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Humans demonstrate differences in performance on cognitive rule learning

tasks which could involve differences in properties of neural circuits. An

example model is presented to show how gating of the spread of neural

activity could underlie rule learning and the generalization of rules to

previously unseen stimuli. This model uses the activity of gating units to

regulate the pattern of connectivity between neurons responding to sensory

input and subsequent gating units or output units. This model allows analysis

of network parameters that could contribute to differences in cognitive rule

learning. These network parameters include differences in the parameters of

synaptic modification and presynaptic inhibition of synaptic transmission

that could be regulated by neuromodulatory influences on neural circuits.

Neuromodulatory receptors play an important role in cognitive function, as

demonstrated by the fact that drugs that block cholinergic muscarinic recep-

tors can cause cognitive impairments. In discussions of the links between

neuromodulatory systems and biologically based traits, the issue of mechan-

isms through which these linkages are realized is often missing. This model

demonstrates potential roles of neural circuit parameters regulated by acetyl-

choline in learning context-dependent rules, and demonstrates the potential

contribution of variation in neural circuit properties and neuromodulatory

function to individual differences in cognitive function.

This article is part of the theme issue ‘Diverse perspectives on diversity:

multi-disciplinary approaches to taxonomies of individual differences’.
1. Introduction
Humans demonstrate important cognitive capacities for rule learning and sym-

bolic processing. Rule learning includes the ability to generalize from previous

experience, to allow previously unseen sensory input to be interpreted in terms

of a previously learned rule to generate the correct response [1]. Humans show

a range of capabilities for learning and detecting rules and applying them to

new sensory input, as shown for example by the differences in rule learning

performance on the Raven’s progressive matrices task [2–4] that are a reflec-

tion of probabilistic abilities, and on other rule learning tasks such as the

context-dependent association task described here [5].

The mechanisms of rule learning involve neural circuits in cortical structures

such as the prefrontal cortex [6,7], but the detailed circuitry for rule learning has

not been determined. The ability to flexibly apply rules to new input requires

circuits for symbolic processing. Here we focus on symbolic processing as the

capacity for a specific cognitive role in a rule to be flexibly filled by different

sensory inputs. This flexible linking of roles to different fillers contributes to

the productivity, systematicity and compositionality of cognitive function [1].

This flexible application of rules to different fillers has been modelled in differ-

ent ways, including the synchrony of oscillations [8–10], the use of compression

operators to link codes [11,12] or the flexible gating between different cortical

working memory buffers by the basal ganglia [13,14] consistent with previous

theories of flexible routing in prefrontal cortex [6]. The model presented in this

paper demonstrates how the concept of flexible gating could be implemented

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2017.0275&domain=pdf&date_stamp=2018-02-26
http://dx.doi.org/10.1098/rstb/373/1744
http://dx.doi.org/10.1098/rstb/373/1744
http://dx.doi.org/10.1098/rstb/373/1744
mailto:hasselmo@bu.edu
http://orcid.org/
http://orcid.org/0000-0002-9925-6377
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170275

2

 on March 18, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
by circuits within neocortex to allow learning and generaliz-

ation of rules. This builds on previous models using

interacting populations of neurons to gate selection of motor

actions [15,16] or selection of memory actions loading infor-

mation into working memory or episodic memory for

solving behavioural tasks [15,17,18].

The fundamental feature of this model is the direct influ-

ence of gating neurons on the synaptic spread of activity

between other neurons, which could arise via different pos-

sible mechanisms. This gating could involve synapses on the

dendritic tree of pyramidal cells that interact via voltage-

dependent N-methyl-D-aspartate (NMDA) conductances,

such that a conjunction of nearby synaptic inputs is necessary

to generate an output [19,20]. This model is supported by the

fact that neurons receive multiple different functional synaptic

inputs, but commonly only respond to a subset of these inputs

[21,22]. Alternately, it could involve axo-axonic inhibitory

interneurons that can directly regulate spiking output [23,24].

The range of human cognitive function could reflect a range

of neuromodulatory influences in different individuals [25,26].

This could involve different neuromodulatory systems includ-

ing dopamine, norepinephrine, serotonin and acetylcholine,

which could regulate different aspects of cognitive function

[25]. This paper will focus on the potential neuromodulatory

role of acetylcholine in cortical circuits. Extensive data indicate

an important role of acetylcholine in regulating cortical cogni-

tive function. A broad range of medical anecdotes indicate that

blockade of muscarinic acetylcholine receptors by high doses

of drugs such as scopolamine or atropine (present in some

plant species) causes a breakdown of cognitive function result-

ing in delirium and hallucinations [27], and this has been

proposed to contribute to cognitive dysfunction in diseases

such as Lewy body dementia [28]. The essential role for

muscarinic receptors in cognition is further supported by

studies showing more selective cognitive impairments includ-

ing impaired encoding of lists of words and impaired working

memory with lower levels of muscarinic blockade [29–31].

The cognitive effects of muscarinic receptor blockade

appear to result from blockade of specific physiological effects

at the cellular and circuit level within cortical structures. These

muscarinic effects are present in most cortical regions that

have been tested including hippocampus, entorhinal cortex

and prefrontal cortex [32]. Nicotinic receptors also contribute to

the effects of acetylcholine, but blockade of nicotine receptors

has weaker effects on cognitive function. The model presented

here contains features of neural function that are inspired by

data on physiological effects of muscarinic cholinergic recep-

tors [32,33]. Data show that acetylcholine is released during

waking in cortical structures including the neocortex and

hippocampus [34,35]. This release of acetylcholine causes a

number of strong physiological effects that could be important

for cognitive function.

Cholinergic modulation strongly influences the spiking

activity of cortical neurons by regulating different conduc-

tances. Muscarinic receptors cause a direct depolarization of

neurons through the block of a leak potassium current [36].

In addition, by blocking calcium-dependent potassium cur-

rents [37–39] and activating a calcium-sensitive non-specific

cation current (CAN current), acetylcholine can cause persist-

ent spiking in a subset of neurons when spiking activity

causes calcium influx that activates the calcium-sensitive

cation current [40–43]. This persistent spiking could provide

a means for maintaining working memory of prior activity
[44], which could allow gating neurons to bridge the sequential

gaps between inputs. In vivo studies show that acetylcholine

increases the firing rate and reliability of the spiking response

of cortical neurons to sensory input [45–47]. Variation in cog-

nitive function between individuals could result from genetic

variation in the structure of muscarinic receptor proteins. For

example, it has been shown that a mutation in a potassium

channel regulated by muscarinic receptors (KCNQ) can cause

an inherited epilepsy syndrome [48].

Cholinergic modulation also regulates the induction and

expression of synaptic modification, as shown in studies in

which acetylcholine enhances long-term potentiation [49–51]

and the NMDA conductances that could contribute to long-

term potentiation [52]. At the same time that cholinergic

modulation enhances synaptic modification, the cholinergic

activation of muscarinic receptors also causes strong presyn-

aptic inhibition of glutamatergic synaptic transmission which

is stronger at excitatory feedback synapses compared to affer-

ent input [32,33,53] and depends upon M4 muscarinic

receptors [54]. This presynaptic inhibition has been shown to

be stronger at excitatory intrinsic synapses within neocortex

[55], in contrast to the afferent input which often undergoes

nicotinic enhancement [56,57]. Modelling shows how increases

of acetylcholine would cause muscarinic presynaptic inhibition

of recurrent synapses that would prevent retrieval of pre-

viously stored associations from interfering with encoding of

new patterns [32,58], whereas lower levels of acetylcholine

could allow stronger synaptic feedback to mediate consolida-

tion [33], consistent with the enhancement of consolidation

seen with quiet rest after encoding [59,60].

In this paper, we present a model of cognitive rule learning

that shows the capacity to learn a rule across a large number of

stimulus examples, and to generalize this rule to previously

unseen examples. The model also shows how variation in cor-

tical parameters could alter the performance of the network to

effectively learn the rule, and could thereby underlie the large

individual variation seen in data from human performance on

this task [5]. The variations in parameters that could influence

performance include: (i) variation in the amount of excitatory

noise added to the network, which influences the capacity to

explore different representations (equation (2.1)); (ii) variation

in the efficacy of synaptic modification based on correct output

(equations (2.3) and (2.4)); and (iii) variation in the presynaptic

inhibition of previously modified synapses to allow incorrect

responses to update the pattern of network connectivity.
2. Methods
(a) Overview of task
The task being modelled requires behavioural go or no-go

responses to easily identifiable pairs of items, as illustrated in

figure 1. The correct response on each trial is determined by the

rules determined by the current pair of items and the context of

spatial location. On each trial, human participants are presented

with two different item stimuli in the same spatial context

(screen location) separated by a short memory delay. Participants

make a keyboard response based on whether the presented

items are paired in a ‘Go’ or ‘NoGo’ configuration. The stimulus

pairings for correct ‘Go’ responses are summarized in figure 1,

where the first stimuli are indicated by A,B,C,D and the second

stimulus by X or Y. Feedback indicates whether the response is cor-

rect or incorrect for each response. Importantly, participants are

naive to the fact that pairings are made based on spatial location.

http://rstb.royalsocietypublishing.org/
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Figure 1. (a) Diagram of the behavioural task. Participants learn associations
between four items A,B,C,D and two other items X,Y. The association rules
change with spatial quadrant, but pairs of quadrants have the same associations
(e.g. 1 and 4, 2 and 3), allowing participants to extract a common higher order
rule. For example, item A followed by item X in quadrant 1 requires a Go
response to be correct. There are 16 Go pairings and 16 NoGo pairings.
(b) Task with probe stimuli testing generalization. The task is the same as A,
except that in each quadrant, about half of the cue combinations are not
shown during training (indicated by the question mark ‘?’). All examples of A
and C are shown, but only a single example for B and D are shown. After train-
ing, simulations are presented with the missing cue and have to infer the correct
paired associate (X, Y) from experience in the equivalent quadrant.
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For example, in context 1, item cue A followed by cue X requires a

correct Go response, but in context 2 item cue A followed by X

would require a NoGo response, whereas in context 2 item cue

A followed by Y would require a Go response. These form some

of the context-dependent rules that participants must learn. Partici-

pants must learn the correct behavioural responses and rules for

each pair of items using the feedback provided. In the behavioural

data [5], human subjects show a wide variety of capacities for

learning this task. Some subjects show rapid learning over a

small set of trials that indicates rapid learning and generalization

of the basic rule structure of the task. Other subjects do not learn

the correct rule structure at all over an extensive period of training,

whereas other subjects correctly learn the rule structure at an

intermediate stage during learning.

(b) Overview of model
To understand how these rules could be learned and generalized,

and to understand the range across human subjects in capacity
for learning the rules, the performance of the task has been mod-

elled within a neural network structure that uses gating of

weights. Gating of weights refers to a subset of active units in

the model that determine the nature of synaptic interactions

between other units in the model.

The basic function of the model is similar to most neural net-

work models, in which the activity ai(t) of neuron population 1

at time t influences the activity aj(t þ 1) of neuron population 2

at time t þ 1. The activity is influenced via a set of synaptic weights

with values represented by the matrix Wij at time t, as follows:

aiðtþ 1Þ ¼
X

j

WijðtÞajðtÞ þ ms: ð2:1Þ

Note that this activation equation also includes an added noise

term where m is 0.1 and s is the rand function from MATLAB

which produces random numbers drawn from a uniform distri-

bution between 0 and 1. This noise gives the network flexibility

for exploring different activity patterns. The full activity vector

summarized in figure 2a contains input units (indices 1–10)

responding to the first item (A,B,C,D), the second item (X,Y)

and the location (1,2,3,4). The vector also includes gating units

(with indices 11–17 in most simulations) and two output units

representing the Go or NoGo response (with indices 18–19).

Figure 2b,c summarizes the overall network connectivity. The

simulations use three functional sets of weights that link the

input arriving at different time points in the task to different sets

of gating units. The gating units then regulate gating matrices

that determine the currently functional set of connections within

the network. Each trial starts with gate 1 active (gate 1 has index

11 within the overall activity vector because the vector includes

10 input neurons with indices 1–10). Gate 1 regulates the first set

of gating weights that link input from neurons 1–4 that respond

to the first item (A,B,C or D in figure 1) and send output to

update activity in another set of gating units (numbered 2–5 in

figure 2, and corresponding to indices 12–15 in the overall

vector). Gates 2–5 regulate the second set of weights that link

inputs from neurons 5–6 that respond to the second item (X or Y

in figures 1 and 2) and send output to update activity in a

second set of gates (numbered 6–7 in the figure, and correspond-

ing to indices 16–17 in the overall vector). The third set of weights

links input from neurons 7–10 that represent the spatial location

1,2,3,4 of the input (upper left, upper right, lower left, lower

right) and send output to neurons representing the selection of a

Go or NoGo output. For ease of programming, these three sets

of functional weights were all implemented with single gating

matrices in which the functional weights are just subsets of all

possible connections between elements of the activity vector.

Thus, in figure 3, the grey scale plots of weight matrices show all

possible connections between units 1–19 and the same set of

units 1–19, but only a subset of weights are modified during the

performance of the task.
(c) Gating of weights
The regulation of the weights W in this model is somewhat differ-

ent from most neural network models. Most neural network

models update a single matrix W based on Hebbian learning

rules or backpropagation of error. By contrast, the essential

novel feature of this model is the gating of the spread of activity

in the network. This corresponds to an extensive connectivity

pattern W that is selectively gated by individual gating units

that activate gating matrices G that regulate the influence of

component synapses in W, potentially through multiplicative

interactions of the gating neuron input with adjacent synapses in

W. Neurophysiologically, this could involve nonlinear interactions

between synapses on a dendritic tree such that one synapse only

has a significant effect on spiking when accompanied by input at

a nearby synapse on the same dendritic tree. This was modelled

http://rstb.royalsocietypublishing.org/
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Figure 2. Network structure. (a) The activity array used in simulations. Units are assigned to the first items A,B,C,D, second items X,Y, locations 1,2,3,4 and gates
1,2,3,4,5,6,7 and output Go, NoGo. (b) The network connectivity of gating in the model. Gate 1 regulates gated weights Gij1 between first patterns A,B,C or D and
gates 2,3,4,5. Black squares indicate strengthened connections in a specific example of function also shown in figure 3. Gates 2,3,4,5 then regulate gated weights
Gij2, Gij3, Gij4, Gij5 between second patterns X or Y and gates 6 or 7. Gates 6 or 7 then regulate gated weights Gij6 and Gij7 between location inputs 1,2,3 or 4 and
outputs Go (G) or NoGo (N). (c) The same network connectivity as in b, but shown with circles representing units and lines (instead of matrices) representing
weights. Filled circles represent active units for the examples described in the main text. (d ) Example of a network without gating units or gated weights. Synapses
between neurons representing patterns are strengthening with Hebbian modification only. This results in overlap for the association of pattern A with pattern X in
location 1 versus pattern C with pattern X in location 1. The need for two different outputs cannot be accommodated in this structure.
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in previous studies in the Hasselmo laboratory [61], based on ear-

lier models of nonlinear dendritic interactions involving NMDA

receptors [19,20].

This property is here represented by allowing the pattern of

synaptic weights to be directly regulated by the effect of activity

in a set of gating units that are part of the vector of activity. Thus,

as shown in figure 2, the activity vector ai is divided up into

different sets of units ain (input units), aout (output units) and

ag (gating units). Note that for simulations, all of these separate

components are combined in a single vector, so the indices in,

out and g all fall within the larger vector index i in equation (2.1).

The gating of weights is represented by a gating matrix of

weights Gijg that map activity of the gating units ag to weights

Wij as follows:

WijðtÞ ¼
X

g
Gijg½agðtÞ � u�þ: ð2:2Þ

At each time step, the active gating units ag determine how

each gating matrix Gijg contributes to the pattern of weights Wij

within the network. In this notation, the subscripted index ijg indi-

cates the indices of the interaction from an individual active gating

unit ag with index g to the gated weights ij associated with that

index. As noted above, the units ag used to influence gating are a
separate set of gating units within the overall population of

units. The notation with square brackets and the plus sign indicates

a threshold linear function with output of zero if the function

within the square brackets is negative (i.e. when ag(t) falls below

threshold u) and linear when ag(t) is above threshold u. The main-

tenance of the activity of gating units is proposed to involve

muscarinic activation of the mechanisms of intrinsic persistent

spiking within individual neurons [42,62].

The effect of gating units on the matrix Wij is rapid in equation

(2.2), but the matrix gating weights Gijg change slowly over time

depending on learning as described below. The learning occurs

initially due to noise causing random activity of units within the

network that randomly generates correct responses, which result

in the modification of the gating weights. Learning of the rule pro-

gresses to asymptotic performance, during which the gating

depends upon the updating or control of W at each time step by

a subset of active units within a(t) that act on W via weights Gijg.

The essential learning within the network concerns the modifi-

cation of weights Gijg so that the appropriate sets of units get

activated to implement the appropriate gating of interactions

between specific roles within the rule and the associated fillers

such as the stimuli. For example, a specific active gating unit

would activate the gating weights that link a specific stimulus

location (e.g. 20) to a specific output (Go).

http://rstb.royalsocietypublishing.org/
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Figure 3. (Caption opposite.)

Figure 3. (Opposite.) Simulation of task after training. (a) On each trial, the
full network was presented with a sequence of binary patterns with active
units (black rectangles) representing one item from A,B,C,D (top row, ‘C’) fol-
lowed by one item from X,Y (second row, ‘X’) followed by one of 4 location
cues (third row, ‘Loc3’). Each trial started with activity in gate 1 (index 11),
and after learning cue C activates gate 5 (index 15), cue X activates gate 7
(index 17), and Loc3 activates the Go response via weights shown in part b.
These network weights were previously strengthened when the network was
rewarded for a correct Go response or NoGo based on the combinations
shown in figure 1. The network learned to correctly respond to all combi-
nations. (b) After learning, gate 1 has a weight matrix Gij1 with four
strong weights (black squares) linking the four first cues to specific gates,
so input ‘C’ in column 3 activates output row corresponding to gate 5
(index 15). The grey scale values represent the random initial weights that
were not modified due to the absence of pre- or post-synaptic activity.
Darker grey represents stronger weights. (c) The next four gates link the
second cue to a different set of gates. In this example, active gate 5
(index 15) allows input X to activate gate 7. (d ) The next two gates link
the location context to a correct response. In this example, active gate 7
(index 17) allows Loc3 to activate Go. (e) Left: Performance of a single net-
work over 3000 training trials, showing relatively rapid increase in
performance from random (50%) to 100% correct around trial 800. Right:
Performance change averaged over 20 networks, showing that all networks
converge over time to 100% correct responses on all 32 trial types.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170275

5

 on March 18, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
(d) Updating of internal weights
The update of the gating weights G depends upon the generation

of correct responses in the network, which initially occurs due to

noise causing random selection of activity of gating units. If a

correct response is generated randomly, the gating weights are

updated. The updating based on correct responses is proposed

to involve the release of a neuromodulator such as dopamine

or acetylcholine, which has been shown to enhance mechanisms

of long-term potentiation [63].

The gating weight matrices Gijg all start out with random

initial weights. Sections 1 and 2 below describe the spread of

activity as described in equations (2.1) and (2.2) above,

and then sections 3–5 describe how the activity results in the

modification of weights G in equations (2.3)–(2.5) below.
(1) As shown in equation (2.1) above, presynaptic activity

spreads across the current synaptic weight matrix Wij to influence

postsynaptic activity with added noise. Because of the restric-

tions on connectivity described above, the postsynaptic activity

on each time step is distributed across the gating units. The net-

work then selects the gating unit with the highest activity

(winner-take-all).

(2) As shown in equation (2.2) above, on a given trial, the cur-

rent weight matrix Wij depends upon the sum of the gating

matrices Gijg that are associated with currently active gating units

g. These are summarized in figure 2. To provide an initial gate,

the gating unit 1 (index 11) is set to be active at the start of each

trial. In the simulations shown here, the weight matrix for gate 1

is restricted to only allow connections from units 1–4 representing

cues A,B,C,D to the four gates 2,3,4,5 (indices 12–15). Gates 2–5

are restricted to regulate weights between input units with indices

5, 6 representing cues X,Y to the two gates 6,7 (indices 16–17). The

gates 6 and 7 are restricted to regulate weights between units with

indices 7–10 representing the four quadrant locations (Location 1:

upper left, 2: upper right, 3: lower left, 4: lower right), with post-

synaptic targets being the output units (indices 18,19)

representing the Go or NoGo responses.

(3) The network then computes Hebbian learning based on the

association of the currently active presynaptic input unit aj(t) and

the currently active postsynaptic gating unit selected by winner-

take-all ag(t) (or output unit representing Go or NoGo). Note that

the change of Gijg(t)(t) is associated with the index of the active

gating unit g(t) determined by the current time step t as seen in

the index. This Hebbian learning is not immediately implemented,

but is stored as a possible change in the manner described as

synaptic tagging [64,65].

D�G�ijgðtÞð�tÞ ¼ agðtÞajðtÞ: ð2:3Þ

(4) The strengthening of tagged synapses is determined by the

match of network output to desired output. The network output

activity (Go or NoGo) in the final layer of the network is deter-

mined either by the gated weights or by random input. This

output activity ao(t) is then compared with the desired output

activity o(t) at that final stage. The desired output o(t) is determined

by the reward structure of the task, so in the desired output vector
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o(t), the Go or NoGo unit is set to one as defined by the behavioural

rule shown in figure 1. If the network is correct, then the release of a

neuromodulator (possibly dopamine) updates the gates G based

on the Hebbian learning stored previously. Note that this process

updates the weight matrices for each of the gating units for the

three steps of update. Thus, the gating unit active on the first

time step (gate 1, index 11) updates based on the synaptic tag

from that time step (t ¼ 1) and so on.

if aoðtÞ ¼ oðtÞ
then GijgðtÞðtþ 1Þ ¼ GijgðtÞðtÞ þ DGijgðtÞ: ð2:4Þ

(5) In addition to the synaptic modification, there is also post-

synaptic normalization of the weights so that the sum of the row

of weights entering a particular postsynaptic gate or output does

not change. This uses the following equation:

Gijgðtþ 1Þ ¼ Gijgðtþ 1Þ

P
j

GijgðtÞ
P

j
Gijgðtþ 1Þ

8><
>:

9>=
>;
: ð2:5Þ

This normalization ensures that weights do not grow explosively

and also causes heterosynaptic depression of other weights that

are not associated with the current postsynaptic activity.

(6) Because the postsynaptic activity is being chosen randomly,

the network has the potential to get stuck in incorrect response

structures, even though the neuromodulatory updating of weights

depends upon correct output. Because of this, the network has an

additional feature that incorrect responses are associated with a

small probability of resetting the gating matrices associated with

active gates on that trial. On incorrect trials if a uniformly distrib-

uted random number is r , 0.2, then the matrices Gijg of all active

gating units ag(t) are set to random initial connectivity. This is

motivated by the idea that an incorrect response causes release

of acetylcholine. The acetylcholine would then cause a diffuse pre-

synaptic inhibition that could reduce synaptic transmission at all

previously strengthened synapses (specifically influencing the

gating matrices associated with currently active gating units) and

thereby allow a change in postsynaptic activity and an alternation

in the pattern of connectivity.
0 5000
0

%
 c

o

trial #

Figure 4. More examples of neural networks trained on task. (a) A different
example, after different training. In this case, gate 1 (index 11) links input
cue ‘A’ to gate 3 (index 13). Gate 3 links cue ‘Y’ to gate 7 (index 17).
Gate 7 links ‘Loc2’ to Go response which is correct. (b) Performance of the
network for different levels of noise (0.0 to 1.0) when trained on all 32 com-
binations. The network does not perform well with zero noise, because it
does not explore enough gating patterns, but does perform well for noise
of 0.1 and 0.2. Higher levels of noise cause a decrease in correct steady
state responding. (c) Example of generalization from average across 20 net-
works, showing that when presented with only 18 of the 32 combinations,
the networks attain about 75% performance. Then on the last 400 trials,
most of the networks (19 out of 20) can correctly generalize to 100% correct
responses when presented with all 32 pattern combinations (without further
learning). (d ) With noise set to zero, the average performance of 20 networks
does not learn the rules and remains at 50% performance and does not gen-
eralize, indicating sensitivity to specific network parameters. (e) Performance
of the network for different numbers of gating units, showing that insuffi-
cient numbers prevent good performance. Best performance is attained
first with seven units, which allows four gating units to be activated by
the four input items A,B,C,D. ( f ) With purely Hebbian connectivity without
gating units and gated weights, a network cannot learn to attain better than
50% performance, due to incompatible responses that must be routed
through the same neuron.
3. Results
The network model described in the Methods section (figure 2)

can be successfully trained on the behavioural task described

in the same section (figure 1). As shown in figure 3, after train-

ing the network can generate the correct Go or NoGo response

to each of the 32 pattern combinations. In addition, as shown in

figure 4, the network can also generalize to previously unseen

pattern combinations that fit the same rule learned by the

network. The subsequent sections of the results below will

describe the detailed activity and gating weights associated

with correct function of the network.

Figure 2 illustrates how the gating units provide a mech-

anism for learning and applying the rule across all 32 pattern

combinations. Figure 2b illustrates the pattern of weights that

were learned in one instance of training. These patterns can

be used to trace the generation of correct responses for the

example of this specific set of learned gating weights, as sum-

marized in figure 2c. The first gate 1 is always active at the

start of the trial, and has weight Gij1 in figure 2c(i). In this

example, this gating matrix allows input item A to activate

gate 3. Then gating matrix Gij3 allows input X to activate

gate 6. Then gating matrix Gij6 allows input location 1 to acti-

vate output G (Go). Figure 2c(ii) shows a different set of

inputs, illustrating that gate 1 allows input item C to activate

http://rstb.royalsocietypublishing.org/
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gate 5. Gate 5 allows input X to activate gate 7 (instead of 6).

This then allows input location 1 to activate gate N (NoGo).

So the gating matrices allow different initial items (A versus

C) to activate nonoverlapping representations to generate dis-

tinct output responses, even though the intervening stimuli

are the same (X and location 1).

By contrast, figure 2d illustrates that a purely Hebbian

network without gating cannot learn these distinct context-

dependent associations. The Hebbian network can learn

associations between input pattern A to pattern X, from pattern

X to location 1 and from location 1 to output G. However, when

input pattern C is presented, the overlapping components

(X and location 1) prevent location 1 from being associated

with an unambiguous correct response. During learning,

location 1 gets associated with both Go and NoGo responses,

and the network will not be able to attain better than 50% cor-

rect responses. The performance of the simulation for the

Hebbian case is shown in figure 4f, and the performance

across different numbers of gating units is shown in figure 4e
(fewer gates result in poor performance).

Figure 3 shows a specific example trial after training on

all 32 pattern combinations, as well as showing the summary

of performance over trials. In figure 3a, the activity of the net-

work is shown for each time step, with each row showing the

vector of activity for a single time step. At the start of the

example trial shown here, the network receives an input

representing the pattern ‘C’ on the first time step (each trial

starts with one of the four cues A,B,C,D). In addition, at the

start of all trials, the network starts with gate 1 active at the

start of the trial (seen as ‘gate 1’ in the figure). Gate 1 activates

the gating matrix shown in figure 3b which becomes the con-

nectivity Wij of the network. As can be seen in this gating

matrix in figure 3b, the previous learning strengthened con-

nections that link each of the input cues A,B,C,D with one

of the gating units. When this matrix is multiplied by the

matrix containing the cue ‘C’, it generates the output that acti-

vates gate 5. Note that input ‘C’ corresponds to column 3,

which has a strengthened weight (black square) at column

3 and row 15 (gate 5), so that the activity spreads from

input 3 to gate 5.

Now that gate 5 is active, it can be seen on row 2 of figure 3a,

and it activates the gating matrix shown in figure 3c (lower

right). In addition, as seen in row 2 of figure 3a, on time step

2 the network receives the input representing cue ‘X’. This

input cue then spreads across the element of the weight

matrix. As can be seen in the weight matrix in figure 3c (gate

5), the gating matrix contains a strengthened synapse that will

gate the input from column 5 (representing the cue ‘X’) to

output row 17 (activating postsynaptic gating unit 7).

Now that gate 7 is active, this can be seen on row 3 (time

step 3) of figure 3a. This activates the gating matrix shown in

figure 3d (right). In addition, as seen in row 3 of figure 3a, on

time step 3, the network receives the input representing the

spatial location in the lower left (labelled as ‘Loc3’ on row 3).

This input activity spreads across the weight matrix shown

for gate 7 in figure 3d. The input at column 9 spreads across

the strengthened weight in column 9 row 18 (black square) to

cause postsynaptic activity in the output unit representing a

‘Go’ response. As can be seen, this corresponds to the correct

desired output for this combination of input cues and location.

Thus, for this particular example trial, the response is correct.

This network is able to also generate the correct ‘Go’ responses

for the full set of 16 combinations requiring a ‘Go’ response, as
summarized in figure 1. In addition, the network generates the

correct NoGo responses for the full set of 16 combinations

requiring a NoGo response, as summarized in figure 1.

As shown in figure 3e, during training a single network

(left) initially performs at around 50% (due to random selection

of Go or NoGo responses), but then at one point relatively

rapidly increases to 100% performance. This is consistent

with the rapid improvement of performance on the task

when some individuals discover the rule [5]. Consistent with

the data, many of the example networks achieve 100% more

rapidly, but this example was selected to show that perform-

ance can increase at a later stage. The network activates

random gates that form associations between the relevant

inputs and gating outputs at each time step. In the case

shown here, the initial randomly selected gates do not give

good performance and performance only improves when the

correct output causes strengthening of weights in the gating

matrices to select specific gates.

The plot on the right side of figure 3e shows the perform-

ance averaged over 20 different networks with different

initial conditions. Each of the individual networks achieves

good performance relatively rapidly at different times, but

the average shows a smooth approach to 100% performance.

The full set of 32 combinations is presented during training,

and every single network increases to 100% performance

over the 3000 training trials. The noise component of the acti-

vation rule is turned off for the last 400 trials, so that the

incorrect responses generated by the noise no longer perturb

the performance, causing a smoother line at the end. If noise

is kept large throughout the simulations, then the noise will

perturb the performance as shown in the plot in figure 4b,

which shows performance over the last 100 trials for different

levels of noise when all patterns are trained. Note that as

noise increases, the steady state of the network decreases.

However, the network cannot function well with the absence

of noise, because noise assists with the selection of different

gating units that allow the random generation of correct

responses that allow effective learning of the full set of

rules. Thus, when noise is set to 0, the network does not

attain good performance as shown on the left side of the

plot in figure 4b.

As shown in figure 4, the network can effectively generalize

to unseen patterns. Figure 4a shows an example of a sequence

of patterns that was not seen during training, but generates a

correct response due to generalization. Figure 4c shows the per-

formance of networks tested for generalization, using the set of

patterns summarized in figure 1b. In this test, the network has

seen all examples for pattern A and pattern C, but is only

shown a single example of pattern B and pattern D. Because

the network received only about 50% of the input patterns

during training on time step 1 to 4600, its initial performance

during this period is around 75% because it is only being pre-

sented with about 50% of the patterns, and then it guesses

correctly on 50% of the remaining trials, but it is being evalu-

ated relative to the full set of 32 patterns. Then once the full

set of 32 patterns is presented during the final 400 trials, it

demonstrates effective generalization to respond correctly to

all of the patterns. Figure 4c shows the average performance

across 20 different networks. Nineteen out of 20 networks cor-

rectly generalize to all 32 patterns at the end of training, even

though they were only trained on 18 pattern combinations

(as shown in figure 1b). Thus, the network can generalize to

14 previously unseen stimuli based on the rule that it has
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extracted. Effective generalization was also seen with many

other configurations of learned stimuli and stimuli not seen

during learning.

For correct performance, the network depends upon a

number of specific parameters. In particular, if the noise term

m is set to zero, the network does not explore enough of the acti-

vation space and does not effectively create enough new gating

units and therefore cannot effectively learn the rules. In this

case, activity stays at about 50% as shown in the average

across 20 networks in figure 4d. The importance of the potential

modulatory reset of weights was shown in other simulations

that are not illustrated. When the code for the network was

modified to remove the capacity for reset of weights, then per-

formance stayed at about 80% during training because there

were more cases of failure to learn the full rule.

The network needed gating units to perform effectively,

as already illustrated schematically in figure 2d. Simulations

shown in figure 4f demonstrate that when there was only

Hebbian modification of connections between layers

responding to sensory input, then the network could not per-

form better than about 50% correct. The performance of the

network with different numbers of gating units is shown in

figure 4e for numbers ranging from 4 gating units (one for

each set of connections in figure 2b) to 19 gating units. The

number of gating units was specifically varied for the

gating units activated by the first input items A,B,C,D.

Note that the best performance first appears for seven

gating units, which is the number of gating units shown in

figure 2b,c. This allows four gating units to be activated by

each of the four input items A,B,C,D. As the number is

increased, the performance remains high, as a subset of

four gating units for the first item input are selected by

each network. However, increasing the number of second

input gating units beyond two causes a decrease in

performance.
4. Discussion
The simulations presented here provide a general framework

for the role of neural gating in the learning of rules shown

in figure 1. As shown in figures 2 and 3, the neural network

model can learn complex rules and generate correct responses

based on this rule across a large number of combinations of

patterns. As shown in figure 4, the network can per-

form generalization based on learning of about half of the

training set to generate correct answers for the other half of

the learned combinations. More complex combinations of

gating could allow learning of more sophisticated hierarchical

rule structures.

The network model also indicates how differences in neural

circuit parameters could influence the cognitive capabilities of

different individuals, consistent with the wide variety of learn-

ing capabilities demonstrated in behavioural tests using the

training set illustrated in figure 1. Experimental data shows

that when trained on this set of stimuli, human subjects vary

from immediate learning and application of the rule, to delayed

acquisition of the rule, to complete inability to implement the

rule across the full training set [5]. As shown in figures 3 and

4, the network presented here shows a similar diversity of be-

haviour that can arise from a number of different sources.

One source is the level of noise in equation (2.1). The noise is

necessary for the network to explore a range of different
gating representations through noisy postsynaptic activation

that is necessary to set up distinct rules. With noise set at 0.1,

the network can achieve 100% performance (figure 3) and

generalize the rule to new patterns (figure 4). With noise set

at 0, the network does not learn and only achieves 75% perform-

ance due to random guessing of responses (figure 4e). Even

when parameters are kept at the same value, the influence of

noise results in different runs of the same network achieving

correct performance at different training times. This illustrates

how a relatively simple parameter of neural function could

influence behaviour on a broad scale. The noise is necessary

for the network to learn, and could be considered as a com-

ponent of arousal allowing exploration of different internal

representations [25].

Another aspect of performance depends on the ability of

the network to respond to incorrect responses by weakening

the influence of previously modified weights, to allow the

activation of new alternative representations. This could corre-

spond to the presynaptic inhibition of synaptic transmission in

cortical structures by acetylcholine [32,33] or norepinephrine

[55,66] that might be activated during pulses of cholinergic

or noradrenergic activity evoked by errors during perform-

ance; or it could involve presynaptic inhibition by GABAB

receptors [67,68], or metabotropic glutamate receptors [69].

Another component that is important to the function of the net-

work is the modulatory expression of synaptic modification at

tagged synapses dependent upon the reward associated with a

correct response. This could correspond to the cholinergic

enhancement of long-term potentiation shown in a number

of studies. Thus, the model presented in this paper demon-

strates that the diversity of cognitive rule learning function

across individuals could arise from variation in the impact of

different neuromodulators across individuals.

Currently, we do not have an accepted scientific frame-

work for modelling how flexible symbolic processing allows

generalization of performance within cognitive tasks. If the

neural mechanisms for human rule learning can be modelled

computationally in terms of basic elements of cognitive func-

tion that are combined into higher order cognitive functions,

this could then form the basis of a systematic taxonomy of

cognitive function. As a distantly related analogy, one could

think of the breakthrough in chemistry and physics when

chemical elements were described and shown to systematically

combine with different stoichiometries into different chemical

compounds. Cognitive science does not have such a systema-

tic framework for adding to knowledge of the elements of

cognitive function, but the interaction of individual cognitive

gates could involve different internal processing functions

that could be characterized as different elements of cognitive

function. As a simple first step, the analysis of learning and per-

formance patterns in models such as the one presented here

could indicate the behavioural manifestation of differences in

parameters of cognitive function (for example, the different

properties described here as noise in response selection

and as weakening of previously modified weights). The

manifestation of these behavioural differences in rule learn-

ing and generalization could allow analysis of human

cognitive behaviour in terms of the potential parameters of

neural circuit elements.
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