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The medial temporal lobe (MTL) is believed to support episodic memory, vivid recollection of a specific event situated in a particular place
at a particular time. There is ample neurophysiological evidence that the MTL computes location in allocentric space and more recent
evidence that the MTL also codes for time. Space and time represent a similar computational challenge; both are variables that cannot be
simply calculated from the immediately available sensory information. We introduce a simple mathematical framework that computes
functions of both spatial location and time as special cases of a more general computation. In this framework, experience unfolding in
time is encoded via a set of leaky integrators. These leaky integrators encode the Laplace transform of their input. The information
contained in the transform can be recovered using an approximation to the inverse Laplace transform. In the temporal domain, the
resulting representation reconstructs the temporal history. By integrating movements, the equations give rise to a representation of the
path taken to arrive at the present location. By modulating the transform with information about allocentric velocity, the equations code
for position of a landmark. Simulated cells show a close correspondence to neurons observed in various regions for all three cases. In the
temporal domain, novel secondary analyses of hippocampal time cells verified several qualitative predictions of the model. An integrated
representation of spatiotemporal context can be computed by taking conjunctions of these elemental inputs, leading to a correspondence
with conjunctive neural representations observed in dorsal CA1.
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Introduction
Space and time are both essential aspects of episodic memory,
which integrates information about what, where, and when an
event is experienced (Tulving, 1983). It is clear that the medial
temporal lobe (MTL) is essential for episodic memory. Rodent
neurophysiology studies have accumulated a tremendous
amount of data describing the representation of “where” infor-
mation (O’Keefe and Dostrovsky, 1971; Muller and Kubie, 1987;
Wilson and McNaughton, 1993). In recent years, growing evi-
dence has shown that neurons in the hippocampus and MTL also
have robust temporal correlates (Pastalkova et al., 2008; Mac-
Donald et al., 2011; Naya and Suzuki, 2011). Behavioral models
of episodic memory and learning have focused on the represen-
tation of time (Estes, 1955; Brown et al., 2007; Balsam and Gal-
listel, 2009).

The brain constructs functions of variables that can be directly
extracted from the current state of the physical world. This ability
depends on specialized receptors that react to physical inputs in a
particular range. For instance, the visual system can represent
luminosity as a function of retinal position because there are
photoreceptors at different locations; the auditory system can
represent sound intensity as a function of frequency because dif-
ferent hair cells are stimulated by different frequency bands. Be-
cause there are not specialized receptors for past events or distant
objects that are not visible, constructing functions of space and
time presents a computational challenge. The current state of the
world does not provide explicit information about the past. Sim-
ilarly, the place code cannot rely on dedicated receptors that di-
rectly detect the location of distant objects in the dark (Gothard et
al., 2001). To code space and time we need to support “hidden”
dimensions that are not physically present in the input.

In this paper, we introduce a method for representing func-
tions of hidden variables for which the time derivative is avail-
able. Using the same equations with different inputs we generate
simulated cells that resemble time cells (MacDonald et al., 2011),
history-dependent place cells (Frank et al., 2000; Wood et al.,
2000), and boundary vector cells that code for the distance to a
boundary of the enclosure (Lever et al., 2009). Novel secondary
analyses of time cells confirm several qualitative predictions of
the equations. Moreover, we show that these cell types can be
combined conjunctively to account for a variety of place cell find-
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ings from dorsal CA1 including changes in place fields over time
(Mankin et al., 2012) and in response to spatial deformations of
the environment (O’Keefe and Burgess, 1996).

Materials and Methods
In many cases, the nervous system constructs a representation of a func-
tion of a sensory variable, say the amplitude of a sound as a function of
frequency. Consider the representation of a chord; two notes presented
simultaneously. It is not sufficient to represent the chord as the average of
the two tones; rather we require the amplitude of the sound for each
frequency, a function. In sensory representations, functions of physical
variables are possible because of specialized receptors. For instance, each
hair cell has a tuning curve centered around some central frequency. We
say that each hair cell supports part of the dimension of frequency. The
activity of all of the hair cells ordered by their central frequencies gives a
representation of the amplitude of the sound as a function of frequency.

Unfortunately, not all physical dimensions have specialized receptors.
Consider the problem of representing the temporal history leading up to
the present moment. For instance, we might want to represent the history
of when one particular tone was presented as part of a melody. To con-
struct the history we would want to have a set of cells that support the
temporal dimension. The basic strategy is that we first construct an in-
termediate representation and then extract an estimate of the history
from this intermediate representation. The intermediate representation
is a set of cells that respond to the present input, each with a different time
constant. The pattern of activity of the exponentially decaying cells in the
intermediate representation does not resemble the history. However, we
can extract an approximation of the history from the intermediate rep-
resentation using a straightforward set of synaptic weights from the in-
termediate representation to the cells that represent the history. The cells
in the estimate of the history behave as if they were specialized receptors
tuned to various points in the past. The width of these cells’ “tuning
curves” grows for cells representing points further in the past. The result
is a fuzzy representation of history, a function of past time, that grows
more fuzzy for time points further in the past.

There are other physical dimensions other than time for which we lack
specialized receptors that are extremely important behaviorally. For in-
stance, the location of a landmark, such as a nest or a food source, as an
animal forages around an environment requires a representation of spa-
tial position. This paper describes a mechanism that enables a set of cells
to function like specialized receptors for any physical dimension as long
as the rate of change of that dimension is available at each moment. For
instance, to represent position we need access to the velocity, the change
in position per unit time. In the temporal case described above, the cells
in the intermediate representation change as time passes. The end result
of the calculation is a representation of time. The key insight is that access
to the rate of change of the hidden variable per unit time enables the
intermediate representation to change in a given moment only insofar as
the hidden variable changes in that given moment. Rather than a repre-
sentation of a function of time, the approximation yields a representation
of a function of the hidden variable via path integration. We consider
three variables that appear to be of particular relevance for neurons in the
rodent hippocampus and related structures; time, position within a se-
quence, and allocentric position.
Mathematical framework. Figure 1 formalizes the case in which there are
specialized receptors and lets us introduce some notation. Let us refer to
a physical dimension in the world as x and a function of that dimension
as f(x) (Fig. 1). To be concrete, x might be sound frequency and f(x)
might be amplitude of a chord consisting of a low tone and a high tone. In
the bottom of the figure, we see (schematically) the response of a set of
receptors, each with a tuning curve with some width. Sorting the activity
of the receptors by the center of their receptive fields gives a representa-
tion of the function in the world; we refer to the internal representation of

f(x) as f̃�x*� Note that this representation is not necessarily a precise match
to the physical function out in the world. For instance, there will likely be
a non-zero width to the tuning curve of the receptors. There is also no

reason to expect that the cells are equally spaced in their values of x*. We

refer to f̃ as a representation of f and x* as an internal dimension.

Figure 2 introduces notation and provides a schematic overview for
how to approximate a function of time, f(�). Our goal at time � is to be
able to construct the function for all time points �� leading up to the
present moment, f(�� � �). At each moment, the present value of f(�)
drives an intermediate representation F(s). The cells in the intermediate
representation are leaky integrators indexed by their rate constant s. The
time constant of each cell in the intermediate representation is just 1/s.

Figure 1. The brain constructs functions of physical variables. A function of some physical
variable x, f(x) is present in the environment. Here x could be a variable such as position along
the retina or the frequency of tones in audition. Specialized receptors respond to the value of the
function in the neighborhood of some particular value of x. Each receptor has its own tuning
curve; together the set of receptors support the dimension x over some range. We refer to the

internal estimate of the function f(x) as f̃�x*�. Note that whereas x is a variable in the physical

world, x* is a mapping from an ordering of cells onto that physical variable based on their firing
correlates.

Figure 2. Constructing a function of past time. The top row shows the history leading up to
the present moment (� � 0, right). There are no receptors that can directly detect events that
happened in the past. To solve this problem, we assume that at each moment the present value
of the stimulus (black dot) provides input to all of the cells in an intermediate representation
F(s). In the figure, the input is zero at ��0 but was non-zero at two instants in the past (vertical
lines). Those past values of f(�) provided input to all of the cells in F(s). The middle row shows
F(s) as a function of the rate constant s at �� 0. The time constant of each cell in F(s) is just 1/s.
The value of � for s corresponds to a time constant of zero and is simply meant to align the axis
of this schematic figure correctly. The cells in F(s) with short time constants (right) have decayed
almost back to zero; the cells with longer time constants (left) have not decayed nearly as much.
In principle, the pattern of activation across cells in F(s) contains complete information about
the history of the inputs from prior moments. The bottom row shows the estimate of the

reconstruction f̃��*�. At each moment f̃ is constructed from F(s) via a matrix of feedforward
connections Lk

�1. These connections from F to f̃ can be understood as several projections with
lateral inhibition in series, analogous to sensory processing (see text for details). Each cells’

value of �* is aligned with the time constant of the corresponding cell in F(s). We can see that at

time � � 0, f̃��*� estimates the past values of f(� � 0); across cells f̃��*� contains a smeared
estimate of f(�).
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We use a linear operator Lk
�1 to construct an estimate of f(�) from F(s);

the approximation is referred to as f̃��*�. The pattern of activity f̃��*� is an
imprecise estimate of f(�), with a temporal precision that decreases for
times further in the past. We generalize the framework by modulating the
leaky integrators by a function �(�) (not shown). If �(�) is the rate of
change of some physical variable x and if f(�) is only a function of x(�),
then f̃ estimates a function of x rather than a function of time and we

write f̃�x*�.
The remainder of this subsection describes the equations in detail and

explains why they work. The next subsections describe the qualitative
properties of the representation in the temporal and spatial case.

Let F(s) describe the firing rate of a set of cells each with a different
positive real value of s. At each moment, each of the cells in F(s) receives
input from the current value of f(�) and updates its current value by
obeying the following differential equation:

dF�s,��

d�
� ����	�sF�s,�� � f���
. (1)

F is a function of both s, which indexes the cells, and of time �. We will
sometimes write F(s, �) when considering the time dependence of F(s);
sometimes we will simply write F to keep the expressions simple. The
function �(�) is the same for all of the cells in F(s) but can change over
time. To code for time, we set �(�) � 1. In this case, we find:

dF�s,��

d�
� �sF�s,�� � f���. (2)

Now suppose that the environment contains some hidden variable x that
changes as a function of time x(�). Further suppose that the current value
of x controls the current value of f so that f(�) � f[x(�)]. To code for a

hidden variable x(�) we set ���� �
dx

d�
. Now, dividing both sides of

Equation 1 by � and applying the chain rule we find:

dF�s, x�

dx
� �sF�s, x� � f� x�. (3)

Note that because F is only a function of f and under these circumstances
f is only a function of x, F is also a function of x. Note that Equation 3 is
identical to Equation 2 with time � replaced by the variable x. Also note
that when �(�) is velocity in the x direction and f is a function of x, F(s,�)
meets the conditions for a path integrator in the x direction, as described
by Issa and Zhang (2012).

Now, consider the temporal case with �(�). Solving Equation 2 yields

F�s,�� � �
��

�

e�s������ f���� d��. (4)

That is, at time � the activity of each cell in F(s) is an exponentially
weighted sum over the prior states of the input at times �� � � ; each cell’s
time constant is 1/s. Solving Equation 3 would yield a precisely analogous
expression giving F(s) as a function of the hidden variable x instead of
time �.

Comparing Equation 4 to the standard definition of the Laplace trans-
form, we see that F(s) is just the Laplace transform of f(�� � �) with real
coefficients. Because Equation 3 yields a precisely analogous expression,
when the conditions that yield Equation 3 hold, F(s) is the Laplace trans-
form of F(x). In operator notation we can write:

F � �f. (5)

The knowledge that F is the Laplace transform of f is very powerful. The
Laplace transform of a particular function f causes a unique F; no infor-
mation about f is lost in transforming it into F. Moreover, like the Fourier
transform, the Laplace transform is invertible. That means that applying
the inverse Laplace transform to F would recover f. If f is a function of
time, the inverse Laplace transform of F would recover the original func-
tion f(�). If Equation 3 holds, then the inverse Laplace transform of F

would recover a function of x rather than time. Recovering the function
f amounts to finding a neurally plausible way to invert the Laplace
transform.

Let us consider what it would mean to successfully invert the Laplace
transform and recover the function f in the firing rate across a set of cells.
In much the same way that the sensory receptors enabled us to support a
dimension x (Fig. 1), each cell in the reconstruction would support some
part of the domain of f. In the case of time, a cell in the reconstruction
would fire in response not to the current value of the input, but in
response to the value the input had a certain time in the past. Each cell
would represent a different delay and the temporal history would be
written into a pattern across cells. A perfect inversion of the transform
would require zero-width tuning curves. Perfect reconstruction would
also require an infinite number of cells to represent a function. An im-
perfect reconstruction, with broad tuning curves, is clearly preferable.

Following Shankar and Howard (2012), we define a linear operator
Lk

�1 that approximates the inverse Laplace transform. The operator de-
scribes a set of connections from the cells in F to the cells in the recon-
struction, f̃ :

f̃ � Lk
�1F�s� � Ck sk�1

dk

dsk F�s). (6)

This equation requires significant elaboration; the remainder of this sub-
section is devoted to unpacking it. First, we note that k is an integer that
controls the accuracy of the reconstruction. It can be shown (Post, 1930)
that in the limit as k grows without bound, Lk

�1 is exactly the inverse
Laplace transform. When k is finite, the reconstruction is imperfect. We
set k � 4 in this paper, except where noted.

Next, let us consider the left hand side of Equation 6. Each cell in f̃ is
aligned to a particular value of s. The right hand side of Equation 6
describes how the activity of each cell in f̃ is determined from the activity
of cells in F(s) around that particular value of s. Depending on the prop-
erties of f, we can assign a mapping between the value of s for each cell in
f̃ and a physical value in the world. Note that the choice of mapping does
not affect the firing correlates of a cell in f̃; the firing correlates of a cell in
f̃ are completely controlled by its value of s, the input f(�) driving it, and
the properties of �(�) modulating F(s). Put another way, s describes a
physical property of each neuron in f̃, whereas the mapping is a choice we
make to describe its firing correlates with variables out in the world.

When �(�) � 1, it is convenient to consider f̃ as a function of �*, where �*

is defined as:

�* � �k/s, (7)

as this mapping between �* and s aligns each cell in f̃ with the physical time
at which it peaks firing (Fig. 2; see also below). With this choice, the units

of �* are the same as the units of 1/s. With this mapping, �* can be under-
stood as the time in the past (with the present set to 0) that each cell in f̃
supports. If F(s) corresponds to the Laplace transform of some variable s,

we can consider f̃ a function of a variable x* chosen as:

x* � k/s. (8)

The proportionality allows us to take into account units from �(�) and

choose the sign of x* and ensure that x* aligns with physical position x.
Now, let us step through the right-hand side of Equation 6 to under-

stand how it approximates the reconstruction of the original function f.
There are three factors on the right hand side of Equation 6. The first
factor, Ck is a constant that depends on the value of k (Shankar and
Howard, 2012). This value does not change across cells in f̃ nor across
time. The first factor simply sets the scale of the overall firing rates and
ensures that the sign of the reconstruction corresponds to the sign of the
input function. The second factor in Equation 6, sk �1, says that the
overall value of the firing rate of each cell in f̃ depends on its value of s.
This term does not change over time for a particular cell. But it does affect

the relative firing of one cell in f̃��*� compared with other cells in f̃��*�. Cells
in f̃ that are aligned to a smaller value of s, corresponding to a longer time
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constant, require more input to reach the same level of activity as a cell
aligned to a higher value of s.

The last factor in Equation 6 is responsible for the changes in the state

of f̃��*� over time. The notation
dkF

dsk refers to the k�th derivative of F(s) with

respect to s. For each cell in f̃, the derivative is calculated at the value

s � � k/�*. The derivative with respect to s is just the difference between
neighboring values of F(s). It has long been appreciated that many recep-
tive fields in the visual system approximate second spatial derivatives
(Marr and Hildreth, 1980). The synaptic weights needed to approximate
the k�th derivative are well understood (Shankar and Howard, 2012,
2013; see simulation methods below). A simple feedforward circuit with
lateral inhibition is sufficient to approximate the second derivative.
Higher-order derivatives can be calculated by placing circuits that calcu-
late lower-order derivatives in series. For instance, the fourth derivative is
just the second derivative of the second derivative.

To gain some intuition into how taking derivatives of F(s) can lead to
an estimate of past history, let us consider a simple thought experiment.
Suppose that �(�) � 1, and that the input function is zero except for a
very high value for one brief moment of time. In Figure 3, middle, we
follow the activity of selected cells in F with various values of s in time
after the stimulus was presented. Under these circumstances, we can
readily write down the firing of each cell in F(s). If the non-zero input was
presented a time �0 in the past, the firing of each cell in F(s) is given by

F�s� � e�s�o.

That is, each cell in F shows exponential decay with a time constant
controlled by its value of s. Now, at each moment in time the derivative
with respect to s is the difference between the activity of cells with adja-
cent values of s. Note that immediately after the stimulus is presented
�0 � 0 and all of the cells in F have activation 1; when �0 � 0, the
derivative with respect to s is zero because all of the cells have the same
activity. At very long times, all of the cells in F have decayed back to zero
and the derivative again vanishes. The time at which the derivative peaks
depends on s and is later for smaller values of s corresponding to longer
time constants. We can formalize this a bit by computing the k�th deriv-
ative with respect to s. When s values are equally spaced, we find:

dkF

dsk � ��1�k�o
ke�s�o.

Ignoring the change in sign (the Ck term in Eq. 6 changes sign to cancel
out this part of the derivative), the magnitude of the derivative is the
product of a power law function that goes to zero as �0 decreases to zero
(�o

k) and an exponential function that decays to zero as �0 increases
(e�s�o). By setting the derivative equal to zero we find that the k�th deriv-
ative of F(s) around s is maximal a time �max � k/s after the stimulus was

presented. Here we see that the choice of indexing the cells by �* � � k/s,

results in a cell in f̃ aligned with the value s peaking in its activity �* seconds

after presentation of a brief stimulus. This aligns f̃��* ,�� with f�� � �*�

(recall that �* is negative). This mapping makes f̃��* ,�� a good reconstruc-

tion of the value of f had at a time �* in the past. An analogous calculation
also shows that the width of each cell’s firing is also controlled by s
(Shankar and Howard, 2012).

Properties of cells in the temporal case. Figure 4 illustrates the important

properties of cells in F(s) and f̃��*� in the temporal case when �(�) � 1.
Here we assume that the input is zero except for two square wave pulses.
Before receiving input, F(s) is zero. After non-zero values of f are encoun-
tered, the firing rates of cells in F(s) grow exponentially over time, like a
charging capacitor. After the input becomes zero, the firing rates of cells
in F(s) decay exponentially over time. The time constant of each cell in
F(s) is controlled by its value of s (the time constant is 1/s). In contrast,

cells in f̃��*� do not respond immediately to the stimulus. Rather, cells in

f̃��*� fire a characteristic time after a non-zero value of f is presented.

The delay in the firing of cells in f̃��*� can be understood as a conse-

quence of their roles in reconstructing f(�). A cell in f̃��* ,�� estimates f not

at the current moment �, but the value of f a time �* in the past (Fig. 2). For

instance, a cell in f̃ supporting �* 5 s in the past does not respond imme-
diately to a transient stimulus because that stimulus is not yet part of the
history 5 s in the past. After some time has passed, the stimulus is now in

that part of the history. A cell in f̃ supporting �* 10 s in the past would fire

later than the cell supporting �* 5 s in the past. A transient stimulus causes
a sequence of cells to fire after it was presented.

Figure 4 illustrates the property that cells coding more distant parts of
the history show firing that is more spread out in time. This is a natural
outcome of the time derivative of an exponential (Fig. 3). The spread
implies that events experienced further in the past are represented with
less temporal accuracy than events experienced more recently. This is an
extremely useful property for describing behavioral aspects of memory
and timing (Gallistel and Gibbon, 2000; Brown et al., 2007; Chater and
Brown, 2008), and it holds for all choices of k (Shankar and Howard,
2012). Note that this spread is not a consequence of “noise” per se. The
spread is deterministic and is a commitment to representing the history
with decreasing accuracy. Shankar and Howard (2012, 2013) provide
detailed treatments of the effect of noise on the temporal representation.

Figure 3. How lateral inhibition causes a peak in firing after the stimulus. Top, f(�) is non-
zero at one point in time. Middle, Time course of F(s, �) for several values of s. Each of the black
lines gives F(s, �) for a particular value of s; the gray lines give F(s, �) for a nearby value of s. Note
that the difference between each black line and its accompanying gray lines is zero immediately
after the stimulus but also zero for very long times. The difference is maximal at an intermediate
time that depends on the value of s. Bottom, The magnitude of the difference between pairs of
adjacent values of F(s, �) is shown, i.e., the distance between each pair of lines. This difference
is proportional to the derivative with respect to s. Note that the difference peaks after the
stimulus; the time of the peak depends on the value of s.

Figure 4. Dynamics of cells when �(�) � 1. Top, The stimulus function f providing input to
a set of cells is non-zero for two periods of time. Cells in F(s) respond to non-zero f and then
decay exponentially after the input is turned off. Different cells respond with different decay
constants s. Cells in f̃ do not respond to the stimulus immediately, but after some characteristic

delay. Different cells have different delays determined by their value of �*. The spread of the

firing of each cell in f̃��*� depends on its value of �*. The value of �* for a cell in f̃ is determined by
the value of s of the cells in F(s) that project to it. Note also that the activity of cells in f̃ show an
asymmetric profile in time.
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Estimating hidden dimensions by varying �(�). Here we consider the
more general case in which we represent functions of a hidden variable x

rather than time �. To represent functions of x, we require that ���� �
dx

d�
and that the input f at time � depends only on the value of x at that time

�, f(�) � f[x(�)] (Fig. 5). Here, f̃�x*,�� � Lk
�1F(s,�) estimates the current

value of f(x) at time �.
Let us work through a simple concrete example. Suppose that x is

physical position along a linear track. A rat starts out touching the land-
mark at one end and then runs back and forth along the track, not quite
returning to the location of the landmark. Let the input f(�) be one at
time 0 when the animal is in contact with the landmark but zero at all
other times. Let �(�) be the animal’s signed velocity in the x direction,

���� �
dx

d�
. Let the landmark be at position x � 0, so that f(x) is 1 when

the animal is at x � 0 at one end of the track but zero elsewhere. As the
animal moves away from the landmark, velocity is positive causing �(�)
to be positive and thus the cells in F(s,�) decay exponentially in time (Eq.
1). Because time is perfectly correlated with position on this outbound
journey, the activity of the cells also decays exponentially as a function of
position x (Eq. 3). Now, after the animal reaches the end of the linear
track and turns back toward the landmark with the same constant speed,
dx

d�
changes sign. On the return journey, �(�) is thus negative and the

values of F(s,�) grow exponentially until the animal reaches the start of
the track, recapitulating their initial state. As the animal repeats this
journey many times (Fig. 6), although the states of F(s,�) change over
time, they are always the same for a particular position x. Like a bead on
a wire, the values of F(s,�) slide down an exponential function as the
animal moves away from the origin and then slide back up as the animal
returns. Because at each moment f̃ only depends on F, and because F is a

function of position, f̃�x*,�� is also a function of position and is an internal
estimate of the animal’s location relative to the landmark. For conve-

nience, in Figure 6, we define x* to be positive, x* � k/s, so that it codes the
distance of the landmark along the x direction. In the same way that in the

temporal case cells in f̃��*� became active a certain time after the start of

the delay, in the spatial case cells in f̃��*� become activated when the
animal’s position is a characteristic distance from the starting point.

Analogous to the temporal case, the cells in f̃�x*,x� show an asymmetric

spatial profile; cells with larger values of x* show a wider spatial spread of
their firing field.

Spatial location is a concrete example of a variable x that could be
represented in this way. However, it should be noted that mathematically
at least this approach could be applied for any variable for which the time
derivative is available. In principle at least, one could imagine using a
similar approach to represent numerosity or the location of moving tar-
gets that cease to be visible, or to integrate views of an object across
multiple eye movements or from different perspectives. In this paper, we
restrict our attention to variables that appear to be represented in the
rodent hippocampus and parahippocampal cortex.

Overview of secondary analyses and simulations. The goal of the simu-
lations is to compare predictions from the mathematical framework to
the firing correlates of actual neurons. In any particular experiment, the
firing correlates of a cell encoding F or f̃ depends on its value of s, on the
properties of the input, f(�) and the properties of �(�). We will consider
three cases (Table 1).

In Case I we assume that �(�) is constant and the stimulus function
f(�) corresponds to the time-varying presence of a nonspatial stimulus.
With these settings, the mathematical framework gives rise to a represen-
tation of recent history. With many cells receiving input corresponding
to many nonspatial stimuli, the cells in the reconstruction would contain
both what and when information about the history leading up to the
present moment. Previous work has shown that this representation can
be used to describe behavioral data from diverse fields, including condi-
tioning, interval timing, episodic memory, and working memory (Shan-
kar and Howard, 2012; Howard and Eichenbaum, 2013). Our interest
here is in determining whether cells in the brain exhibit qualitative prop-

erties similar to those predicted for f̃��*�. To this end, we conduct second-
ary analyses on results from time cells observed in the rodent
hippocampus (MacDonald et al., 2011).

Case II constructs a representation of sequences of stimuli not as a
function of time but as a function of the path taken leading up to the
present position. In Case II, we set f(�) to correspond to a simple simu-
lation of a head direction cell with preferred direction �, f�(�), and set
�(�) to be equal to the animal’s speed v(�) (Hasselmo, 2007). The
notation v denotes the two-dimensional velocity. Note that speed does
not depend on the direction the animal is traveling, merely how fast it is
going. If we define p(�) as a variable that parameterizes distance traveled

along the path, then under these circumstances f̃�p*� codes for the move-

ments taken along the path leading up to the present, where p* is an
internal estimate of distance along the path. We will see that simulated

cells in F(s,�) and f̃�p*,�� exhibit history-dependent firing correlates sim-
ilar to those of neurons in the hippocampus and entorhinal cortex during
navigation along linear mazes (Frank et al., 2000; Wood et al., 2000;
Lipton et al., 2007).

Case III constructs an allocentric representation of the position of a
landmark relative to the current position of the animal. In Case III �(�) is
equal to the component of the animal’s allocentric velocity at time �
along a particular direction, v�(�). Unlike Case II, �(�) can take both
positive and negative values in Case III. In Case III, the input f(�) is solely
determined by the animals location at time �, f[x(�)], corresponding to
physical contact with a fixed landmark. In the one-dimensional case (or
with a point landmark), this satisfies the conditions for Equation 3 to
hold and the inverse Laplace transform constructs an approximation of
the spatial location of the landmark along the direction in which velocity
is defined. In two-dimensional environments, we set f(x) to proximity
with boundaries of the enclosure with a specific orientation. In this case,
simulated cells comprising F(s,�) have spatial correlates that resemble
border cells observed in the entorhinal cortex and subiculum (Solstad et

al., 2006; Savelli et al., 2008; Lever et al., 2009); simulated cells in f̃�x*�
resemble boundary vector cells that fire a certain allocentric distance
from a landmark (Lever et al., 2009).

The three “pure” cases in Table 1 show a correspondence to firing
correlates of cells from a variety of regions in the hippocampal formation
and parahippocampal cortices. Different simulated cells reflect a variety

Figure 5. Schematic figure illustrating the encoding and extraction of a hidden stimulus dimen-
sion. We assume that the input f is a function of some hidden time-varying variable x(�); that is, the
value of f at each time only depends on the value of x at that time. In addition we assume we have
access at each moment to the time derivative of x(�), which enters Equation 1 as �(�). At each
moment,thecurrentvalueof f(top)andthecurrentvalueofthetimederivativeofxareusedtoupdate
F(s,�). To be concrete, let us assume that x is physical location and f(�) is contact with a fixed landmark
as the animal moves around the environment. That is, at times when the position of the animal is such
that it touches the landmark, f(�) is non-zero. On the left, f is non-zero early in time as the animal
encounters the landmark. After encountering the landmark, the animal moves away, changing direc-
tion several times, and ending up close to the landmark. The plots on the right of the figure shows f(x),
the true position of the landmark relative to the current position of the animal at the last moment in
time, along with the state of the intermediate representation F(s) and the reconstruction f̃. In this

figure we have chosen the mapping from s onto x* to make x* negative to emphasize the analogy to the

temporal case in Figure 2. At each moment f̃��*�provides an estimate of the distance to the landmark
relative to the animal’s current location.
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of different inputs f(�) and a variety of sources of multiplicative modu-
lation �(�). A cell that receives input from several “pure” cells would
show a mixture of these firing correlates. We consider the firing corre-
lates of cells taking conjunctive inputs from “pure” cells. The firing cor-
relates of these conjunctive cells correspond well to the firing correlates of
principal cells in dorsal CA1, enabling us to account for both canonical
place fields and the change in place fields with deformations in the envi-
ronment and changes over time. Following previous work (O’Keefe and
Burgess, 1996; Hartley et al, 2000; Barry et al., 2006), conjunctions of
boundary vector cells (Case III) result in canonical place cells that re-
spond appropriately to changes in the dimensions of the environment
(O’Keefe and Burgess, 1996). Moreover, conjunctions of boundary vec-
tor cells (Case III) and time cells (Case I) yield cells with place fields that
drift over long periods of time (Mankin et al., 2012). Although not ex-
plicitly simulated, this strategy is broadly consistent with extensive evi-
dence supporting conjunctive coding in the hippocampus (Shapiro et al.,
1997; Wood et al., 1999; Anderson and Jeffery, 2003; Komorowski et al.,
2009, 2013).

Secondary analysis methods. To compare detailed predictions of the
mathematical framework to firing of time cells in Case I, we conducted
secondary analyses on multiunit recordings from dorsal CA1 that have
previously been reported (MacDonald et al., 2011). The MacDonald et al.
(2011) dataset contained 245 putative pyramidal cells recorded across a
total of four sessions each recorded from a different rat. For each cell, we
estimated the peak of firing during the delay period from a smoothed
firing rate distribution (Fig. 7a). There was variation in the duration of
the delay period across trials and across rats. Across animals, the shortest
delay period was 5.3 s; we used this as the end of the delay interval for all
sessions. To avoid edge effects we allowed spikes slightly before and
slightly after the end of the delay period to enter the analyses, but only

included cells with a well defined peak that was at least 300 ms from the
beginning and end of the delay period. The spikes each cell fired during
the interval from 300 ms before the start of each delay period up to 6 s
after the start of each delay period were taken before smoothing. Smooth-
ing was implemented with the R function density(), which uses a kernel
size proportional to the SD of the data, to estimate the density in 512 bins
between �300 ms and 6 s. We only included cells with peak times of
�300 ms and �5 s in the analyses. We also required that the leading edge
of the half-height range to be greater than zero and the tailing edge of the
half-height range to be �6 s. In all, 63 cells were included in the analyses
reported here.

To generate model predictions for the cosine of the angle between two
population vectors, we numerically evaluated the following expression:

cos� ��1, �2� �
I��1, �2�

�I��1, �1��I��2, �2�
, (9)

where I (�1,�2) is the inner product between f̃��*,�1� and f̃��*,�2� evaluated

for a given range of values of �*. More explicitly, I (�1,�2) is given by

I��1,�2� � �
�*min

�*max��1�2

�*2 �k

ek��1��2�/�* d�*. (10)

Equation 10 is based on expressions for the similarity of f̃ with itself
derived in Shankar and Howard (2012) with the number density of nodes

set to be a constant in �*, consistent with the uniform distribution of
modes we observed across cells in the experiment. Note that this does not

Figure 6. A worked example of coding for a hidden dimension, here spatial location of a landmark. The animal starts at a position on the left-hand side of a one-dimensional track where a stimulus
is encoded at position zero. The input f is non-zero at this one moment. The animal then runs left-to-right and back repeatedly at constant speed. The left column plots firing rates as a function of
time. The sign of velocity, and hence �(�) depends on the direction of motion. The right column replots these values as a function of position, x. The top row plots gives values for F(s, �) (left) and

F(s, x) (right). The bottom row shows f̃�x*,�� (left) and f̃�x*, x� (right). For this figure, we have chosen the mapping x* � k/s so that x* is positive for positive values of position. Differently shaded lines
correspond to different cells with different values of s (top) and the corresponding values of x (bottom). Thus, this set of cells codes for different positions of the animal relative to the landmark. See
text for details.

Table 1. Firing correlates for F and f̃ with different input functions and different modulatory functions

�(�) f(�) F(s) f̃

Purely temporal 1 f(�) Exponentially-decaying Time cells
History-dependent spatial �v(�)� f�(�) Trajectory-coding cells Retrospective splitter cells
Purely spatial v�(�) f	(x(�))
 Border cells Boundary vector cells
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correspond to equal spacing of nodes in s.
Consistent with the experimental values we set

�*min � 0.3 and �*max � 5.3.
Simulation methods. In Cases II and III, we

provided input to the model taken from paths
through an environment of the appropriate
shape. A single session was taken for each
environment. In Case II, paths for the
W-maze were taken from Frank et al. (2000),
and paths for the alternating T-maze were
taken from Lipton et al. (2007). In Case III,
paths for open field simulations were taken
from Lever et al. (2002) (circular environ-
ment) and Lever et al. (2009) (all other envi-
ronments). Paths were smoothed with the R
function kernapply() with a Daniell kernel
and a width of six bins. Velocity for each time
point was computed as the average of the
forward and backward difference in posi-
tion. For the conjunctive simulation of place
fields (see Fig. 12), we simulated paths using
an algorithm used by Brunel and Trullier
(1998).

In all simulations, we used an exponential
estimate of the solution of Equation 1 with ��
set appropriate to the experiment. Values of s
were chosen to be equally spaced. At each time

step, f̃��* ,�� was computed from F(s,�) with a
matrix approximation to Lk

�1 (Shankar and
Howard, 2012, 2013). This is a simple feedfor-
ward connection from F(s) to f̃. As mentioned
earlier, each node in f̃ corresponds to a partic-
ular value of s. The feedforward connection to
that node is given by alternating excitatory and
inhibitory weights to approximate the k�th de-
rivative. For instance, to estimate the first de-
rivative around a particular value of s, one would take the firing rate of the
next cell with a higher value of s and subtract from that the firing rate of
the next cell with a smaller value of s. To compute the second derivative
one would take the derivative of the derivative. Ultimately, this can be
expressed as a set of weights multiplying the original firing rates. To
estimate the fourth derivative of F(s) around so, we simply took:

d4F�so�

ds4 �
1

24
F�s�2� �

1

6
F�s�1� �

1

4
F�so� �

1

6
F�s�1� �

1

24
F�s�2�.

(11)

To compute f̃ we multiplied this value by the corresponding value of s
raised to the k � 1 st power. However, because the results of the simula-
tions all report relative firing rate of one cell over time, this scaling factor
does not make a difference when comparing one cell to itself.

In the open field simulations used to generate border cells and bound-
ary vector cells (Case III) we allowed the input f corresponding to contact
with a border to be non-zero when the distance from the boundary was
�3 cm. In the open field simulations, we estimated F(s) from pairs of
monotonically decaying cells to avoid numerical errors due to exponen-
tial growth. Given a particular direction �, we constructed a pair of cells
with the appropriate value of s but with velocity inputs in opposite direc-
tions. For instance, if cell 1 took the velocity along an angle �, cell 2 took
the velocity in the direction � � 	. The � for each of these cells was set to
be zero if the signed velocity was negative. So, when the animal moves in
the direction �, cell 1 decays and cell 2 remains constant with � � 0.
When the animal moves in the direction � � 	, cell 1 remains constant,
whereas cell 2 decays. To estimate F(s) with �(�) corresponding to veloc-
ity in the direction �, we took F(s) equal to the ratio of cell 1 to cell 2 when
cell 2’s firing rate was greater than cell 1’s firing rate and zero otherwise.
Note that for positive values of x, the ratio is exactly equal to F(s). For
negative values of x, the inverse Laplace transform cannot be constructed

(this would be analogous to constructing future values of history) so
setting F(s) to zero does not affect the reconstruction.

For the conjunctive simulations (see Fig. 12), we took sums of prod-
ucts of “pure” inputs. In the simulations of canonical place cells respond-
ing to changing the dimensions of an open field environment we took
sums of products of boundary vector cells (f̃ from Case III) computed as
described above. For the simulation showing a place field that changes
over time, we took the product of a place field, i.e., a conjunction of
boundary vector cells, and a time cell (f̃ from Case I).

Results
Case I: purely temporal representation
In MacDonald et al. (2011), rats had to wait in a small enclosure
during the delay period of a memory task. The rat had to remem-
ber which of two objects was presented to choose appropriately
among a pair of odors presented after the delay and obtain re-
ward. In analogy to place cells that fire when the animal is in a
circumscribed part of the environment, “time cells” in the hip-
pocampus fired during circumscribed periods of the delay period
(Pastalkova et al., 2008; Gill et al., 2011; Kraus et al., 2013). Each

cell in f̃��*� should respond to conjunctive information about
what stimulus occurred a particular time in the past. MacDonald
et al. (2011) observed some neurons that responded at a particu-
lar delay and that distinguished the object that was experienced
before the delay, demonstrating that this stimulus-specificity is
possible. However, most neurons they recorded from responded
on both types of trials, consistent with the hypothesis that they
were coding for the stimulus (opening of the door to the waiting
enclosure) that initiated the delay. To examine in detail the tem-
poral profile of hippocampal time cells and compare them to

Figure 7. Comparison of experimentally observed hippocampal time cells to f̃��*�. a, Experimentally observed time cells exhibit
increasing spread with their delay and asymmetry. The firing of two representative cells is shown as a function of time. In each plot,
the total number of spikes fired in each bin is shown as a function of time synchronized to the onset of the delay period. The smooth
red line gives an estimate of the density of spikes as function of time. The thick vertical blue line gives the estimate of the cell’s
mode; the two thin vertical blue lines give the estimate of the half-height region. Note that the cell that fires later in the delay also
shows a wider spread. Note that both cells are asymmetric, with the distance between the mode and the end of the half-height
region greater than the distance between the mode and the beginning of the half-height region. b, Empirical ensemble similarity
during the delay period. Color scale gives the ensemble similarity (cosine of the angle between the vectors) of the smoothed
population vectors for each pairs of times. c, Analogous plot to b computed for f̃ with k � 8 and a uniform distribution of
characteristic delays. Data are from a secondary analysis of MacDonald et al. (2011).
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predictions from f̃��*� we collapsed the results across both trials
types.

Inspection of Figure 4 reveals two properties of f̃ that can be
compared with these empirical data. Consider the temporal pro-

file of two cells in f̃��* ,�� with different values of �*. The cell that
codes for the presence of the stimulus a short time in the past
peaks a shorter time after presentation of the stimulus than does
the cell that codes for the stimulus a longer time in the past. The
first cell also shows less spread in its firing field than the second
cell. This increasing spread is an extremely important property

for f̃��* ,�� in behavioral applications, accounting for the decrease
in temporal accuracy with delay, an extremely general phenom-
enon (Yntema and Trask, 1963; Hinrichs and Buschke, 1968;
Hacker, 1980). Second, note that the shape of the response for

f̃��* ,�� is asymmetric in time, showing a positive tail. Secondary
analyses of cells reported in MacDonald et al. (2011) show that
hippocampal time cells exhibit both of these qualitative proper-
ties. Figure 7a shows empirical data giving the firing profile of two
representative time cells that exhibit both the increased spread
and asymmetry. The first cell shown peaks a shorter time into the
delay interval than the second. The width of the first cell’s firing
rate profile is less than the width of the second cell’s firing rate
profile. Each cell also shows an asymmetric firing rate profile,
with a longer tail than a leading edge. Both of these informal
observations were also supported by quantitative analyses across
the population.

Analyses showed that the cells’ spread
in firing increased with the delay to their
peak firing. A linear regression of each
cell’s spread to its peak showed a signifi-
cant regression coefficient: 0.35 � 0.1, p �
0.002, R 2 � 0.15 (Fig. 8a). The temporal
profile of time cells was also positively
skewed. We took the distance between the
first time bin where the smoothed firing
rate exceeded half of the maximum value
and the cell’s mode as a measure of the
leading edge. We took the distance be-
tween the mode and the last time bin
where the smoothed density exceeded half
of the maximum as a measure of the trail-
ing edge. The trailing edge was greater
than the leading edge for 45 of 63 cells
included in the analysis, a proportion that
was significantly different from chance;

 2(1) � 10.7, p � 0.002 (Fig. 8c). This
effect was not attributable to an edge effect
that resulted from cutting off the delay in-
terval: even restricting attention to the
cells with modes 1000 ms from the begin-
ning and end of the interval, we found that
31/39 were positively skewed, a propor-
tion significantly greater than chance;

 2(1) � 12.4, p � 0.001 (Fig. 8d).

To further characterize the temporal
profile of time cells, we computed ensemble
similarity for the set of experimentally ob-
served time cells with well defined peaks be-
tween all pairs of times during the delay
period. Before calculating the cosine of the
population vector, each cell’s smoothed
profile was normalized by its maximum. We

then computed the cosine between the population vectors corre-
sponding to each of the 512 smoothed time bins and reported the
results over the interval from 300 ms to 5 s. Figure 7b shows the
cosine of the angle between smoothed population vectors excluding
300 ms from the beginning and end of the delay interval. The bins
along the diagonal are necessarily one. Notably, the similarity
spreads out such that the representation changes more slowly later in
the delay period than it does earlier in the delay period. The distri-
bution of modes across cells was uniform (Fig. 8b), suggesting that
this finding is attributable to the shape of time fields.

Figure 7c shows an analogous plot of the ensemble similarity

constructed for f̃�x*�. f̃�x*� Also changes more slowly as the stimu-
lus, here the start of the delay interval, recedes into the past. This
spread with the delay is potentially very important. It parallels
results from human and animal studies that show the precision of
temporal judgments decreases with the length of time being
judged (for review, see Wearden and Lejeune, 2008).

To summarize, we compared the properties of time cells recorded

from dorsal CA1 to those predicted by the representation f̃�x*�. We were
able to confirm two qualitative predictions. First, time cells in CA1
showed firing that spread out in time for cells that fired later in the delay
period. Second, the temporal profile of time cells was asymmetric.

Case II: history-dependent spatial representation
It is not always important to remember the times between events.
In many circumstances, an ordinal representation that retains

Figure 8. Detailed properties of experimentally observed time fields. a, Width of time fields grow with their mode. See
text for details. b, The distribution of modes was not different from uniform. Only cells with modes at least 300 ms from
both the start of the delay interval and the shortest end of the delay interval across rats were included. The straight line
gives the cumulative probability of the uniform distribution. c, d, Asymmetry in time fields. c, An asymmetry index was
calculated for each cell. The distribution is reliably different from zero. d, The asymmetry index was not driven by edge
effects, with a residue of skewed time fields for cells with a wide range of modes �0.3 s and �5 s. Data are from secondary
analyses of MacDonald et al. (2011).
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sequential information about the stimuli leading up to the pres-
ent is preferable to a representation that includes temporal infor-
mation. In many cases, cells in the hippocampus and entorhinal
cortex respond as if they were coding for an ordinal representa-
tion of the sequence of movements taken leading up to the pres-
ent moment in time. In particular, cells in the hippocampus and
entorhinal cortex show history-dependent firing in mazes where
the paths the animal can take are constrained. Such cells fire in
different locations that correspond to similar trajectories, a phe-
nomenon referred to as path-equivalent firing (Frank et al., 2000;
Singer et al., 2010). Some neurons also fire differently in the same
location depending on the path the animal has taken to arrive at
that point, a phenomenon referred to as retrospective coding
(Frank et al., 2000; Wood et al., 2000).

The mathematical framework developed here constructs an
ordinal representation of the sequence of movements leading to
the present location if �(�) is set to the animal’s speed v(�) and
f(�) is given by the degree to which the current head direction
overlaps with a specific angle �, f��� � f����. We restricted f���� to
only have positive values, approximating the response of head
direction cells that are observed in various brain regions associ-
ated with the hippocampus (Taube, 1998; Solstad et al., 2008).
Note that, like the speedometer reading on a car, �(�) is always
greater than or equal to zero but is not constant over time. We can
introduce a variable p(�) to describe the total distance traveled

along the path up to time �. Then, the speed v(�) �
dp

d�
. Because

�(�) �
dp

d�
, F(s, �) is the Laplace transform of f�(�) with respect to

p. As a consequence, we write f̃�p*� for the approximate inverse

Laplace transform. In much the same way that f̃��*� provided a
representation of the times at which the stimulus was experienced
leading up to the present moment in Case I, here the inverse

Laplace transform f̃�p*� describes the degree to which the path
leading up to the present includes movements in the direction
�; with many cells taking input from many different head

directions all of the cells in f̃�p*� reconstruct the entire se-
quence of movements.

Figure 9 illustrates how path-equivalent firing works on the
W-maze. The trajectories are taken from Frank et al. (2000),
where the animal navigates along a W-maze visiting each of the
three arms in sequence (L-C-R-C-L …). There are four types of
journeys along the maze (Fig. 9, top). On eastward journeys, L-C
and C-R, the animal starts heading north, then heads east until it
reaches the next arm, then heads south (left column). On west-
ward journeys, R-C and C-L, the animal starts heading north,
then heads west until it reaches the next arm, then heads south
(right column). Consider an input given by a head direction cell
with a preferred direction pointing toward the east (Fig. 9a).
Here, f�(�) would tend to be non-zero a certain distance along the
L-C and C-R journeys as the animal heads east (thin lines, left
column), but would tend to be close to zero (except for some
side-to-side fluctuation) on R-C and C-L journeys (right col-
umn). Now consider the activity of cells in F(s) driven by such an
input. If the rate constant is extremely fast, a cell in F(s) would be
very hard to distinguish from a speed-modulated head direction
cell. However, with relatively slow rate constants, the activity of a
cell in F(s) would gradually grow exponentially as it is presented
with non-zero input, then gradually decay exponentially after the
input is no longer present (Fig. 9a, medium lines). Now consider

the activity of the corresponding cells in f̃�p*�. In just the same way

that the cells in Figure 4 responded a certain time after the input

in the temporal domain, here the cells in f̃�p*� respond to the input
after the animal has traveled some characteristic distance past the
point at which the input was received (thick lines in Fig. 9). Nat-
urally, if the input is similar on two journeys, the cells in F(s) and

f̃�p*� will show similar firing along those to journeys.
Consider the history leading up to a position on the central

arm on L-C paths and R-C paths. Under these circumstances,
although the animal is in the same location heading in the same
direction, the history of movements leading to the present loca-
tion differs dramatically. This property enables cells in F(s) and

f̃�p*� to also exhibit retrospective coding on the W-maze. Figure

10a,b shows results from simulated cells coding for F(s) and f̃�p*�
on L-C and R-C journeys. The simulated cells in Figure 10a,b
both receive input from the velocity component in the eastward
direction. The cell in F(s) (Fig. 10a) was chosen to have a slow rate
constant. As a consequence, the elevated firing from the eastern
movement decays exponentially over a long distance such that it

spreads down the central arm. The cell in f̃�p*� (Fig. 10b) also
distinguishes these journeys. However, it does not begin firing at
an elevated rate until the animal has already made the turn to
enter the center arm. This cell peaks in its firing well along the
center arm. Both of these patterns of activity have been observed
in retrospective coding cells (Frank et al., 2000).

Figure 10c,d shows retrospective coding on the continuous
alternating T-maze (Wood et al., 2000; Lee et al., 2006; Lipton et
al., 2007). On this maze, the animal is rewarded for turning left
and then right after successive journeys down the central arm of
the maze. That is, the animal travels repeatedly in a figure-eight
pattern. On the alternating T-maze, journeys down the central
arm can be part of two different segments of the larger path.
Figure 10c shows a simulated cell in F(s) receiving input from the
velocity component toward the east; Figure 10d shows the corre-

sponding cell in f̃�p*�. The cell in F(s) fires just before entering the
central arm on journeys from the western return arm but not on
journeys from the eastern return arm. As with the W-maze, cells
in F(s) with slower rate constants s would show retrospective
coding toward the bottom of the central arm (data not shown for

clarity). The cell in f̃�p*� shows firing that peaks in the middle of
the central arm. Neurons in the hippocampus and entorhinal
cortex have been observed to show differential activation on the
center arm in the continuous alternating T-maze (Wood et al.,
2000; Lee et al., 2006; Lipton et al., 2007). On the T-maze, jour-
neys down the center arm differ in both the movements that
precede and follow the segment on the center arm. As a conse-
quence, differential activity on the center arm of the T-maze
could be attributed to either retrospective coding or prospective
coding. There is good evidence that purely prospective coding
exists, at least under some circumstances (Ferbinteanu and
Shapiro, 2003; Bower et al., 2005; Ainge et al., 2007a,b). Recent
evidence, however, suggests that prospective activity enters
the hippocampus from another region (Catanese et al., 2012),
perhaps the prefrontal cortex (Rich and Shapiro, 2009). Pro-
spective coding could be incorporated into the current frame-
work if information about goals provides part of the input for
some cells.

To summarize, we showed that in Case II Equation 1 com-
putes the Laplace transform of movements with respect to dis-
tance traveled along a path. We found that cells participating in

F(s) and f̃�p*� exhibited trajectory coding, or path-equivalent fir-
ing, and retrospective coding. These properties allowed the
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model to account for firing correlates of neurons that have been
observed in the hippocampus and entorhinal cortex during nav-
igation along the W-maze and the continuous alternating
T-maze. Notably, there are cells in the rodent hippocampal re-
gion that exhibit qualitative properties consistent with both F(s)

and f̃�p*�.

Case III: purely spatial representation
Observing that place fields are systematically distorted by
changes in the shape of the environment, O’Keefe and Burgess

(1996) proposed that the boundaries of the environment set
the reference frames for the hippocampal place code. They
hypothesized the existence of boundary vector cells that fire a
certain distance and heading from a wall. Conjunctive input
from several boundary vector cells anchored to different walls
in an environment would result in selective firing at a specific
location within the environment; i.e., a place cell. Boundary
vector cells predict systematic changes in place field location
across changes in the shape of an environment (Hartley et al.,
2000; Barry et al., 2006)) and have since been directly observed

Figure 9. Simulation of path equivalent firing on the W-maze. The animal traverses the W-maze by sequentially visiting the left arm, and then the center arm, then the right arm, then
back to the center arm and then back to the left arm, L-C-R-C-L. Each circuit is separated into four paths, indicated by the schematic at the top. a, b, The activity of simulated cells for each
of the four paths. The color of each of these four plots correspond to the four paths in the schematic figures; L-C and C-R paths are in the left column, R-C and C-L paths are in the right
column. For each set of cells the plots in the bottom row shows the second of the two journeys. That is, the bottom left plot gives C-R and the bottom right plot gives C-L. In each plot,
the x-axis gives the total distance traveled since the beginning of each journey. Note that this is not the animal’s location projected onto an average path, but the total distance traveled;
there is some trial-to-trial variability in the location corresponding to a particular distance. In each plot, thin lines are the average value of f across trials; medium lines are the average

value of a cell in F(s); thick lines are the average value of a cell in f̃�p*�. In each plot, the cell in F and in f̃ correspond to the same value of s. a, Cells that take input from a head direction
cell with a preferred direction pointing toward the east. Note that the input is activated on journeys where the animal moves to the east (left column) but not on journeys where the

animal moves to the west (right column). When the input is non-zero, the cell participating in F(s) rises to a peak and then persists, decaying exponentially. The cell in f̃�p*� follows the
input by a characteristic distance along the path. On the western journeys (right), there is little or no input so neither of the simulated cells are activated. b, A set of cells that take input
from a head direction cell with preferred direction that points west.
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in the subiculum (Barry et al., 2006;
Lever et al., 2009), a subregion of the
hippocampus. In the temporal domain

f̃��*� keeps track of the time since a stim-
ulus was encountered; when the flow of
time is modulated by velocity along

some heading, f̃�x*) keeps track of the net
distance traveled along a heading since a
stimulus, here a fixed environmental
landmark, was encountered.

Let the animal’s trajectory through the
two-dimensional environment be given
by x(�). Let the input function f(�) be a
function of position, f[x(�)]. We assume
that f(x) is non-zero only when the animal
is within some small distance of a partic-
ular spatially fixed stimulus. In the open
field simulations described here, we set
f[x(�)] to be non-zero when the animal is
within a certain distance of the boundary
of the enclosure and zero elsewhere (see
Materials and Methods for details). As in
the one-dimensional case, in the two-
dimensional case each cell is modulated
by signed velocity in a single direction x.
Generalizing from the simple one-
dimensional situation described above
(Fig. 6) to the more general case of a two-
dimensional open field introduces a few
complexities. First, the walls of an enclo-
sure are extended in space. If the land-
mark is perpendicular to the direction
along which velocity is coded, then the
two-dimensional case reduces to the one-
dimensional case. However, if the land-
mark is not perpendicular to the direction of motion that
controls �(�), then the input is not a simple function of position
in the x direction. Second, in two-dimensional environments, it is
possible to have x take on negative values. To see how this is
possible, suppose that there is a point landmark in the center of
an open environment and a cell in F(s) is modulated by velocity
along the west-east axis. After encountering the landmark, the
animal moves to the east. During this movement, the velocity is
positive. After traveling some distance to the east, the animal
moves a short distance to the north. During this movement, the
velocity in the east-west direction is zero and the cell’s firing does
not change. Now, when returning to the west, the velocity is
negative. When the animal reaches the same east-west position as
the landmark, the firing of the cell has returned to the value right
after encountering the landmark. Now, because the environment
is two-dimensional, the animal can continue to the west. Velocity
remains negative and the firing of the cell continues to grow
exponentially. This is a problem from both a neural perspective,
firing rates in the brain are bounded, but also from a mathemat-
ical perspective. Under these circumstances, the reconstruction
of the Laplace transform no longer makes sense with positive
values of s.

To address this second limitation we took the intermediate
representation F(s) to be computed from pairs of precursor cells.
As describe in detail in the methods, for each direction, we took a
pair of cells obeying Equation 1. Each of the cells in the pair took
its �(�) to be given by a speed-modulated head direction cell with

a preferred direction; the preferred directions of the two cells
pointed in opposite directions. Neither of the intermediate cells
ever received a negative �(�); when one of the cells is experiencing
a positive �(�) the other cell is necessarily experiencing �(�) � 0.
F(s) was computed by taking the ratio of cell 1 over cell 2 if cell 2’s
firing is greater than cell 1; F(s) was set to zero when cell 2’s firing
was less than cell 1’s. In this way, F(s) enables reconstruction of
positive values of position along an axis oriented along cell 1’s

preferred direction. f̃�x*� was computed exactly as in the one-
dimensional case as Lk

�1 operating on F(s).
Figure 11 summarizes the results of the two-dimensional sim-

ulations. We chose the preferred direction for cell 1 to be due
south and for cell 2 to be due north. f(x) was non-zero when the
animal was within 3 cm of wall whose perpendicular vector had a
component pointing south. For walls that were not exactly east–
west, the input was taken to fall off with the cosine between the
perpendicular vector and the southerly direction. The left-most
column of Figure 11 gives the results for F(s) (Fig. 11, top) and for

f̃�x*� (Fig. 11, bottom) in a square environment aligned perfectly
along the preferred direction. In this case, the model estimates the
Laplace transform of distance from the Northern wall. The firing
rate of cells participating in F(s) is a decreasing exponential func-
tion of distance from the wall. This property is similar to border
cells observed in subiculum and other regions (Solstad et al.,
2006; Savelli et al., 2008; Lever et al., 2009; Boccara et al., 2010).

Simulated cells participating in f̃�x*� fire in a strip aligned to the
wall. Note that there is some variability in the spatial firing even

Figure 10. Path-dependent firing on the W-maze and continuous T-maze. Top, Schematic of two journeys that can be taken on
each of the two mazes. Left, Retrospective coding on the W-maze (Frank et al., 2000). Right, History-dependent spatial firing on the
continuous alternating T-maze (Wood et al., 2000). All cells take their input f(�) to be a head direction cell with preferred direction
toward the east; all cells have �(�) set to be the animal’s speed. a, c, Firing rate map of a simulated cell participating in F(s). b, d,

Simulated cell coding for f̃�p*� corresponding to the cell in F(s). a, Note that elevated firing persists into the central arm on journeys
from the west but not from the east. b, This simulated cell also shows retrospective coding that distinguishes the history on the
central arm, but now the firing peaks at the center of the arm. c, Note that this simulated cell fires before entering the central stem
when coming from the west return arm, but not when coming from the east return arm. d, This simulated cell fires on the central
arm on journeys coming from the west but not on journeys from the east. Paths in a and b were taken from Frank et al. (2000).
Paths in c and d were taken from Lipton et al. (2007).
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though the simulation is in principle deterministic. That is be-
cause this simulation, like all path integration methods, is subject
to cumulative error in the estimate of velocity.

In the more general two-dimensional case, F(s) is not precisely
the Laplace transform of north-south position. Nonetheless, cells

in F and f̃�x*� (we will continue to write f̃�x*� under these circum-
stances) correspond reasonably well to firing correlates of subic-
ular neurons under these circumstances. The remaining plots in
Figure 11 show firing rate maps for the same simulated cells in
environments of different geometries. Across environments, the
firing of the simulated cell in F(s) (Fig. 11, top) and the simulated

cell in f̃�x*� (Fig. 11, bottom) resemble the qualitative pattern ob-
served for border cells and boundary vector cells, respectively
(Barry et al., 2006; Lever et al., 2009).

To summarize, we demonstrated that the mathematical frame-
work used here can provide a reconstruction of position along one
spatial dimension rather than time. Under these circumstances, cells

in F(s) resemble border cells whereas cells in f̃�x*� resemble boundary
vector cells. Even under circumstances where the algorithm cannot
implement the Laplace transform with respect to position, the cells
generated by the model nonetheless provide a reasonable approxi-
mation to firing correlates of actual neurons.

Conjunctive representation of spatiotemporal context
It has been hypothesized that one of the functions of the hip-
pocampus is to maintain a representation of spatiotemporal con-
text that incorporates all of the aspects of an episode (Cohen and
Eichenbaum, 1993; Eichenbaum et al., 2007). According to this
account, the hippocampus receives input from a variety of re-
gions that code for distinct classes of stimuli and integrates them
into a common representational framework that can capture the
relationships between them. Consistent with this view, conjunc-
tive cells that respond preferentially to the simultaneous presence
of multiple features within an environment are extremely com-
mon (Shapiro et al., 1997; Wood et al., 1999; Anderson and Jef-
fery, 2003; Komorowski et al., 2009, 2013). Up to now, we have
considered three cases in which cells receive input f(�) and mod-
ulation �(�) with varying properties. These “pure” inputs can be
combined into conjunctive representations that capture the
relationships between the various stimuli. By taking combina-
tions of unimodal functions for a wide variety of stimuli, the
hippocampus can build a holistic representation that captures the
relationships between stimuli separated in time and space (Sta-

resina and Davachi, 2009). Conjunctive representations are a
high-dimensional representation of the different aspects of an
episode (Rigotti et al., 2013).

We consider two simple examples of conjunctive representa-
tion and compare the results to the firing correlates of cells in
dorsal CA1. In Case III, each set of cells coded for the distance
along some heading to a particular landmark. In most real world
situations, there are multiple landmarks available at any moment.
In the first demonstration, we consider the conjunction of
boundary vector cells coding for the different walls of an enclo-
sure. We find that the resulting simulated cells correspond well to
canonical place fields and respond appropriately to changing the
dimensions of an enclosure (O’Keefe and Burgess, 1996; Hartley
et al., 2000). In the second example, we take a conjunction of a
place cell, itself constructed as the conjunction of boundary vec-
tor cells from Case III and a time cell from Case I. The result is a
cell with a place field that changes slowly over time (Hyman et al.,
2012; Mankin et al., 2012).

It has long been hypothesized that the existence of well defined
place cells in dorsal CA1 is a consequence of conjunctions of
inputs from boundary vector cells that each code for distance
from an environmental boundary (O’Keefe and Burgess, 1996;
Hartley et al., 2000). If place cells in dorsal CA1 are caused by
boundary vector cells that take as input contact with the bound-
aries of an enclosure, then changing the shape of the should result
in a change in some place fields. Figure 12a,b shows two cases in
which a simulated place cell was constructed by taking combina-
tions of inputs from boundary vector cells like those shown in
Figure 11. The firing rate of the simulated cell in Figure 12a is
given by the product of the firing rate of two BVCs, one “at-
tached” to the northern wall, the other attached to the western
wall. The firing rate of the simulated cell in Figure 12b is
caused by a slightly more complicated combination of the
input of three simulated boundary vector cells. As described
by previous authors (O’Keefe and Burgess, 1996; Hartley et al.,
2000; Barry et al., 2006), conjunctive inputs from a variety of
boundary vector cells can account for a range of findings from
the place cell literature.

The present mathematical framework can provide for purely
spatial cells (Case III) as well as purely temporal cells (Case I). By
taking conjunctions of cells from these two classes we can account
for place cells with place fields that change gradually over time
(Manns et al., 2007; MacDonald et al., 2011; Hyman et al., 2012;
Mankin et al., 2012). For instance, many of the time cells ob-
served by MacDonald et al. (2011) that fired for circumscribed
time periods during the delay interval of a memory task also
showed place fields during the delay. These cells fired only when
the animal was in a circumscribed location during a circum-
scribed time period within the delay. Similarly, Mankin et al.
(2012) recorded from the same arena over several sessions. They
observed place cells that showed firing fields that changed grad-
ually via rate remapping over hours. Figure 12c shows a simulated
cell with firing rate computed as the product of two boundary
vector cells (Case III) and a time cell (Case I) that takes as input a
stimulus available only at the beginning of the session. The con-
junctive cell does not show any firing early in the period because
the time cell has not yet become active. As the time cell becomes
active, the conjunctive cell exhibits a place field in the location
where both of the boundary vector cells are active. As time con-
tinues onward, the time cell ceases firing and the conjunctive cell
again becomes inactive. Combining time cells coding for differ-
ent aspects of stimulus history in a gradually changing environ-
ment, could account for the widespread finding that the place

Figure 11. Simulated boundary vector cells in two-dimensional environments. For the sim-
ulated cells, velocity was taken as the component of velocity in the southern direction. The input
function f(x) was set to be non-zero when the animal was within 3 cm from a northern wall of
the enclosure. Spatial trajectories were actual paths taken by rats for the various environments
(see methods for details). Top, The Laplace transform F(s) mimics border cells. Bottom, The

inverse Laplace transform f̃�x*� mimics boundary vector cells. The simulations correspond well
with experimental results from Lever et al. (2009).
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code of dorsal CA1 ensembles changes
gradually with the passage of time (Manns
et al., 2007; MacDonald et al., 2011; Hy-
man et al., 2012; Mankin et al., 2012).

Discussion
Equations 1 and 6 provide a unified
framework for constructing functions of
time, position in a sequence, or spatial po-
sition. The method starts by constructing
an intermediate representation of leaky
integrators with different time constants.
From this intermediate representation,
we extract a fuzzy representation of a
function of time, or position in a se-
quence, or spatial position. This frame-
work organizes superficially different
neurophysiological findings in the rodent
hippocampus and parahippocampal
structures. Different pathways receive a
variety of inputs f(�) and are modulated
by different functions �(�), but all of the
simulated cells considered are generated
by the same two equations. With appro-
priate settings, we obtain a fuzzy represen-
tation of what happened when (Case I), or
of what happened in which part of the se-
quence (Case II), or what is located where
(Case III). All of these sources of informa-
tion combine in the hippocampus to pro-
vide a conjunctive description of the current spatiotemporal
context (Fig. 12).

Comparison to other work
In the temporal domain, the present approach extends several exist-
ing hypotheses for sequential activation of cells. Although cells are
sequentially activated in f̃ following presentation of a stimulus, cells
in f̃ do not have direct connections between them, in contrast to
chaining models that exploit direct links between sequentially acti-
vated cells (Goldman, 2009; Itskov et al., 2011). In the temporal
domain, the present mathematical framework is a special case of a
liquid state machine (Maass et al., 2002; Buonomano and Maass,
2009), although an extremely simple one that is trivially decodable.
The present approach has perhaps the most in common with
spectral timing theory (Grossberg and Merrill, 1992). How-
ever, the present approach is much more simple facilitating
insight into its workings and extension to other variables.

Other work has generalized from temporal to spatial variables.
For instance, Hasselmo (2009) presented a framework for learn-
ing spatial and temporal trajectories using changes in synaptic
weights between grid cells and cells coding velocity. In this paper,
sequential firing does not depend on changes in synaptic weights;
Lk

�1 is fixed throughout an experiment.

Biological requirements for the computation
As discussed above, given a set of leaky integrators F(s), it is
straightforward to approximate the inversion of the Laplace
transform and construct f̃ using feedforward connections with
lateral inhibition. There are several computational requirements
necessary to implement Equation 1, but these are at least plausi-
ble given current knowledge.

First, we require exponentially decaying cells with a variety of
time constants; to describe behavioral effects over long time

scales, time constants of perhaps a few thousand seconds would
be necessary. Although network effects are a possible mechanism
for long time constants, firing that lasts over long periods of time
could also result from intrinsic currents. Graded persistent firing
(Egorov et al., 2002; Fransén et al., 2006) is similar to an integra-
tor with an infinite time constant. Long-lasting persistent firing
has been observed in vitro in a variety of regions throughout the
hippocampal region and some cells terminate persistent firing
after variable time periods (Egorov et al., 2006; Yoshida and Has-
selmo, 2009; Navaroli et al., 2011; Sheffield et al., 2011; Hyde and
Strowbridge, 2012; Knauer et al., 2013; Jochems and Yoshida,
2013). We recently developed a relatively detailed computational
model that adapts cellular properties believed to support persis-
tent firing to implement Equation 1 with long time constants (Z.
Tiganj, M. E. Hasselmo, M. W. Howard, unpublished
observations).

Second, the time constants of these integrators should be dis-
tributed along some anatomical axis to facilitate taking the deriv-
ative with respect to s. The dorsoventral axis is a good candidate
for this gradient. Place field size changes systematically along the
dorsoventral axis (Jung et al., 1994; Kjelstrup et al., 2008). The
time constant of the integrators controls the spatial resolution of

the representation that results in f̃�x*�. Cells in MEC exhibit bor-
der cell activity consistent with F(s) in Case III (Solstad et al.,
2008). Cellular properties in MEC change systematically along
the dorsoventral axis. There are systematic differences in reso-
nance properties (Giocomo et al., 2007; Heys et al., 2010), synap-
tic summation properties (Garden et al., 2008), and the radius of
inhibitory synaptic interactions (Beed et al., 2013) along the dor-
soventral axis in vitro.

Third, Equation 1 requires that �(�) multiplicatively modu-
late the inputs to a leaky integrator and its ongoing activity. On a
cellular level, multiplicative interactions could be caused by the

Figure 12. Cells that take conjunctions of simple functions of space and time generate a rich set of firing correlates. a, b,
Conjunctions of boundary vector cells generate canonical place cells with fields that move when the dimensions of the environment
are changed. Each of the four panels gives a firing rate map for four different environments of different sizes. a, A cell taking the
product of input from one boundary vector cell coding for distance to the northern wall and a cell coding for distance from the
western wall. b, Input from three boundary vector cells was combined. The first cell peaks in its firing 2 units from the northern wall,
the second cell peaks firing 4 units from the western wall, and the third peaks 6 units from the eastern wall. The firing rate of the
unit shown is the firing rate of cell 1 times the sum of cells 2 and 3. c, Firing rate map for a simulated conjunctive time cell/place cell
for different periods of time. The simulated cell’s firing rate is given by the product of two boundary vector cells (Case III) and a time
cell (Case I) coding for an event at the beginning of the session. The first firing rate map is for 0 –2000 units of time; the second map
is for 2000 – 4000 units of time. Because the temporal history is scale-invariant, the units of time are arbitrary except insofar as the
time scale is long enough to allow the path to thoroughly sample positions.
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properties of NMDA receptors, in which postsynaptic depolar-
ization multiplicatively enhances the synaptic currents induced
by presynaptic glutamate release (Poirazi et al., 2003). Multipli-
cative interactions have been demonstrated in both experimental
data (Otmakhova et al., 2002; Jarsky et al., 2005) and in detailed
biophysical simulations (Poirazi et al., 2003). Gain control via
noisy synaptic inputs is another potential mechanism to rapidly
change the time constant of cells (Chance et al., 2002). Head
direction cells (Taube, 1998; Solstad et al., 2008; Brandon et al.,
2011) coupled with neural correlates of speed are sufficient to
generate a velocity signal (O’Keefe et al., 1998; Maurer et al., 2005;
Wills et al., 2012).

Specific experimental predictions
The equations described here make several qualitative and quan-
titative predictions that could be tested with existing technology.
In practice, it is difficult assign a specific function to a specific
region. Presumably, neurons in different pathways receive differ-
ent inputs and different modulators; predicting the firing corre-
lates of a population of cells computing F(s) or f̃ requires knowing
their inputs and modulators. If dorsal CA1 contains a conjunc-
tive representation of many inputs then CA1 is a good location to
test qualitative predictions of the model but a poor location to
test quantitative predictions. Quantitative predictions would be
better tested in “pure” populations that provide input to the hip-
pocampus.

Behavioral considerations suggest that the temporal informa-

tion in f̃��*� should extend much longer than the time scale ob-
served thus far; perhaps as long as a few thousand seconds
(Shankar and Howard, 2012; Howard and Eichenbaum, 2013).
Stimulus-specific time cells should exist over similarly long peri-
ods of time. Stimulus-specific time cells have been observed
(MacDonald et al., 2011, 2013) and time cells have been observed
over the longest scales that have been considered (�16 s; Kraus et
al., 2013). There is ample evidence for changes in ensemble rep-
resentations over time scales much longer than 10 s (Manns et al.,
2007; Hyman et al., 2012; Howard et al., 2012; Mankin et al.,
2012), but it is not known whether those changes carry informa-
tion about past stimuli. Addressing the question of whether
stimulus-specific time cells exist over long time scales requires
establishing experimental control over gradually changing firing.

Whereas neurons that resemble the behavior of cells con-
structing the intermediate representation have been observed in
Case II and Case III (Table 1), the major gap in the functional
correlates predicted by the framework for these three cases thus
far is the absence of the intermediate representation F(s) for Case
I. In the temporal domain, cells participating in F(s) would ex-
hibit stimulus specific firing with exponential decay. Different
cells would exhibit a variety of time constants. Given the strong
spatial correlates in medial entorhinal cortex (MEC) and the ab-
sence of clear spatial firing correlates in lateral entorhinal cortex
(LEC; Hargreaves et al., 2005), LEC seems like an excellent can-
didate to search for cells participating in F(s) in Case I. The
perirhinal cortex, which provides cortical input to LEC, is an-
other good candidate.

The analogy between temporal and spatial functions proposed
here makes several qualitative predictions about the properties of
spatial firing correlates. By analogy with time cells, this frame-

work predicts that the spatial extent of cells in f̃�x*� coding for the
distance from a landmark should spread out with the distance to
the landmark, as predicted by descriptive models of boundary
vector cells (Barry et al., 2006; Hartley et al., 2000). To test this

prediction, it is necessary to establish that a landmark controls
firing of a particular cell. Experimental control over the firing of
place cells by a landmark has been established on a linear track
(Gothard et al., 1996, 2001).

The most theoretically important quantitative prediction of
the model is mathematical scale-invariance (Shankar and How-
ard, 2012). Scale-invariance is a central aspect of many models of
a variety of memory and timing tasks (Gallistel and Gibbon, 2000;
Brown et al., 2007). Scale-invariance manifests neurally as a con-
stant ratio between the width of a cell’s time field and the latency
with which it responds to the stimulus. This should hold on in-
dividual trials and not be due to an averaging artifact across trials.
In practice, there are many methodological challenges to evalu-
ating scale-invariance. For instance, uncontrolled variables, in-
cluding behavior, could inadvertently introduce a scale to the
input function.
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