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Trajectory-modulated hippocampal neurons persist
throughout memory-guided navigation
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Trajectory-dependent splitter neurons in the hippocampus encode information about a

rodent’s prior trajectory during performance of a continuous alternation task. As such, they

provide valuable information for supporting memory-guided behavior. Here, we employed

single-photon calcium imaging in freely moving mice to investigate the emergence and fate of

trajectory-dependent activity through learning and mastery of a continuous spatial alternation

task. In agreement with others, the quality of trajectory-dependent information in hippo-

campal neurons correlated with task performance. We thus hypothesized that, due to their

utility, splitter neurons would exhibit heightened stability. We find that splitter neurons were

more likely to remain active and retained more consistent spatial information across multiple

days than other neurons. Furthermore, we find that both splitter neurons and place cells

emerged rapidly and maintained stable trajectory-dependent/spatial activity thereafter. Our

results suggest that neurons with useful functional coding exhibit heightened stability to

support memory guided behavior.
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P lace cells in the hippocampus encode the current position of
many different animals and humans1–4 supporting the
known role of the hippocampus in spatial memory and

navigation across species5. However, the hippocampus is also
widely known for its role in supporting the encoding, retrieval,
and consolidation of non-spatial long-term memories6, suggest-
ing that it must represent variables beyond an animal’s current
location. Indeed, recent studies have demonstrated that the hip-
pocampus encodes the dimensions of a given task, from odors7,8

to time9–13 to tones14. One early demonstration that the hippo-
campus encodes dimensions beyond an animal’s current location
was the discovery of trajectory-dependent neurons or splitter
neurons15,16, cells whose firing rate within a particular position
were modulated based on the animal’s past or future trajectory in
a spatial alternation task, referred to hereafter as trajectory-
dependent activity or trajectory coding. The generation of this
neural correlate suggests a potential mechanism allowing the
hippocampal code to support both memory and decision-based
planning.

Several studies have demonstrated that place cell firing fields
move, or remap, their locations in response to new learning
during a spatial memory task17,18 highlighting that the flexible
adjustment of place field locations is important for learning new
information. Conversely, the ability of hippocampal neurons to
maintain the same firing location in the absence of learning might
support long-term memory retrieval. In support of this idea, a
recent study illustrated that neurons with place fields located near
a hidden goal were more stable over time than cells with fields in
other locations19. Two other experiments found that increasing
rodents’ attention to a task selectively heightened stability in
neurons that encoded task-relevant features8,20. These studies,
along with the finding that place cells with fields in close proxi-
mity to a goal location exhibit heightened activity in post-learning
sleep18, suggest that the utility of a neuron’s information to task
performance influences its long-term stability.

Thus, since splitter neurons provide immediately relevant
information for performing a spatial alternation task, we hypo-
thesized that these neurons are important for successful task
performance. Furthermore, we hypothesized that due to their
utility, splitters may be preferentially stabilized when compared to
place cells. Specifically, we addressed three lines of inquiry. First,
how does the level of trajectory-dependent information within the
hippocampus correlate with behavioral performance? Second,
given the steady evolution of hippocampus activity patterns
across days21–24, do splitter neurons remain part of the active
population longer than other cells, thus providing a longer lasting
memory or planning signal to guide behavior? Third, once a
neuron establishes trajectory-dependent activity, is it less prone to
remapping than other neurons? These questions are particularly
relevant since trajectory-dependent activity has been observed in
other tasks25–27 and could be employed more generally by the
hippocampus to guide the appropriate behavior based on envir-
onmental cues28.

To track neurons across long timescales, we paired a con-
tinuous spatial alternation task with in vivo miniscope recordings
of GCaMP6f activity in dorsal CA1 of freely moving mice22,29.
This technology allowed us to not only track the long-term
activity of neurons, but also to adequately characterize the het-
erogeneity of trajectory-dependent activity in the hippocampus,
since we can simultaneously record from a large number of
neurons in each session. First, we found that some attributes of
trajectory-dependent coding correlate with task performance.
Second, we established that a neuron’s functional coding prop-
erties, or information content, are important for predicting its
long-term activity. Splitter neurons are more likely to be persis-
tently active in subsequent sessions than return arm place cells

and non-place cells indicating that neurons which provide more
adaptive information contribute longer lasting input to down-
stream structures. Third, we found that trajectory-dependent
neurons display more consistent long-term information about an
animal’s location than pure place cells. Fourth, we found that the
population as a whole undergoes a rapid onset of trajectory-
dependent activity followed by stable trajectory coding thereafter.
Last, we discovered that recruitment of context-dependent splitter
cells peaks several days into training, whereas place cell recruit-
ment peaks on the first day. These results combined suggest that
neurons that with behaviorally relevant coding properties exhibit
high short and long-term stability, which could enable them to
more consistently and effectively support memory-guided beha-
vior. Our research paves the way for future studies investigating
how heterogeneity in the neural code might support acquisition
and retention of more complex behavioral tasks.

Results
Behavior and imaging. Food deprived mice (n= 4) with neurons
expressing GCaMP6f in region CA1 of the dorsal hippocampus
were trained to perform a continuous spatial alternation task on a
figure-8 maze (Fig. 1a) while we simultaneously recorded calcium
activity using a miniaturized microscope. Mice exhibited a range
of learning rates, taking from 5 to 21 sessions to acquire the task,
which was defined as the third consecutive session of perfor-
mance at or above our criteria of 70% correct (Fig. 1b). Mice
performed continuous alternation at or greater than criteria on
average throughout the course of the experiment (Fig. 1c). We
utilized custom-written software24,30 to extract neuron ROIs
(Fig. 1d), construct their corresponding calcium traces, and
identify each ROI’s putative spiking activity (Fig. 1e, Supple-
mentary Fig. 1c, d). Using this technique, we recorded from large
numbers of neurons (243–1205 neurons per ~30 min session) and
successfully tracked them across days by comparing the distance
between neuron ROI centroids (Supplementary Fig. 1a) and
verifying that ROIs did not change orientation of their major
elliptical axis between sessions (Supplementary Fig. 1b). We
observed no systematic changes in calcium trace kinetics or
fluorescence across sessions, indicating stable levels of GCaMP
expression (Supplementary Fig. 1e, f). Nevertheless, we excluded
any potentially unhealthy neurons that had half-decay times >2 s
(13% ± 6.7% of neurons across all sessions, mean ± std., n=
68 sessions) from further analysis.

Trajectory-dependent activity is maintained across days. The
initial studies by Frank et. al and Wood et al. used electrophysiology
in rats to establish the existence of trajectory-dependent splitter cells
in the hippocampus15,16. Thus, we first wondered if we could detect
trajectory coding in a different species while using a technique with
much lower temporal resolution. To do so, we constructed tuning
curves representing the probability that a given neuron had calcium
activity at each spatial bin (1 cm) along the stem in correct trials
only, and classified neurons as trajectory-dependent splitters if at
least three bins displayed a significant difference between their
tuning curves (p < 0.05, permutation test). We found that we were
capable of not only identifying trajectory-dependent cells on a given
day (60 ± 23 neurons, mean ± s.e.m. across all four mice), but that
in many cases these neurons maintained significant trajectory-
dependent activity across multiple days (Fig. 2a, b, Supplementary
Fig. 2c–n). Significant trajectory-dependent activity was exhibited
by 10% of neurons active on the maze stem across all sessions (12%,
5%, 12%, and 9% for individual mice); note that this method for
identifying trajectory-dependent activity is more conservative than
that used in previous studies15,16,31. Apparent trajectory-dependent
activity could also potentially result from factors such as systematic
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variations in the mouse’s lateral position along the stem. We
addressed this in two ways. First, we limited the portion of the maze
we considered the stem to exclude any areas where the mouse
exhibited stereotypical turning behavior by eye (Fig. 2a, b, bottom).
Second, we performed an ANOVA for each splitter neuron which
included the animal’s upcoming trajectory, position along the stem,
speed, and lateral position along the stem as covariates16. We found

that a high proportion of our splitter neurons were significantly
modulated by upcoming turn direction after accounting for speed
and lateral stem position (89%, 72%, 76%, and 83% for individual
mice). Neurons that did not exhibit turn direction modulation after
accounting for speed and lateral position were not categorized as
splitter neurons in subsequent analyses. Together, these results
indicate that trajectory-dependent coding exists in mouse CA1 and
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Fig. 2 Trajectory-dependent activity persists across days. a (top) Calcium event rasters along the stem for correct trials for two sessions recorded one
day apart, sorted by turn direction at the end of the stem. Blue = left turns, Red = right turns. (middle) Calcium event probability curves for each turn
direction. *indicates bins exhibiting significant trajectory-dependent activity (p < 0.05, one-sided shuffle-test). Curves were smoothed using a smoothing
spline for visualization purposes (p = 0.9, see Methods). (bottom) occupancy normalized calcium event map with reliability (REL) and discriminability
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but for a different mouse and for sessions 7 days apart.
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Fig. 1 Experimental setup and imaging. a Alternation Maze. Blue = Left turn trajectories, Red = Right turn trajectories, *= location of food reward.
b Example learning curve for one mouse. Black dashed = acquisition criterion (70%), red asterisk = task acquisition day. c Performance summary for all
four mice (n = 10, 10, 23, 28 sessions). Black dashed = criterion, red dashed = chance. Box plots show median and 25th/75th percentiles, whiskers show
data extent excluding outliers. d Representative maximum projection from one imaging session (873 neurons detected) with 10 neuron ROIs overlaid. The
maximum projection was consistent for each mouse across 10, 7, 23, and 28 sessions with 748 ± 102, 337 ± 46.5, 1030 ± 79.7, and 611 ± 147 neurons
detected respectively (mean ± std). e Example calcium traces for ROIs depicted in (d). Red lines on the ascending phase of each calcium event indicate
inferred spiking activity.
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in many cases maintains the same activity profile across both short
and long timescales. To the best of our knowledge, this is the first
demonstration of hippocampal trajectory-dependent activity using
calcium imaging in mice.

Additionally, we observed that the mean location of spatial
firing along the stem progressed backward within each recording
session such that calcium activity occurred at earlier and earlier
portions of the stem with time (Supplementary Fig. 2a). This is
consistent with a study reporting the backwards-migration of
spatial firing with experience32. Interestingly, we did not find any
evidence of consistent migration of spatial firing locations
between sessions (Supplementary Fig. 2b).

Trajectory-dependent activity correlates with performance.
Trajectory-dependent neurons provide information vital to task
performance that might be utilized by downstream structures to
inform proper motor actions33–35. This idea is supported by
studies finding that trajectory-dependent activity markedly
diminished during error trials25,27. Thus, we predicted that suc-
cessful task performance would be associated with prominent
trajectory-dependent information in the neural code of neurons
active on the stem. We utilized two metrics to measure different
attributes of trajectory-dependent activity: (1) reliability, which
measured the consistency of a cell to fire on its preferred trial type
along the entire stem, and (2) discriminability, which measured
the magnitude of difference between left and right turn tuning
curves along the entire stem (Methods). While most splitter
neurons generally had high reliability and discriminability values,
neurons with sparser calcium activity for one turn direction could
exhibit low reliability and high discriminability (Fig. 2a). Con-
versely, splitter neurons that reliably increased their event rate for
one turn direction but still exhibited activity for the other turn
direction could have high reliability but low discriminability
(Fig. 2b). We also assessed population-level trajectory-dependent

information by training a linear discriminant analysis (LDA)
decoder to classify future turn direction at each spatial bin along
the stem.

We found a positive correlation between all three metrics and
the animal’s performance (Fig. 3). These correlations were
significant for reliability and discriminability, but not LDA
decoder accuracy, across all sessions (Fig. 3a–c top). We also
obtained positive correlations when we averaged across mice.
These correlations were significant for discriminability, but not
reliability, and the relationship between LDA accuracy and
performance approached significance (Fig. 3a–c bottom). Last, for
each cell, we correlated the left turn and right turn tuning curves
and subtracted those values from 1 (1−ρ) as another metric for
trajectory-dependent information. Note the conservative nature
of this metric for measuring trajectory-coding: it produces low
values (indicating high-trajectory-dependent information) for
splitter neurons that shift their location along the stem between
trial types but not for splitter neurons that modulate event rates
in the same location. We found a positive correlation between
performance and 1−ρ that approached significance when we
averaged across mice (Fig. 3d), which was not surprising given the
conservativeness of this metric. We obtained similar results when
we focused on local metrics of trajectory-dependent activity
rather than their average along the entire stem (Supplementary
Fig. 3). Together, these results indicate that some attributes of
trajectory-dependent activity might facilitate accurate task
performance.

Greater across-day stability for trajectory coding neurons.
Multiple studies have shown that hippocampal neurons exhibit
significant turnover across days with fewer staying active within
the same environment as time progresses21–24,30. However, these
studies all treated the CA1 population as one homogeneous
group. Thus, we wondered if splitter neurons, which exhibit task-
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Fig. 3 The quality of trajectory-dependent activity correlates with performance. a (top) Performance for each session versus the mean reliability value
for all cells active on the stem from that session. Circles = all sessions, all mice. *ρ = 0.47, p = 9.9 × 10−5 Pearson correlation. (bottom) Same as top but
for each mouse, triangles = average for each mouse. b Same as a, but for the mean discriminability value. *ρ = 0.26, p = 0.039, **ρ = 0.97, p = 0.017
Pearson correlation. c Same as (a), but for the mean LDA decoder accuracy. Dashed orange line indicates chance-level decoder accuracy assessed by
shuffling trial identity. +ρ = 0.89, p = 0.057, Pearson correlation. d Same as a, but for the mean value of 1—Spearman’s ρ between left and right tuning
curves. +ρ = 0.87, p = 0.066, Pearson correlation.
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relevant information, would be preferentially stabilized within the
CA1 network when compared to traditional place cells. As such
the hippocampus would maintain a more consistent population
of neurons that could be utilized for guiding this behavior. To
address this question, we first calculated the probability that each
pool of neurons remained active in subsequent sessions. We
found that splitter cells were more likely to remain active in a
later session than arm place cells for short (Fig. 4a) and long
(Fig. 4b) time lags between sessions. This higher likelihood of
splitter neurons remaining active generally persisted up to
15 days later (Fig. 4c, Table 1) and was exaggerated when we
compared splitters to non-place cells on both the arm and the
stem of the maze (Fig. 4e, f). However, we found that splitters and
stem place cells were equally likely to remain active at all time lags
(Fig. 4d). This could occur because stem place cells also exhibit
trajectory-dependent activity that does not quite meet our strin-
gent splitter neuron criteria. In support of this idea, stem place
cells carrying highly reliable trajectory information were more
likely to remain active than those carrying relatively unreliable
trajectory information (Supplementary Fig. 4g, Table 2). Alter-
natively, this finding could support the idea that both the animal’s
current and past position are relevant for task performance,
which in turn could influence the stability of place cells and
splitters, respectively27. To mitigate any sampling biases due to
the higher event rate of splitter neurons (Supplementary Fig. 4a),
we performed an additional analysis where we included only the
most active place and non-place cells such that their mean event
rate matched that of splitters. We found that splitters were gen-
erally more likely to remain active than event-rate matched non-

place cells (Supplementary Fig. 4e–f, Table 3). However, event-
rate matched arm and stem place cells were equally as likely to
remain active as were splitters (Supplementary Fig. 4b–d,
Table 3), consistent with the idea that the stability of both place
cells and trajectory-dependent cells is important for task perfor-
mance27. We also observed no differences in stability based on
the level of trajectory information in event-rate matched neurons
(Supplementary Fig. 4h, Table 2). This suggests that a neuron’s
activity level, along with its information content, also influences
whether it stays active on following days. These findings com-
bined support the idea that the task relevance of information
carried by a neuron influences its likelihood to maintain activity
at later time points, which could be exploited for successful
memory-guided behavior across days.

We next wondered how the information provided by splitter
cells differs from that of other neurons. First, we found that firing
fields were generally larger for splitters than place cells (Supple-
mentary Fig. 5a). To further investigate, we decided to compare the
long-term spatial coding properties of trajectory-dependent splitter
neurons on the stem to return arm place cells (Fig. 5a). When
examining spatial calcium activity over the entire map across
sessions, we found that splitter neurons had significantly higher 2D
event map correlation values than arm place cells (Fig. 5b) and that
this effect persisted up to 15 days later (Fig. 5c) indicating that they
were more stable overall. We observed even higher relative spatial
stability of splitter neurons compared to stem place cells (Table 3,
Supplementary Fig. 5c). The higher correlations for splitters were
not explained by their place-field size nor by experimenter
movements to provide reward on the return arm because stem
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place cells also have larger place fields, but not larger spatial
correlations, than arm place cells (Supplementary Fig. 5a, b). This
indicates that trajectory-dependent splitter neurons might guide
memory task performance by providing a more consistent
representation of space than place cells.

Rapid onset of trajectory coding followed by stable activity.
Next, we examined the ontogeny of trajectory-dependent
neural behavior. We hypothesized two different scenarios that
could support the emergence of splitters. In line with a study
showing that unstable neurons can support well-learned beha-
vior36, splitters could slowly ramp up/down their splitting behavior
or they could come online suddenly and turn off just as suddenly.
On the other hand, previous research presented the idea that
neurons pre-disposed to become place cells can come online
suddenly after a head-scanning/attention event37, which is poten-
tially supported by the presence of reliable sub-threshold depo-
larizations of those neurons caused by calcium activity in its
dendritic arbor38–40. In line with this idea, splitter neurons could
rapidly develop trajectory-dependent activity and then maintain

that activity thereafter. To address this question, we identified the
day when each neuron we recorded first exhibited significant
trajectory-dependent activity and tracked its splitting extent—the
proportion of the stem which exhibited significant differences
between left and right tuning curves—in subsequent sessions. We
found evidence for heterogeneity in the onset of splitting, with
some neurons exhibiting a rapid onset of trajectory-dependent
activity (Fig. 6a) while others ramped up their trajectory-dependent
activity in the days prior to becoming a splitter (Fig. 6b). Each
onset type appeared to maintain stable trajectory-dependent
activity afterward since, for individual mice, splitting extent
remained higher in the day following splitter onset when compared
to the day preceding splitter onset (Fig. 6c, Supplementary Fig. 2d).
The rapid onset of trajectory-dependent activity and stable main-
tenance thereafter was readily apparent when examining group
data over longer timescales (±10 days, Fig. 6d, Supplementary
Fig. 2d–n). We obtained similar results for peak reliability and peak
discriminability along the stem (Fig. 6e, f). In contrast, we observed
a weaker trend for discriminability and no trend for reliability
averaged along the whole stem (Supplementary Fig. 6), supporting

Table 1 One-sided signed-rank significance values for the probability splitter vs. place cells (PCs) and non-place cells (NPCs)
remain active between sessions (n = session pairs).

Day lag (n) 1 (58) 2 (34) 3 (24) 4 (25) 5 (30) 6 (41) 7 (44) 8 (31)
vs. Arm PCs 5.7e−8 1.1e−4 0.24 0.026 0.024 1.2e−4 4.1e−4 0.0021
vs. Stem PCs 0.0021 0.05 0.55 0.34 0.39 0.026 0.42 0.77
vs. Arm NPCs 2.7e−11 3.3e−7 2.3e−4 8.6e−5 3.4e−4 3.2e−6 3.2e−8 2.5e−4
vs. Stem NPCs 8.9e−11 4.9e−6 8.0e−4 9.0e−4 4.0e−4 6.0e−6 1.2e−6 8.1e−5
Day lag (n) 9 (21) 10 (10) 11 (10) 12 (14) 13 (22) 14 (17) 15 (13)
vs. Arm PCs 0.024 0.16 0.0067 9.1e-4 0.019 0.0023 0.024
vs. Stem PCs 0.43 0.65 0.88 0.60 0.45 0.41 0.42
vs. Arm NPCs 1.9e−4 9.8e−4 0.014 3.1e−4 1.2e−4 1.0e−3 6.1e−4
vs. Stem NPCs 6.9e−4 0.014 6.8e−3 0.0034 5.2e−4 0.019 0.0023

Table 2 One-sided signed-rank significance values for the probability stem pcs with high vs. low trajectory reliability stay active
between sessions (n = session pairs).

Day lag (n) 1 (57) 2 (34) 3 (24) 4 (24) 5 (29) 6 (41) 7 (44) 8 (32)
All Neurons 5.4e−7 6.0e−6 0.0027 2.1e−4 0.0017 0.0011 6.5e−4 0.010
Event-rate matched 0.24 0.18 0.38 0.30 0.66 0.33 0.30 0.41
Day lag (n) 9 (22) 10 (10) 11 (10) 12 (14) 13 (22) 14 (17) 15 (14)
All Neurons 0.013 0.29 0.082 0.029 0.0020 0.0026 0.066
Event-rate Matched 0.34 0.58 0.31 0.98 0.83 0.26 0.5

High/low reliability = stem PCs in top/bottom quartile of mean reliability value.

Table 3 One-sided signed-rank significance values for the probability splitter vs. place and non-place cells stay active, event-rate
matched (n = session pairs).

Day lag (n) 1 (58) 2 (34) 3 (24) 4 (25) 5 (30) 6 (41) 7 (44) 8 (31)
vs. Arm PCs 0.56 0.12 0.98 0.98 0.86 0.20 0.31 0.33
vs. Stem PCs 0.47 0.68 0.95 0.68 0.82 0.40 0.97 0.95
vs. Arm NPCs 7.9e−7 0.0011 0.0083 0.065 0.073 0.014 0.0022 0.0090
vs. Stem NPCs 0.0040 0.0030 0.024 0.37 0.25 0.049 0.0010 0.062
Day lag (n) 9 (21) 10 (10) 11 (10) 12 (14) 13 (22) 14 (17) 15 (13)
vs. Arm PCs 0.13 0.35 0.65 0.57 0.26 0.20 0.07
vs. Stem PCs 0.83 0.82 0.92 0.93 0.90 0.65 0.71
vs. Arm NPCs 0.016 0.60 0.27 0.027 0.46 0.23 0.0017
vs. Stem NPCs 0.034 0.63 0.71 0.27 0.11 0.27 0.034

Neurons with the lowest event-rate were removed from each session such that the mean event rate of each coding type matched that of splitter neurons.
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the observation that splitter neurons maintained consistent
trajectory-dependent activity along a local portion (~25%) of the
stem after their onset. We observed a similar onset profile for place
cells when we used mutual information as a metric of place coding
strength (Fig. 6g), which suggests that similar rules govern the
onset and fate of trajectory-dependent and spatial coding in hip-
pocampal neurons.

Place cell onset coincides with or precedes splitter onset. We
next wondered if hippocampal neurons displayed significant
spatial tuning before, during, or after they exhibited trajectory-
dependent firing. As shown above, splitter cells produce accurate
spatially modulated activity (Fig. 5) and have a similar onset/
offset trajectory to place cells (Fig. 6); thus, we hypothesized that
the onset of trajectory-dependent firing in hippocampal neurons
would either coincide with or follow their onset as place cells. To
test this idea, we first tallied the onset day of splitter neurons and
place cells. We found that, while both place cells and splitter
neurons were present from day 1 and continued to come online
throughout the experiment (Fig. 7a, b), the bulk of place cells
were recruited on day 1. In contrast, and in agreement with a
previous study41, the recruitment of splitter cells did not peak
until several days later (Fig. 7a, b), suggesting that trajectory-
dependent activity tended to emerge more slowly than spatial
activity. This could occur independently in two different groups
of neurons, or it could occur serially with each neuron first
becoming a splitter cell only after becoming a place cell. Thus, to
test if this delay in splitter cell ontogeny occurred in the same
cells, we directly compared the day a cell became a place cell to
the day it began to exhibit trajectory-dependent activity. We
found that in the majority of neurons, trajectory-dependent
activity onset occurred simultaneously with place field onset,
while a different population of neurons exhibited trajectory-
dependent activity only after first becoming place cells (Fig. 7c, d).
Consistent with previous studies37,42 the bulk of splitters and
place cells came online in the first several trials of each session;
surprisingly, splitter activity first occurred earlier than place cell
activity over trials within a day (Fig. 7e, f, Supplementary Fig. 7)
even though they appeared later across days (Fig. 7a, b). Thus,
place cells and splitter cells occupy an overlapping population of
neurons with spatial responsivity coinciding with or preceding
trajectory-dependent coding.

Discussion
From an evolutionary perspective, one adaptive function of
memory is the ability to provide information vital to survival.
Thus, maintaining activity and consistency in neurons encoding
information pertinent to survival might provide a mechanism for
preferentially strengthening connections with downstream
structures via consistent replay of the same sequences43–46.
Conversely, if the pool of neurons available to encode a given
memory remains fixed, then forgetting of incidental information
through the turnover/silencing of neurons not required for sur-
vival is adaptive47 because it could increase the numbers of
neurons available to encode other relevant information48. Here,
we utilized in vivo calcium imaging with miniaturized micro-
scopes to explore this idea (Fig. 1) by investigating the develop-
ment and fate of trajectory-dependent splitter neurons15,16

(Fig. 2). To the best of our knowledge, this is the first demon-
stration that trajectory-dependent hippocampal activity exists in
mice and that it can be detected with calcium imaging. Since
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Fig. 5 Splitters maintain more consistent spatial information than place
cells. a Example 2D occupancy normalized calcium event maps from the
same splitter neuron (top) and arm place cell (bottom) between sessions
on adjacent days. The higher Spearman correlation between splitter neuron
event maps indicates more consistent spatial activity. Event maps were
smoothed with a Gaussian filter (σ = 2.5 cm). b Mean spatial correlations
from smoothed event maps for splitter neurons versus return arm PCs for
all sessions seven days apart from all. *p = 9.7 × 10−5, n = 42 session pairs,
one-sided signed-rank test. Box plots show median and 1st/3rd quartiles,
whiskers extend to 1.5× interquartile range. c Mean spatial correlations for
splitter neurons and arm PCs versus lag between sessions for all mice/
sessions. Magenta = arm PCs, green dashed = splitters. Black bars =
significant differences after Holm-Bonferroni correction (15 day lags
considered) of one-sided signed-rank test, α = 0.05. See Table 4 for raw
p-values at all lags.

Table 4 One-sided signed-rank significance values for mean spatial correlation values of splitter vs. arm PCs or splitters vs. stem
PCs (n = session pairs).

Day lag (n) 1 (61) 2 (38) 3 (26) 4 (26) 5 (30) 6 (42) 7 (46) 8 (31)
vs. Arm PCs 0.0055 0.013 0.049 0.014 0.0057 9.5e−6 9.7e−5 0.018
vs. Stem PCs 1.9e−5 2.8e−5 0.014 2.5e−4 8.2e−4 3.5e−5 1.0e−4 0.017
Day lag (n) 9 (21) 10 (10) 11 (10) 12 (14) 13 (22) 14 (17) 15 (13)
vs. Arm PCs 0.044 0.65 0.0098 8.5e−4 0.0081 0.61 0.047
vs. Stem PCs 0.028 0.19 0.0049 0.0083 0.011 0.56 0.04
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trajectory-dependent splitter neurons contain information rele-
vant to proper task performance (Fig. 3, see also Ferbinteanu and
Shapiro25), we hypothesized that they would exhibit relatively
high stability when compared to other neuron functional
coding types.

Several lines of evidence support this hypothesis. First, splitter
neurons are more likely to remain active across long timescales
than arm place cells and especially non-place cells (Fig. 4). Second,
splitters come online abruptly and then maintain a stable readout
of trajectory up to 10 days after becoming a splitter (Fig. 6).
Splitters also provide a more consistent signal of the animal’s
current location than do other neurons (Fig. 5), further supporting
their long-term stability. Last, we found that splitter cells are a
dynamic subpopulation of place cells with the onset of place coding
generally preceding the onset of trajectory-dependent activity
(Fig. 7). This finding concurs with the slow increase of trajectory-
dependent activity with experience found in a previous study41.
These data combined support the idea the information carried in
the neural code influences a neuron’s stability19 and the con-
sistency of the information it provides to downstream structures.
More broadly, this study supports the idea that adaptive memories
are encoded in a relatively stable subpopulation of neurons, freeing
the remaining pool of neurons to undergo plasticity during new
learning49,50. Interestingly, since information transfer to the lateral
septum correlates more strongly with the strength of hippocampal
activity rather than information content51, the finding that event-
rate also influences the stability of a neuron across days (Fig. 4 vs.
Supplementary Fig. 4) could provide a mechanism for maintaining
stable outputs to a prominent subcortical output of the hippo-
campus. However, how downstream regions can utilize a con-
stantly changing landscape of hippocampal inputs to guide

behavior remains an open question, as place fields along the stem
drift steadily backwards throughout each session (Supplementary
Fig. 2a, b) and day-to-day turnover even in relatively stable splitter
neurons can still sometimes be quite high (Fig. 4c–f).

Our study utilizes single-photon imaging to perform long-
itudinal tracking of hippocampal neuron activity and confirms
existing studies that show increasing turnover of coactive neurons
with time21–23. However, a recent study by Katlowitz et al. per-
formed in songbirds demonstrated that imaging artifacts, speci-
fically small shifts in the z-plane of single-photon imaging, could
entirely account for putative cell turnover52. Thus, the turnover
we and others observe in hippocampal neurons could likewise be
artefactual. While relevant, this concern is mitigated in our study
for a number of reasons. First, the Katlowitz et al. study52 was
performed in the basal ganglia of songbirds while they performed
a stereotyped behavior supported by highly stable firing responses
of neurons over short and long timescales53,54. In contrast, our
study was performed in CA1 of the mouse hippocampus, a highly
plastic brain region exhibiting complete, monthly turnover of
afferent connections55 that also exhibits a high degree of drift in
neuron firing responses over relatively short timescales13,56.
Second, studies utilizing activity-dependent tagging of neurons
also find that the overlap between active cells in the mouse hip-
pocampus declines with time between sessions23,57, supporting
long-term hippocampal cell turnover as a real phenomenon.
Third, a notable recent study used two-photon imaging, which
mitigates any concerns of z-plane drift, and found similar rates of
turnover in CA1 to what we observe58. Most importantly, our
study compares the relative turnover rates of two different classes
of cells from the same session: splitter cells and place cells. Thus,
even if day-to-day misalignments in the z-plane forced neurons
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Fig. 6 Splitters come online abruptly and maintain stable fields. a, b Example splitter across days for two different mice illustrating sudden onset of
trajectory-dependent activity followed by stable trajectory-dependent activity thereafter. c Splitting extent (proportion of stem bins with significant
trajectory-dependent activity) along the stem±1 days from splitter onset for one representative mouse. p = 1.8 × 10−10 Kruskal–Wallis ANOVA, N = 233
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16226-4

8 NATURE COMMUNICATIONS |         (2020) 11:2443 | https://doi.org/10.1038/s41467-020-16226-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


out of focus, this would occur equally for splitters, place cells, and
non-place cells. Therefore, concerns about imaging artifacts
cannot explain our finding that splitter cells are more persistently
active across long timescales than arm place cells and all non-
place cells.

Rodents with hippocampal lesions are capable of performing a
continuous alternation task59. This raises the question: how
important is trajectory-dependent activity if mice can perform the
task without the hippocampus at all? We have several responses.
First, long-term lesions test necessity, not sufficiency, since these
lesions can induce compensatory plasticity that could allow non-
hippocampal regions to support the task60. Second, under normal
conditions the hippocampus might still be the default brain region
for task performance in spatial alternation. This is emphasized by
Goshen et al.61, who demonstrated that mice cannot perform
long-term recall of a putatively hippocampal-independent con-
textual fear memory57,62 when hippocampal inactivation is limited
to a short time period before the task; however, mice became
capable of successful long-term memory recall when this inacti-
vation was extended over a long time period prior to performing
the task. This study and others63–67 support the idea that the
hippocampus is vital for long-term recall under normal conditions
and that redundant pathways are recruited for episodic memory
retrieval only if chronic aberrant activity is detected in the hip-
pocampus. Finally, the results of Ferbinteanu & Shapiro25

demonstrate that decreases in CA1 trajectory-coding correlate
with impaired performance in a task with discrete trial structure.
This suggests that the trajectory-dependent activity observed
during hippocampal-independent tasks becomes necessary for
proper memory-retrieval when task demands require higher levels
of hippocampal engagement.

One notable study by Ito et al. found that lesions or optoge-
netic silencing of nucleus reuniens, an important communication
hub between the medial prefrontal cortex and dorsal CA1 of
the hippocampus, significantly reduced trajectory-dependent
activity in rat CA1 neurons while having no impact on a rat’s

performance of a spatial alternation task31. Those results chal-
lenge the findings of us and others25,27 that, in some cases, the
quality of trajectory-dependent information contained in CA1
activity patterns correlates with a mouse’s performance (Fig. 3).
One potential reason for this discrepancy is that their interven-
tion only partially reduced trajectory-dependent information
without eliminating it, allowing the splitter cells remaining to
provide adequate information for proper task performance. In
fact, optogenetic silencing of nucleus reuniens produced a smaller
deficit in trajectory-dependent activity than did lesions; even
lesions eliminated trajectory-dependent activity predicting future
trajectories only. Information related to past trajectories, which
could be utilized by downstream structures to help make the
correct upcoming turn, was maintained. Second, relatively easy
tasks might be less resistant to a partial disruption and rats
performed at close to ceiling levels in the Ito et al.31 study. Our
mice performed at lower levels, though still well above chance,
indicating that the spatial alternation task might place higher
attentional and cognitive demands on mice than on rats. Finally,
other recent studies utilizing hippocampal-dependent memory
tasks have shown that nucleus reuniens disruption causes mem-
ory deficits68, while silencing of medial prefrontal cortex reduces
both behavioral performance and the magnitude of trajectory-
dependent activity in CA169. These studies highlight the impor-
tance of trajectory-dependent activity to the performance of more
difficult, hippocampal-dependent memory tasks. Taken together,
our findings, along with the work of others25,27 indicate that
further work is necessary to disentangle the exact conditions
under which trajectory-dependent activity is necessary or suffi-
cient for performing a spatial alternation task.

Through what mechanism do trajectory-dependent neurons
maintain greater stability across long timescales? After the initial
onset of trajectory-dependent behavior, these neurons could
receive feedback from dopaminergic neurons originating in the
ventral tegmental area (VTA) during learning70 or from locus
coeruleus (LC) neurons during post-learning sleep71 that could
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strengthen afferent connections to splitter neurons. This could
also occur during sharp-wave ripple related replay of prior
trajectories43,44 in conjunction with simultaneous dopaminergic
inputs from VTA70. However, this mechanism would also
strengthen all cells active en route to the goal location whether
they carried information about trajectory or not. One recent
study found that trajectories leading to larger rewards were pre-
ferentially replayed over trajectories leading to smaller rewards72.
Thus, one possibility is that since trajectory-dependent neurons
are more useful for predicting how to obtain reward than pure
place cells, they might be preferentially reactivated during sharp-
wave ripple events, an idea that warrants future testing.

Taken together, our results highlight the influence of a neu-
ron’s information content on its subsequent stability, and suggest
that the emergence of task-related trajectory-dependent coding
coincides with or follows the emergence of spatial coding in
neurons. Future work should investigate mechanisms supporting
the stability and emergence of trajectory-dependent neurons.

Methods
Animals. Five male C57/BL6 mice (Jackson Laboratories), age 3–14 months and
weighing 25–30 g were used. One mouse was excluded from analysis after per-
forming the experiment due to the inability to correct motion artifacts in his
imaging videos. Mice were housed socially with 1–3 other mice in a vivarium on a
12 h light/dark cycle with lights on at 7 am and given free access to food and water.
All mice were singly housed after surgery. All procedures were performed in
compliance with the guidelines of the Boston University Animal Care and Use
Committee, including a mandated housing temperature of 18–25 °C and 30–70%
humidity.

Viral constructs. We used an AAV9.Syn.GCaMP6f.WPRE.SV40 virus from the
University of Pennsylvania Vector Core at an initial titer of ~4 × 1013 GC/mL and
diluted it to ~(5–6) × 1012 GC/mL with sterilized 0.05 phosphate buffered saline
(KPBS) prior to infusion into CA1.

Stereotactic surgeries. All surgeries were performed in accordance with pre-
viously published procedures30 in accordance with the Boston University Animal
Care and Use Committee. Briefly, we performed two stereotactic surgeries and one
base-plate implant on naïve mice, aged 3–8 months. Surgeries were performed
under 1–2% isoflurane mixed with oxygen. Mice were given 0.05 mL/kg bupre-
norphine (Buprenex) for analgesia, 5.0 mL/kg of the anti-inflammatory drug
Rimadyl (Pfizer), and 400 mL/kg of the antibiotic Cefazolin (Pfizer) immediately
after induction. They received the same dosage of Buprenex, Cefazolin, and
Rimadyl twice daily for three days following surgery and were carefully monitored
to ensure they never dropped below 80% of their pre-operative weight during
convalescence. In the first surgery, a small craniotomy was performed at AP −2.0,
ML+1.5 (right) and 250nL of GCaMP6f virus was injected 1.5 mm below the brain
surface at 40nL/min. The needle remained in place a minimum of 10 min after the
infusion finished at which point it was slowly removed, the mouse’s scalp was
sutured, and the mouse was removed from anesthesia and allowed to recover.

Three to four weeks after viral infusion, mice received a second surgery to
attach a gradient index (GRIN) lens (GRINtech, 1 mm × 4mm). After performing
an ~2 mm craniotomy around the implant area, we carefully aspirated cortex using
a blunted 25ga and 27ga needle under constant irrigation with cold, sterile saline
until we visually identified the medial-lateral striations of the corpus callosum. We
carefully removed these striations using a blunted 31ga needle while leaving the
underlying anterior-posterior striations intact, after which we applied gelfoam to
stop any bleeding. We then lowered the GRIN lens until it touched the brain
surface and then proceeded to lower it another 50 µm to counteract brain swelling
during surgery (note that in two mice we first implanted a sleeve cannula with a
round glass window on the bottom without depressing an additional 50 µm and
then cemented in the GRIN lens during base-plate attachment). We then applied
Kwik-Sil (World Precision Instruments) to provide a seal between skull and GRIN
lens and then cemented the GRIN lens in place with Metabond (Parkell), covered it
in a layer of Kwik-Cast (World Precision Instruments), and then removed the
animal from anesthesia and allowed him to recover after removing any sharp edges
remaining from dried Metabond and providing any necessary sutures.

Finally, after ~2 weeks we performed a procedure in which the mouse was put
under anesthesia but no tissue was cut in order to attach a base-plate for easy future
attachment of the microscope. To do so, we attached the base-plate to the camera
via a set screw, carefully lowered the camera objective and aligned it to the GRIN
lens by eye, and visualized fluorescence via nVistaHD v2.0/v3.0 until we observed
clear vasculature and putative cell bodies expressing GCaMP6f, then raised the
camera up ~50 µm before applying Flow-It ALC Flowable Composite (Pentron)
between the underside of the baseplate and the cured Metabond on the mouse’s

skull. After light curing we applied opaque Metabond over the Flow-It ALC epoxy
to the sides of the baseplate to provide additional strength and to block ambient
light infiltration.

All mice were imaged in open arenas for several weeks to habituate them to
attaching and wearing the camera (see following section). Additionally, two of the
mice participated in another experiment prior to imaging. As a result, the mean
time the virus was in the system on the last imaging day was 19.4 weeks.

Experimental outline. After recovery from surgery, mice were food deprived to
maintain no less than 85% of their pre-surgery weight. Mice were subsequently
exposed to a variety of arenas in order to habituate them to navigating with the
camera attached. Prior to training on the alternation task, all mice were given 1–4
habituation sessions on the alternation maze. The maze floor (inner dimension =
64 × 29 cm) and walls (height= 18 cm) were constructed from 3/8 inch (0.95 cm)
thick plywood and the barriers between arms were constructed from two 53 cm
long 1.5 × 5.5 inch (3.8 × 14 cm) pine framing studs. The finished maze consisted
of a central stem and two return arms, each 7.5 cm wide with 5.7 cm wide openings
at each end of the central stem through which mice could exit or enter the return
arms. Two food wells ~0.25 cm deep were created toward the end of each return
arm to hold chocolate sprinkles: they were centered 12.5 cm from the end of the
maze where mice exited the return arm/entered the center stem. Food was placed
in these wells through a small opening in the side of the maze. The arena was sealed
with urethane prior to exploration.

Three of the mice were first trained to loop on each side of the maze
independently for 3 days in 10 min blocks by blocking off access to the other side
with Plexiglas dividers in order to familiarize mice with the general task demands,
arena, and location of food reward (chocolate sprinkles); the other mouse received
one habituation session where he was allowed to freely traverse the maze.
Following habituation, mice were placed in the center stem and rewarded at the
well on the reward arm regardless of the first turn direction. On subsequent trials,
mice were only rewarded if they turned the opposite direction of the previous trial.
Mice were allowed to run freely and were only blocked when they (a) attempted to
reverse course on the central stem, (b) attempted to exit the return arm after they
had committed to it, or (c) attempted to run straight across to the other arm
without returning to the central stem after obtaining reward. A mouse was
considered committed to an arm after his tail entirely crossed from the edge of the
central arm into the stem. Mice generally ran ballistically up the center stem and
were allowed to pause once they entered the return arm and after they obtained
reward. Food reward was only delivered once the mouse had committed to a return
arm in order to avoid providing an auditory cue of reward location. Two mice were
forced to alternate in a subset of sessions/trials. One mouse encountered a lapse in
performance mid-way through the experiment and began perseverating on one
turn direction in blocks: he was subsequently given a number of trials at the
beginning of each session where he was forced to turn each direction by blocking
off one turn direction with a Plexiglas divider, after which he was then allowed to
freely choose turn directions. Several sessions in which this mouse failed to
consistently run balistically down the center stem were excluded from analysis. The
other mouse was initially forced to alternate at the end of his habituation looping
sessions. All forced trials were not considered during later data analysis. Mice
performed 1–2 sessions per day, and one mouse received a break of ~15 min after
the first set of 20 trials in a subset of sessions. Sessions were terminated each day
after 30 min or when the mouse stopped consistently running ballistically down the
center arm, whichever came first. The experiment lasted 27, 16, 29, and 36 days for
the four mice involved.

Imagine acquisition and processing. Brain imaging data was obtained using
nVista HD (Inscopix) v2/v3 at 1440 × 1280 pixels and a 20 Hz sample rate. Two
mice were lightly anesthetized (~60 s) to facilitate camera attachment and then
given ~15 min to recover prior to any recordings; the camera was attached to the
other two mice while they were awake. Prior to neuron/calcium event identification
we first pre-processed each movie using Mosaic (Inscopix) software which entailed
a) spatially downsampling by a factor of 2 (1.18 μm/pixel), b) performing motion
corrections, and c) cropping the motion-corrected movie to eliminate any dead
pixels or areas with no calcium activity. We then extracted a minimum projection
of the pre-processed movie for later neuron registration. We replaced isolated
dropped frames (maximum two consecutive frames) with the previous good frame,
and in the rare case where more than two frames dropped in a row these frames
were excluded from all analyses. For one mouse, we observed poor imaging quality
on 3 of 10 sessions. The minimum projection from each of these sessions were
significantly different from the other seven sessions and from each other, indicating
improper camera alignment. These sessions were excluded from analysis, resulting
in n= 68 viable recording sessions (n= 10, 7, 23, and 28 for mice 1–4).

Neuron and calcium event identification. We utilized custom-written, open-
source MATLAB software (available at https://github.com/SharpWave/Tenaspis)
to identify putative neuron ROIs and their calcium events in accordance with
previously published results24,30. A neuron had to have at least four calcium events
in order to be considered active on a given session.
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We calculated baseline fluorescence for each neuron as the mean pixel intensity,
derived from the minimum projection of a given session, across all pixels in that
neuron’s ROI.

Neuron exclusion criteria. In line with Tian et al.73, we calculated calcium event
decay times in the following manner. First, we fit an exponential function to the
decaying portion of the last recorded transient using MATLAB’s fit function with
the “exp1” parameter and calculated that function’s half-life. In the case that the
frames following that trace’s end were invaded by fluorescence from a neighboring
neuron, resulting in an exceedingly long decay time (>7 s), we iteratively utilized
the previous trace. We were unable to find a transient isolated from neighboring
neuron fluorescence in <0.5% of neurons—these were excluded from further
analysis. We excluded any neurons with half-decay times >2 s (calculated using the
second method, which generally produced longer half-decay times and was thus
more conservative) from further analysis.

The small number of neurons that were modulated by lateral position rather
than trajectory were also excluded from analysis, see “Trajectory-Dependent/
Splitter Cell Identification” section (below) for details.

Across-session neuron registration. We utilized custom-written, freely available
MATLAB code (available at https://github.com/nkinsky/ImageCamp) to perform
neuron registration across sessions in accordance with previously published results
(see Supplementary Fig. 1). We checked the quality of neuron registration between
each session-pair in two ways: (1) by plotting the distribution of changes in ROI
orientations between session and comparing it to chance, calculated by shuffling
neuron identity between session 1000 times, and (2) plotting ROIs of all neurons
between two sessions and looking for systematic shifts in neuron ROIs that could
lead to false negatives/positives in the registration. During the course of these
checks, we noticed the quality of registration between sessions dropped sig-
nificantly approximately halfway through the experiment for two mice (mouse 3
and mouse 4). Thus, we excluded any registrations occurring between the first and
second halves of the experiment for these two mice. Furthermore, the second half
of the experiment was excluded for these two mice when calculating the absolute
onset session of place cells versus splitter cells (Fig. 7a, b) but was included when
calculating the relative onset day for each cell type (Fig. 7c, d). Several other session
pairs exhibiting poor registrations based on the criteria above were also excluded,
though these were rare.

Behavioral tracking and parsing. Behavioral data were recorded via an overhead
camera with Cineplex v2/v3 software (Plexon) at a 30 Hz sample rate. Cineplex
produced automated tracking of the animal’s position by comparing each frame to
a baseline image without the animal in the arena. Imaging and behavioral data were
synchronized by TTL pulse at the beginning of the recording. Each video was
inspected by eye for errors in automated tracking and fixed manually via custom-
written MATLAB software. After fixing all erroneous data points, the animal’s
position was interpolated to determine its location at each imaging movie
time point.

Histology. Mice were killed and transcardially perfused with 10% KPBS followed
by formalin. Brains of perfused mice were then extracted and post-fixed in formalin
for 2–4 more days after which they were placed in a 30% sucrose solution in KPBS
for 1–2 additional days. The brains were then frozen and sliced on a cryostat (Leica
CM 3050 S) in 40 μm sections after which they were mounted and coverslipped
with Vectashield Hardset mounting medium with DAPI (Vector Laboratories). We
then imaged slides at 4×, 10×, and 20× on a Nikon Eclipse Ni-E epifluorescence
microscope to verify proper placement of the GRIN lens above the CA1 pyramidal
cell layer.

Place cell identification. We utilized identical methods to those outlined in
Kinsky et al.30 to identify place cells, reproduced here:

“Calcium transients were spatially binned (4 cm × 4 cm) and normalized by
occupancy. Spatial mutual information (SI) was computed from the following
equations, adapted from Olypher et al.74:

Ipos xið Þ ¼
X1

k¼0

Pkjxi log
Pkjxi
Pk

� �
; ð1Þ

SI ¼
X

i¼1

Pxi
Ipos xið Þ; ð2Þ

where Pxi is the probability the mouse is in pixel xi, Pk is the probability of
observing k calcium events (0 or 1), Pk|xi is the conditional probability of observing
k calcium events in pixel xi.

The SI was then calculated 1000 times using shuffled calcium event timestamps,
and a neuron was classified as a place cell if it (1) had at least five calcium transients
during the session, and (2) the neuron’s SI exceeded 95% of the shuffled SIs. We
obtained similar results using smoothed occupancy rate maps, which were
constructed using 1 cm × 1 cm bins and applying a Gaussian filter (σ = 2.5 cm).
We defined the extent of a place field as all connected occupancy bins whose

smoothed event rate exceeded 50% of the peak event rate occupancy bin.” Note
that only time bins in which the mouse was moving faster than 1 cm/s were
included.

Place-field correlations between sessions were calculated using the smoothed
occupancy normalized rate maps. Finally, to determine place field length, the place
field area (the number of contiguous bins above the 50% peak rate threshold) was
divided by 5 cm (the effective width of each corridor occupied by the mice after
accounting for occupancy and any angular distortions in video tracking).

Trajectory-dependent or splitter cell identification. Prior to performing any
analysis, each mouse’s trajectory data was aligned to that from the first habituation
session. This was done by (1) manually rotating the data to correct for any day-to-
day changes in maze angle relative to the recording camera, (2) calculating the
edges of the mouse’s trajectory as the data points located at the 2.5% and 97.5%
points in the cumulative density function of his x/y position data, and (3) adjusting
the data by applying the necessary translation and scaling (minimal) to overlay
each session’s trajectory on the first session. After aligning data across sessions, the
mouse’s trajectory on each trajectory was parsed into his progression through the
different sections of the maze, starting at the (a) base, then moving down the (b)
center stem into the (c) choice point, then turning into the (d) left/right entry to the
(e) return arm, and finally entered the (f) approach to the center stem just after the
reward port. The center stem portion was manually identified for each mouse as
the point where the mouse’s trajectory into/out of each return arm stopped
diverging. This was done in order to mitigate the possibility that trajectory-
depending activity was controlled entirely by stereotyped sensory inputs, e.g. the
mouse hugging/whisking the left side of the center stem after right turn trial.

After parsing the animal’s behavior into these sections, the center stem was
broken up into ~1 cm bins and the event rate for each neuron was calculated for
each trial. Occupancy normalized tuning curves for each trial type (left or right
turn) were then constructed, which consisted of each neuron’s mean event rate for
all correct trials at each spatial bin divided by the time the mouse spent in each bin.
The difference between these curves was then calculated. Tuning curves were
smoothed using the fit function in MATLAB with p = 0.9 for visualization
purposes (Fig. 2). To assess significance, we again constructed un-smoothed tuning
curves for left/right trials and calculated their difference, but after randomly
shuffling trial turn identity 1000 times to establish the likelihood the observed
difference between tuning curves could emerge by chance. We then defined
splitters/trajectory-depending cells as neurons which had at least three bins whose
real tuning curve difference exceeded 950 of the 1000 shuffled values. In order to
exclude spurious identification of splitters we only included neurons that produced
a calcium event on the stem of the maze on at least five trials.

We calculated several different metrics to quantify the level of trajectory-
dependent activity in each neuron. First, we calculated discriminability by
summing the absolute value of the difference between tuning curves along all stem
bins and then dividing by the sum of tuning curves along all stem bins. Second, we
calculated reliability in the following manner: (a) we shuffled trial identity 1000
times and calculated the difference between shuffled tuning curves, then (b)
calculated the proportion of shuffles in which the real difference between tuning
curves exceeded that of shuffled, then (c) calculated reliability as the mean of this
proportion along all the stem bins. Note that splitter neurons by definition must
have at least three bins with a reliability value above 0.95 (see above). Last, we
calculated the correlation between left and right unsmoothed tuning curves (~1 cm
bins). Note that this metric is very conservative since it produces low correlations
for splitters who shift the location of their peak activity between left and right trials
along the length of the stem (Fig. 2b) but not for splitters who modulate their event
rate in the same place along the stem (Fig. 2a). Finally, we defined splitting extent
for each neuron as the proportion of stem bins that exhibited significant differences
between left and right tuning curves.

In order to check the robustness of our results and control for any trajectory-
dependent information resulting from stereotyped deviations in speed or lateral
position along the stem, we also performed an additional analysis in line with
previous studies16,31. To do so, we first divided the stem lengthwise into five bins
and calculated the average transient probability in each bin for all trials. Note that
we did not segment the stem laterally but instead used lateral position as a
continuous predictor (as described in the following sentences) in line with Wood
et al.16. We then performed an ANOVA analysis using the anovan function in
MATLAB for each trajectory-dependent splitter neuron we detected. We used trial
type (left/right), stem bin, stem bin x trial type as categorical predictors, the
animal’s speed and lateral position as continuous predictors, and the mean
occupancy normalized transient probability as our dependent variable. Finally, we
considered any neuron to be a trajectory-dependent splitter neuron if it had a
significant effect of trial type or trial type x stem bin after accounting for speed and
lateral position.

Linear discriminant decoding analysis. A linear discriminant decoder was trained
on data from 50% of trials on a given session using the fitdiscr function in
MATLAB. Calcium event activity for each neuron at each time point when the
mouse was on the center stem were used as the input variables and the mouse’s
upcoming turn direction was used as the response variable. Only correct trials were
considered for training and testing. The decoder was then used to predict the turn
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direction of the other 50% of correct trials, after which the process was repeated
999 times using a different random 50% of trials for training/decoding. The
decoding accuracy was then calculated in ~3.3 cm bins along the stem, and the
mean accuracy across all bins was taken as the decoding accuracy for that session.

Functional coding designation. We first performed neuron registration between
all sessions in which the mouse performed more than 20 free trials. We classified
neurons as staying active if they were identified by our cell extraction algorithm on
both sessions and produced at least five calcium events (while the mouse was
running) through the course of the first recording session being considered in the
registration. We then categorized cells into five different functional coding types:
(1) trajectory-dependent splitter cells, (2) arm place cells, (3) stem place cells,
(4) arm non-place cells, and (5) stem non-place cells. Splitter cells were designated
based on the criteria listed above. Neurons that produced no calcium activity on
the stem of the maze and met our place cell criteria were defined as return arm
place cells. Neurons that produced calcium activity on the stem and met our place
cell criteria but not our splitter neuron criteria were designated as stem place cells.

Analysis of neurons that remain active between sessions. In order to ensure
sufficient precision in calculating the probability neurons of a particular functional
coding type stayed active, a session-pair was excluded from analysis if there were fewer
than four cells in either category in the first session being registered. The probability a
neuron class (splitters, stem place cells, or arm place cells) stays active was then
calculated as the number of neurons of that class that were active in both sessions
divided by the total number of neurons active in the first session. Note that a neuron
need not maintain its class between sessions to be considered as active in the second
session (how well splitter/place cells maintained their trajectory/place activity is
addressed in Fig. 6 and the following “Ontogeny Analysis” section of the Methods).
This analysis was performed in two ways: (1) including all cells found for each
functional coding type, and (2) matching mean event rate between each functional
coding type by excluding the lowest event rate cells for each coding type to match those
of splitter neurons. In the event that place cells had a higher mean firing rate than
splitter cells, no place cells were excluded. A one-sided sign-test, Holm–Bonferroni
corrected for the number of day lags considered (15), was used to determine if splitter
neurons were significantly more likely to remain active than Arm PCs or Stem PCs.

Ontogeny analysis. We tracked splitter cell ontogeny in three steps. First, we
registered all the neurons we recorded across the entire experiment. Second, we
identified the first day/session that a neuron passed our statistical criteria to be
considered a splitter and defined that session as its onset. Finally, we calculated
multiple metrics for the quantity of trajectory-dependent activity produced by each of
these neurons (see “Trajectory-Dependent/Splitter Cell Identification” above) in all
the sessions preceding and following onset, excluding any sessions that occurred on
the same day. The methodology for tracking place cell onset was identical, except
mutual information was used as a metric of spatial information provided by each cell.

Statistics. Statistical tests used are noted in the corresponding text and figure
legends.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We have deposited processed imaging and behavioral data at https://doi.org/10.17632/
2twf9f834v.1. Raw imaging and behavioral data is available upon reasonable request,
contact Nat Kinsky (nat.kinsky@gmail.com).

Code availability
All custom-written MATLAB code used in this study is freely available at https://github.
com/SharpWave/Tenaspis and https://github.com/nkinsky/ImageCamp.
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