trials, but the spike rate is higher during

the Go action in Srm. Both the data and the output of our model

show a quantitative difference in the amount of firing between

Srm and Surm trials before reward is received. In our model, this

is explained because co(Srm/Go) is activated in encoding

phases in both trials when a(Go) is maintained by the STM

buffer, since strengthened connections from go(Go/Srm) to

gi(Srm)Go) propagate the activity. Additionally, co(Srm/Go)

is activated specifically in the Srm trial when the goal spread

causes spiking in the gating gi(Srm)Go) neuron, while current

state input depolarizes the co(Srm) population. The appearance

of similar activity at the trigger time during URM trials in Figure

11B suggests that the activity is not merely background noise

and supports the possible explanation provided by our model.

A smaller temporal overlap of activity similar to that in the

Schultz et al. results is achieved if the intervals between

instruction stimulus, action trigger and reward delivery are

increased in the model to match the data, for a trial length of 6--8

s instead of 1500 ms in the simulation. The shorter intervals in

the model significantly reduced the time needed to compute

each simulation run without affecting resulting behavior.

Some Neurons in the PFC are Active in
Multiple Behaviors

In addition to the results above, we found that some neurons in

the simulation activate selectively for a specific phase of two

different trials. As shown in Figure 12A, the a(Go) neuron in

the minicolumn that represents a movement response spikes

in rewarded movement and unrewarded movement trials.

Similarly, the a(Rew) neuron in the minicolumn that represents

15000 20000 ms

(Surm)

(Srnm)

(Srm)

(NoGo)

(Go)

(Rew)

a

a

a

a

a
a

RNM URM URM RNMRM RM

Figure 8. The membrane potential of neurons in the a population, responding to input from the STM buffer during behavioral performance (retrieval) of the visual discrimination task
in a sequence of six trials. A change of context between rewarded movement (RM), rewarded non-movement (RNM) and unrewarded movement (URM) trials causes the STM
buffer to clear during the those intervals.

Figure 9. Selected membrane potentials during converging forward spread and
spread from the goal in a unrewarded move (Surm) trial. The forward spread is initiated
in state Surm, as represented by the action potential of the a neuron (top). The spread
of activity from the goal reaches the Surm minicolumn when an action potential
appears at a specific gi neuron (middle). A resulting action potential that directs Go
action appears at a specific co neuron of the same minicolumn (bottom).
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the perception of reward spikes in rewarded movement and

rewarded non-movement trials.

In Figure 12B, we show that specific neurons in the gi and go
populations of minicolumns that are involved in the retrieval of

associations with a goal generated a spike in every trial of that

specific task. The neurons that activate throughout each trial

correspond to those involved in the learned associations for the

spread of activity from the goal during retrieval, as shown in

Figure 3. Thus, even neurons with very extensive response

properties are important for performance of this task. Activity of

the a population in the current state produces end-stopping

of activity through the go population in the same minicolumn.

Therefore, the onset of a rewarded move (RM) trial produces

end-stopping at go(Srm) cells, but, due to the associations from

Figure 10. The guided output (Go or NoGo) of the model in response to test stimuli (Srm, Srnm and Surm). Spike trains produced in the motor circuitry of the simulated operant
task environment during trials that test task performance (testing retrieval). The spike trains represent sensory stimuli received during the trials (separated by vertical lines), as well
as behavioral Go and NoGo motor responses and the sensation of reward received.

Figure 11. A side-by-side comparison of neuronal activity recorded by Schultz et al. (A--C; figure reproduced from Schultz et al., 2000) and that produced by our simulation of PFC
minicolumns (D--F). Figures in (A--C) display spikes of three different orbitofrontal neurons. For each, the activity in rewarded and unrewarded movement trials is shown side by side.
And every row within the borders of a graph represents the activity of that neuron during a separate trial. The time course of the data and of the model output are aligned to specific
task events. Labels below a horizontal time axis indicate stages of the operant task: instruction stimulus, action trigger, reward. Above each graph, a histogram shows the sum of
spikes in each bin of time, i.e. in a corresponding column over all trials. (D) The spike responses of an a population neuron in the RM (rewarded move) minicolumn aligned to
instruction. (E) A co population neuron in the RM minicolumn with output connections to the GO minicolumn aligned to reward. (F) An a population neuron in the REW (Reward)
minicolumn. Again, the spikes (short vertical lines) of each neuron are shown side by side in both rewarded and unrewarded movement trials. Rows within each figure show the
results of separate simulation runs, while the cumulative spike rate is plotted above each figure by counting the number of spikes within an interval around t. The three neurons in
(D--F) replicate the experimental results by Schultz et al. in the corresponding categories (A--C).
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Reward to Srnm via NoGo and from Srnm to Surm via Go,

a neuron in gi(Surm) also spikes during that trial. Similarly,

gi(Surm) spikes during rewarded non-movement trials due to

the alternate path for the spread of retrieval activity from the

goal via the Srm minicolumn. Thus, we predict a correlation of

neuronal firing during Surm and Srm trials (strong Go involve-

ment in both), and a lesser correlation of neuronal firing during

Surm and Srnm trials, as shown in rows 1 and 3 of Figure 12B.

Activity in Figure 12C demonstrates the end-stopping func-

tion proposed in the minicolumn model. During rewarded

movement trials, the neuron g diffuse
o ðSrm)GoÞ is active until

reward is received. As soon as the perception of reward

becomes the current state of the PFC network, the neuron is

no longer active. This is not the case in rewarded non-

movement and unrewarded movement trials. In rewarded

movement (RM) trials, end-stopping prevents the spread of

activity from the goal to the go population of the Srm

minicolumn. During these trials, the g diffuse
o ðSrm)GoÞ neuron

is active in encoding modes of each rhythmic cycle while

maintained in the STM buffer. When reward is perceived, the

Go--Reward pair replaces the Srm--Go pair in the buffer, as seen

in the bottom two rows of Figure 12B. End-stopping appears in

Srm (RM) trials and Srnm (RNM) trials, but not Surm (URM)

trials, since two associative paths can be taken from the goal

minicolumn to the Surm minicolumn.

Schultz et al. point out that some neurons activated less

selectively, namely in a manner that was selective for the

instruction cue regardless of trial type and expected reward.

Similarly, our simulation shows that a neuron of the

ci(Srm/Go) population in the Go minicolumn that receives

input from the Srm minicolumn exhibits retrieval spikes in both

Srm and Surm trials during instruction activity in the Srm or

Surm minicolumns. Those retrieval spikes disappear once the

Go minicolumn receives proprioceptive input about a key press

movement in the environment and spikes begin to occur in the

encoding phase of theta modulated network. This produces

a 180� phase shift of firing at the time of the movement

generation. The Go minicolumn ci(Surm/Go) neuron that

receives input from the Surm minicolumn exhibits the same

transition of spiking from the retrieval to the encoding phase,

but its retrieval spiking is more selective and appears only

during an Surm trial, since no sequence exists that involves the

Surm minicolumn in other trials.

Schultz et al. provide a quantitative assessment of the trial and

phase selective responses recorded. Of 505 neural responses

identified at recording sites, 188 exhibited task related activity:
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Figure 12. (A) Spike activity of a neurons in the Go and Reward minicolumns during performance trials. Neurons a(Go) that predict a movement response are active in rewarded
movement and unrewarded movement trials. Neurons a(Rew) that spike when reward is received are active in rewarded movement and rewarded non-movement trials (B).
Retrieval activity in the simulation shows that specific gi and go population neurons spike in all trials. Regular spike trains span trials for each of the neurons shown. In our example,
24 neurons in gi and go populations were found to spike regularly during retrieval in all trials of the performance stage of the specific task, ~7% of the total of 328 neurons involved in
retrieval functions. (C) The gdiffuseo ðSrm GoÞ neuron of the Srm minicolumn shows the end-stopping function. The neuron spikes throughout trials due to the spread of activity from
the goal minicolumn, but in rewarded movement (RM) trials spiking stops as soon as reward is received (indicated by arrows with the label ‘R’). The overlap between spike trains of
the a(Go) neuron and the gdiffuseo ðSrm GoÞ neuron shows the period during which both Srm and Go minicolumn activity are maintained in an STM buffer for encoding.
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99 responses showed selective activity at the instruction phase

of trials. Of those, 63 reflected the type of reinforcer or trial (38

active during RM, RNM or both trial types, 22 active only during

URM trials and three active during RM and URM trials). Fifty-one

responses showed selective activity at the trial phase preceding

reward (41 during both RM and RNM trials, six during RM or

RNM trials and four during URM trials). Sixty-seven responses

showed selective activity at the reinforcer delivery phase of

trials (62 during both RM and RNM trials, two during only RM

trials and three during URM trials).

Before comparison of these numbers with the model, some

caveats should be raised. The small sample sizes in terms of the

number of sites recorded by Schultz et al. and the number of

neurons simulated in the model is too small to allow statistical

comparison. Also, the number of selective model responses in

a specific category depends on the arbitrary number of neurons

chosen as a cell assembly within a population of neurons in each

minicolumn. When the model is minimized so that individual

functions of the minicolumn are performed by the smallest

number of neurons, then the following quantitative assessment

of responses was obtained.

In the simulation, the neural circuitry of the model prefrontal

minicolumns consisted of 328 neurons (excluding neurons that

form short-term buffers and circuitry to process prefrontal

input and output). From those neurons, 169 task related

responses were recorded: 37 responses showed selective

activity at the instruction phase of trials. Of those, 34 reflected

the type of reinforcer or trial (21 active during RM or RNM trials,

10 active only during URM trials and three active during RM and

URM trials). Seventy-five responses showed selective activity at

the trial phase preceding reward (40 during RM or RNM or both

trial types, 11 during only URM trials, 17 during RM and URM

trials and seven unselective for trial type). Fifty-seven responses

showed selective activity at the reinforcer delivery phase of

trials (20 during both RM and RNM trials, 14 during only RM

trials, 21 during RNM trials and two unselective for trial type).

These results support a correlation during the instruction

phase between RM and RNM trials seen in both data and model.

The absence of a correlation between URM and RNM during the

trial phase preceding reward is also consistent with the data.

The number of responses for both RM and URM trials is rather

higher than the data, as is the response activity for only RNM

trials. Both differences may reflect a difference in the model or

merely statistical variability.

Discussion

Our model replicates goal-directed behavior in a visual discrim-

ination task based on a hypothesis about the functional

connectivity of PFC circuits (Hasselmo, 2005). Behavioral

responses and reward associations to visual cues are encoded

in synaptic strengths between neuronal networks representing

cortical minicolumns. The goal-directed behavior is retrieved by

means of a converging spread of activity from a representation

of desired reward and the spread of activity from the current

state. Our results specifically replicate the qualitative findings by

Schultz et al. (2000) in terms of individual neuronal responses,

while suggesting a possible neural mechanism for learning and

retrieval. We use the model to propose explanations for the

selective responses of individual neurons in orbitofrontal cortex

during goal-directed behavior.

The model provides a framework for the context/stimulus

dependent change in action selection, as proposed by Miller and

Cohen (2001). In particular, it provides a spiking neuron

implementation of context effects similar to those of Cohen

and Servan-Schreiber (1992). We show how populations of

spiking neurons could interact to allow selection of specific

actions based on the context of specific sensory input (states)

and the desire for reward. Because activity in a specific

minicolumn (Fuster, 2000) that represents such a state or

action may play a role in different contexts that require its

association with different state--action-state transitions, we

presuppose separate populations of neurons within a mini-

column for input from and output to other minicolumns

(Hasselmo, 2005). For example, the Go and Reward minicol-

umns in the experimental task fulfill such multiple roles, as

shown in Figures 3 and 12A.

We show what functional role the individual neurons in these

populations could play in the performance of the task by

replicating essential features of the Schultz et al. experiment.

We used similar learning and retrieval protocols and replicated

individual neuronal responses that are selective for a specific

state in a specific trial (see Fig. 11). These selective responses

may be understood in the context of a neuron’s function in the

minicolumn model.

In addition to these explanations, the model generates

predictions for this task about what other types of responses

should appear in the PFC, including neuronal responses which

would look rather complex andmight therefore not normally be

classified. One set of complex responses is shown in Figure 12B.

The model predicts that some neurons will spike throughout all

trials of a goal-directed task, not just for a specific state, due to

the spreading activity from a goal representation. And if

encoding and retrieval alternate continuously as modeled,

then such responses that are indicative of spreading activity

should be recorded during stages of novel learning as well as

task performance.

Our results also propose that end-stopping implemented in

the retrieval function of the model may be detected as shown in

Figure 12C. Evidence that supports possible end-stopping of

spreading activity is provided by the termination of recorded

spikes in Schultz et al. (2000), where neuronal activity that is

selective for Srm or Srnm instruction stimuli and for action

preceding reward terminates as soon as reward is received.

Predictions of the model suggest experiments that test the

validity of two of its central tenets: convergence of activity

through representations that may be associated in multiple ways

(Sutton and Barto, 1981) and the need for a short-term buffer.

The structure of the model uses a progressive backward

spread of activity from the goal. This suggests an experiment

that could test this feature, in which associations are formed

sequentially between states and actions leading to a particular

goal. Imagine an operant task, in which specific sequences of

lever presses result in reward. For example, pressing levers in

the sequence A--B--C should result in reward. If the levers are

pressed randomly, eventually the correct sequence will occur,

in a learning paradigm analogous to the one used in experi-

ments by Terrace et al. (2003). In the model, this will initially

lead to an association between the final action ‘press C’ and

reward (note that this action involves being at a specific state —

in front of lever C — and generating the action ‘press’). Upon

further accidental production of the sequence, it will lead to

association of ‘press B, then press C’ with reward, and finally
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‘press A, press B, press C’ with reward. The activity of the gi and

go neurons in the model would initially show activity only for

reward, then would show a persistent increase when the

association is first formed with ‘press C’, followed by increases

in separate populations when the association is formed for

‘press B’ and finally for ‘press A’. Thus, the overall population of

neurons firing during the task would show a progressive

increase as the specific sequence is learned.

During encoding, our model depends on the function of STM

buffers, and data by Andrade shows sustained currents that may

support such a function in the PFC (Andrade, 1991). However,

those buffers need not reside in the PFC. A plausible alternative

source of buffered perceptual spike patterns is in the entorhinal

cortex, in which neurons that exhibit intrinsic persistent

spiking have been found (Klink and Alonso, 1997b). In either

case, it is possible that STM function may be disrupted without

impairing decision making for known tasks. The function of

short-term buffers may be blocked by pharmacological agents.

For example, the muscarinic antagonist scopolamine will block

the ADP which provides one mechanism for sustained spiking

of cortical neurons (Andrade, 1991; Klink and Alonso, 1997b;

Fransen et al., 2002). Without working short-term buffers in the

PFC, the model predicts correct retrieval function for learned

tasks, but an inability or impairment to learn new tasks. This may

underlie the impairment of task rule shifting seen with

cholinergic lesions (McGaughy et al., 2004; J. McGaughy

et al., unpublished data). Cholinergic blockade does cause

impairment of short-term delayed matching function (Bartus

and Johnson, 1976; Penetar and McDonough, 1977).

Critical Variables of the Simulation

The successful results obtained with the simulation depend on

several critical variables. Within the model of a prefrontal

minicolumn, a specific set of connections must have conduc-

tances that lead to subthreshold excitation of postsynaptic

neurons and another set must have conductances that lead to

suprathreshold excitation and therefore drive spiking in post-

synaptic neurons. The set of subthreshold connection consists

of the connections from a to gi and the connections from go to ci.

The set of suprathreshold connections consists of the con-

nections from a to go, from gi to co, and from ci to go (as shown in

Fig. 4). For goal-directed prefrontal output, it is necessary that

current state input to a co neuron population does not achieve

spiking, except at those neurons that also receive gating input

from neurons activated in the gi population by the spread from

the goal representation. Synapses at modifiable connectionsWg,

Wig, Wc and Wic are initialized with small subthreshold con-

ductances. There is no need to adjust the learning rate during

encoding, since a specific maximum conductance is achieved in

strengthened connections. That maximum is set to provide

suprathreshold excitation through the goal-spread connections

Wg and Wig, and subthreshold excitation through Wc and Wic

(where the spiking of neurons in ci is gated by go, the spiking of

neurons in co is gated by gi during retrieval). The excitation of

a neuron in ci by individual input from go or throughWc and the

excitation of a neuron in co by individual input from gi or

through Wic is insufficient to elicit a spike. When two sub-

threshold inputs combine at a neuron in ci (one from go and

one through Wc), or when two subthreshold inputs combine

at a neuron in co (one from gi and one throughWic), then a spike

is elicited.

Another critical variable is the modulation of specific con-

nection strengths in the minicolumn model by theta input

(Hasselmo et al., 2002). Theta modulation allows g specific
o to drive

g diffuse
o through suprathreshold excitation and act as one

population go for the spread of activity from a goal representa-

tion during retrieval phases. During encoding phases the

connection is weakened and the two populations are treated

separately as shown in Figure 5. Differential modulation of

excitatory input from a to g diffuse
o (see Fig. 5) and of input from

a to an interneuron population that sends inhibitory input to

g diffuse
o switches from suprathreshold excitatory input from

a during encoding phases to providing the end-stopping

function during retrieval phases. During encoding phases, theta

modulation enables input from buffered activity in ci(n – 1) to

g specific
o (Fig. 5). Input from gi to co is modulated so that

suprathreshold excitation drives co during encoding phases,

but subthreshold excitation performs the gating function

during retrieval phases.

Lastly, critical variables are involved in the timing of short-

term buffers (Lisman and Idiart, 1995; Jensen et al., 1996; Koene

et al., 2003). A working buffer requires that the rise time of ADP

matches the period of a theta cycle (Fransen et al., 2002) and

that recurrent inhibition separates consecutive spikes suffi-

ciently to retain their order, but within a time interval that

enables STDP between neurons that spike in response to the

buffer output. For the first-in-first-out replacement of spikes

maintained in a buffer, inhibitory input presented due to the

combination of new input to the buffer and the last spike in the

buffer must cause hyperpolarization at the phase of first spike

reactivation (see Fig. 6C). Theta oscillations achieve the

necessary synchronization of reactivation cycles in the STM

buffers and encoding and retrieval phases in the minicolumns.

Correspondence of Simulation Results and Data

As mentioned in the results, the present study does not attempt

to attribute meaning to the quantitative assessment of numbers

of responses that belong to any specific category of responses

that are selective for a trial type and a phase of that trial. For

a quantitative comparison of that sort, an experimental study

would have to record from a larger sample of neurons and the

simulation would have to include a rationale for the number

of cells in assemblies that correspond to each functional unit of

the prefrontal model.

The model effectively matches the data in many ways, in

addition to successfully learning the goal-directed behavior for

the visual discrimination task. Our results show that the

simulations replicate trial and phase-of-trial selective activity

in individual neurons. A direct comparison between the

selective activity recorded by Schultz et al. and that produced

in the simulation (Fig. 11) demonstrates the correspondence

between the two sets of results. Both the Schultz et al. data and

our simulation results show individual neurons that are selec-

tive for the presentation of a visual cue, the period preceding

potential reward in which a decision for motor action may

be made, or the receipt of reward. That selectivity is specific

to a particular trial type: rewarded movement, rewarded

non-movement or unrewarded movement.

Significantly, both the data and the simulation results show

that selectivity for exactly one specific trial type (RM, RNM or

URM) was typical of responses that showed selective activity

during the instruction phase of a trial, and atypical for responses
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that showed selective activity during a later phase of a trial. This

correspondence supports the idea that those minicolumns that

represent specific actions or rewards may be associated with

multiple trial types. Another significant feature of the model is

the absence of neurons that respond in both RNM and URM

trials, which also corresponds with the data.

Some properties of neuronal responses in the model are

important for function, but may not be tested by the analysis

procedures of the experiment. In particular, the analysis of

experimental data did not specifically search for neurons which

turned on continuously during task performance without

showing specificity, and did not search for neurons which

terminated activity at a specific time. The model produced

background spiking activity that appears unselective for trial and

phase throughout the task in 38 neurons. For the purpose of

response categorization, this background spiking rate was

subtracted to identify selective spike trains in those responses.

The cells with this background activity are those that are

involved in the spread of activity from the goal through

associated minicolumns. Note that many such cells may have

been deemed not task related by Schultz et al., while they

clearly perform an important function in the model. One

indication of such background activity in the report by

Schultz et al. comes in the form of neurons with task specific

activity that appeared prior to the instruction stimulus. Schultz

et al. evaluated activity in 188 out of 505 neurons. As specified in

Tremblay and Schultz (2000), they did find 14 neurons that

activated unselectively for all familiar instruction types in the

task. Yet Schultz et al. evaluated neurons that activated

selectively for one or two phases of specific task trials, since

responses demonstrating activity throughout a trial may have

been discarded by the one-tailedWilcoxon test of the evaluation

software that they used to assess task related activity.

The simulation results identified significant periods of in-

activity in addition to the detection of selective activity. Some of

the cells with background spiking throughout the trials of the

task exhibit periods of inactivity that correspond directly with

their involvement in the retrieval of a known association that

determines goal-directed behavior in a specific trial. At such

a simulated cell, inhibition (end-stopping) of the spread of

activity from the goal representation causes the period

of inactivity. Schultz et al. did not report a specific evaluation

of the times at which the activity of some neurons ends, while

other responses with rhythmic background activity during the

same trial continue. Schultz et al. mention neurons that remain

active throughout the instruction-trigger delay, but do not

quantify the number of such cases. Cases reported in the data in

which neural activity within a trial turns off immediately at the

onset of a following phase may be indicative of end-stopping.

The simulation results show some differences compared to

the data obtained by Schultz et al. One that is immediately

apparent is the precise and reproducible nature of specific

intervals of spiking and of silence for each neuron in the model.

This is a feature caused by the absence of noise in the simulated

physiological functions.

A greater proportion of the responses recorded by Schultz

et al. showed selective activity prior to reward or during reward

in both RM and RNM trials than in only one of those two trial

types. The proportions were reversed in the results obtained

with the model, where more neurons responded to both, but

these differences may not be meaningful due to the sample size

issue outlined above.

The model responses contained a larger proportion of cells

that respond selectively during both RM and URM trials than

that reported by Schultz et al. In the trial phase preceding the

reinforcer, this was a category not reported by Schultz et al. and

a prediction of the model that further experiments with

recordings at a greater number of sites may verify.

Relation to Other Physiological Studies

This study shows how neuronal responses that guide behavior

could reflect a conjunction of forward spread (stimulus de-

pendent spread) and backward spread from goal (goal-

dependent spread). The latter relates to responses obtained by

Thorpe et al. (1983), where the change in reward contingency

demonstrates evidence for reward dependent response. The

Schultz et al. experiments replicated here were an extension of

the work by Thorpe and Rolls, who recorded single unit activity

of orbitofrontal neurons in primates during a Go/NoGo operant

task. In that task, monkeys learned to associate reward or an

aversive outcome with movement following a specific stimulus.

The meaning of a stimulus was reversed during this task. Thorpe

and Rolls showed that most neurons responded selectively to

specific stimuli and that the responses were also selective to

whether the stimulus indicated reward in a specific trial.

Simulation of Thorpe et al. using our model would require

changes in reward contingency in the task, and the use of some

mechanism of long-term depression in the model to replicate

decrease in response to previously rewarded stimuli.

Tetrode recordings by Jung et al. (1998) showed that the

correlation of activity in neurons in the PFC does not map

directly to sensory information such as location in spatial tasks.

Rather, the activity correlates with behavioral requirements that

are task specific, as shown with other simulations of a virtual rat

in spatial tasks (Hasselmo, 2005). The present experimental

results also relate to response data obtained by Schoenbaum

et al. (1998), where changes in reward contingency were also

shown to influence neuronal responses in rats. These responses

were recorded in brain areas that communicate with orbito-

frontal cortex through reciprocal connections, such as the

basolateral amygdala, which may provide feedback of an error

function to avoid an aversive outcome.

In order to encode the specific components of a task and to

encode predictive relationships by associating those compo-

nents, the connections between neurons in networks of mini-

columns and connections with the areas that provide input and

receive output must be easily modifiable. Experimental evidence

has been found for a rapid change in functional connectivity in

terms of modifications of the strength of connections in

orbitofrontal cortex and between orbitofrontal cortex and

related areas such as the basolateral amygdala (Schoenbaum

et al., 2000; Mulder et al., 2003). In those experiments, observed

changes in odor selectivity were closely matched by changes in

correlated firing activity during initial learning that led to

accurate performance on a discrimination problem.

Relation to Reinforcement Learning Theory:
a Biological Implementation of Reinforcement Learning

Rules that govern successful behavior are discovered by learning

how a specific action taken in one circumstance is followed by

another circumstance. In other words, a causal effect is inferred

from the results of a possible action that is explored while in

a perceived state. In machine learning, algorithms for this are
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known as reinforcement learning (Sutton and Barto, 1998). In

reinforcement learning, goals are explicit and formally repre-

sented by a reward value. The reinforcement learning frame-

work has also been related to cognitive neural processes (Barto,

1995a,b; Montague et al., 1996; Schultz et al., 1997).

Reinforcement learning defines a state signal as any informa-

tion that is available about the environment at a given time,

which may be pre-processed sensory input and may include

some memory of preceding states. The state signal has what is

known as the Markov property if it contains a representation of

all the information about current and preceding states and

actions that are relevant to future decisions (White, 1969; Ross,

1983; Bertsekas, 1995). A state signal with the Markov property

may be evaluated independent of the states and actions that

precede it.

Reinforcement learning algorithms do not provide instruction

about correct actions. Instead, an action is given a value by

learning its consequences. Yet, reinforcement learning allows

a range of different algorithms for learning these values. A

popular algorithm for reinforcement learning is temporal differ-

ence (TD) learning (Sutton, 1988), which is related to models of

conditioning (Konorski, 1948; Rescorla and Wagner, 1972). This

algorithm learns from raw experience by updating predictive

associations using a reward value at the time of update.

TD learning is useful, since it requires no information prior to

exploration about the probabilities of transitions between states

in an environment. In addition, TD learning methods with

Hebbian mechanisms (Hancock et al., 1991; Montague et al.,

1993; Montague and Sejnowski, 1994; Rao and Sejnowski, 2001)

have been proposed for the canonical circuit of neocortex

(Douglas et al., 1989; Artola et al., 1990). One approach to TD

learning, known as SARSA (state--action reward state--action), is

notable for learning the value of actions in transitions between

state--action pairs instead of the value of a state in transitions

from state to state (Sutton, 1996; Sutton and Barto, 1998,

ch. 7.5). The learning method in this paper assumes state--

action pairs, as in the SARSA approach, although it is not derived

from SARSA or TD learning.

The present model focuses on selection of actions on the

basis of action value. It does not require the use of TD learning

to create the action value function, because the constrained

nature of training ensured that it learned effective action value

functions. Further modification will be needed to allow effec-

tive learning with random generation of actions during explo-

ration, using a mechanism analogous to TD learning (Hasselmo,

2005). The model nevertheless provides a neural implementa-

tion of the action selection process in the reinforcement

learning framework that does not depend on lookup tables.

In the model, encoding of behavioral rules requires that PFC

contains unique representations of specific states and actions.

Fuster (2000) presented evidence that activity in the PFC is

representative of two types of perception, one that correlates

with the sensory state evoked by past and current stimuli and

one related to proprioceptive sensation and prediction of motor

actions.

Given the representation of states and actions, the transition

from one state to another state via a specific action can be

encoded uniquely if there is specific neural activity that occurs

only for that action and only when the action is initiated in

a particular state. This requirement leads to the presupposition

that a functional minicolumn contains populations of input

neurons and populations of output neurons that form connec-

tions with other minicolumns, and that the neurons in those

populations are connected in a structured manner to other

minicolumns, in this simulation to exactly one. The internal

weight matrices of an action minicolumn, Wig and Wic, act as

second-order conditional transition matrices from one state to

another. A functionally similar pattern of connectivity could be

learned by self-organization. Since the combination of activity at

a specific input neuron and a specific output neuron of an

action minicolumn represents the transition from a preceding

state to a following state, that information gives the model the

Markov property (e.g. Sutton and Barto, 1998, ch. 3.5). This

property means that one-step dynamics enable us to predict the

next state and expected reward for a specific action. Our model

therefore provides a means of extending principles of re-

inforcement learning to biological circuits and the spiking

responses of neurons.

Relation to Anatomical Data on Minicolumns

The successive neuronal layers in a canonical circuit of the

neocortex, as described by Douglas et al. (1989), can be

represented by the individual networks at the branch nodes of

a hierarchical network (Felleman and Van Essen, 1991). Catego-

rizing the parts of our model in such a hierarchy, the motor

output (by populations ci and co) corresponds to the activity of

the infragranular layer of the neocortex. Since sensory input is

received in layer IV, its function may correspond to that of

neurons designated a. And the supragranular layer has many

extensive and long range excitatory connections with other

regions so that it can perform the function of our minicolumn

model populations gi and go. This function that achieves the

convergence of goal spread with current state input depends on

the lateral connectivity within the neocortex. In studies of the

visual cortex, the lateral connectivity has been associated

(Kawato et al., 1993; Dayan and Hinton, 1996) with a necessary

role in the interpretation of input and its translation into

a complex hierarchicalmodel. The generation of visual receptive

fields that are tuned to recognize different orientations (Somers

et al., 1995; Yishai et al., 1995) was related to this proposed role.

Lateral connectivity in the prefrontal region of neocortex

includes short- and long-range excitatory connections, as well as

short-range inhibitory connections (Barbas and Pandya, 1989;

Barbas, 2000). The result is a patchy lateral layout of cells that are

highly interconnected within a column of cortical layers, the so-

called neocortical minicolumn. It has been shown that strong

local connectivity in a minicolumn can sustain activity during

delayed response tasks such as long-term goal directed behavior

for which a subject must be able to maintain information re-

garding a stimulus (Gutkin et al., 2000; Wood and Grafman,

2003).

Local circuits that may exhibit the function of the proposed

minicolumns were identified in the lateral connectivity of the

PFC, and Constantinidis and Goldman-Rakic (2002) showed that

the activity of interneurons within such ensembles is strongly

correlated. The correlated firing does not extend to distant

areas or modules, and the activity of spatially proximate

excitatory cells is less correlated than that of interneurons. In

fact, spiking of different pyramidal cells responsible for the long-

range propagation of activity is largely independent. Lund et al.

(1993) proposed means by which such local circuits may arise

during development. Analogous connectivity was described for

the middle temporal visual area (Maunsell and Van Essen, 1983),
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and a model for similar local circuit development was proposed

by Grossberg and Williamson (2001) for visual cortex areas V1

and V2. While our model resembles interaction of feedback and

feedforward used in Grossberg and Williamson (2001), the

visual models focus on top-down spread mediating global

feature detection rather than reward contingencies. Our model

more closely resembles the proposal by Mumford (Mumford,

1992) for bottom-up and top-down interactions.

If goal-directed behavior is to emerge in the PFC, its

neuroanatomy must support activity that interprets sensory

and proprioceptive motor input, and it must enable subsequent

output that affects behavior. Previous surveys of the neuronal

architecture of neocortex show that dual pathways between

cortical areas could implement the necessary pathways for the

analysis of input and the synthesis of output that guides

behavior (Mumford, 1991, 1992, 1994). In the framework

presented here, neuronal populations that correspond to cells

in layer IV of neocortex are identified as input neurons for

bottom-up cortical processing. Their ability to analyze input

is represented by consequent activity of input neurons in a

specific minicolumn. The associative connections between

minicolumns lead to a synthesis of activity that represents

goal-directed output.

While the model is intended to be applicable to the function

of prefrontal minicolumns in general and not specific to

orbitofrontal cortex, the encoding of reward found in orbito-

frontal cortex for the Schultz et al. task led to a minicolumn

representation of ‘reward state’. In other (e.g. spatial) tasks

where multiple routes can achieve a goal, a specific reward

value may be encoded by differential strengthening of associ-

ations between reward and specific goaldirected strategies.

When a task includes multiple goals or strategies with

different reward values, a mechanism must exist to select one

goal over another and to direct behavior accordingly. The

recruitment of distinct regions of orbitofrontal cortex has been

observed during incentive judgements and goal selection.

Lateral orbitofrontal activity has been observed selectively

when a task required that responses to alternative desirable

items must be suppressed (Arana et al., 2003). As implemented

in the present model, gating by the spread of activity from one

goal would compete with that of another goal at neuronal

populations where goal spread and forward spread from current

state converge. Successful neuronal firing suppresses the

selection of other possibilities through recurrent inhibition.

Notes

The CATACOMB simulations described here and information about

CATACOMB are available on our Computational Neurophysiology

website at http://askja.bu.edu. Supported by NIH R01 grants

DA16454, MH60013 and MH61492 to M.E.H. and by Conte Center

Grant MH60450, as part of the NSF/NIH Collaborative Research in

Computational Neuroscience Program.

Address correspondence to M.E. Hasselmo, Center for Memory and

Brain, Department of Psychology and Program in Neuroscience, Boston

University, 64 Cummington Street, Boston, MA 02215, USA. Email:
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