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Abstract—The space of possible neural models is enormous and under-explored. Single cell computational neu-
roscience models account for a range of dynamical properties of membrane potential, but typically do not
address network function. In contrast, most models focused on network function address the dimensions of exci-
tatory weight matrices and firing thresholds without addressing the complexities of metabotropic receptor effects
on intrinsic properties. There are many under-explored dimensions of neural parameter space, and the field needs
a framework for representing what has been explored and what has not. Possible frameworks include maps of
parameter spaces, or efforts to categorize the fundamental elements and molecules of neural circuit function.
Here we review dimensions that are under-explored in network models that include the metabotropic modulation
of synaptic plasticity and presynaptic inhibition, spike frequency adaptation due to calcium-dependent potassium
currents, and afterdepolarization due to calcium-sensitive non-specific cation currents and hyperpolarization
activated cation currents. Neuroscience research should more effectively explore possible functional models
incorporating under-explored dimensions of neural function.
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INTRODUCTION

The space of possible neural models is enormous and

insufficiently explored. Existing neural models have

primarily clustered around familiar modeling frameworks.

This review will address the focus of existing models

and attempt to point out unexplored realms that need

more exploration. In particular, the focus on rapid

neurotransmission needs to be supplemented by

exploration of the functional role of slower metabotropic

receptor effects.

Many neurally inspired models focus on the rapid

feedforward transmission of information through the

nervous system. For example, a broad range of current

research focuses on feedforward models of visual

categorization that model the process of visual images

rapidly activating a set of neural processing units in

multiple subsequent layers (Rumelhart et al., 1986;

McClelland and Rumelhart, 1988; He et al., 2015;
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LeCun et al., 2015; Simonyan and Zisserman, 2015;

Krizhevsky et al., 2017). The use of multiple layers results

in these being referred to as ‘‘deep neural networks” or

‘‘deep learning.” These models are essentially modeling

the ionotropic excitatory effects of glutamate at synapses

within the nervous system, such as the excitatory trans-

mission from retina to thalamus, from thalamus to primary

visual cortex, and from primary visual cortex to extrastri-

ate visual areas mediating progressively more complex

visual processing (Yamins and DiCarlo, 2016). Other arti-

ficial neural network models incorporate extensive recur-

rent connections to model network dynamics, but still

focus on rapid excitatory synaptic transmission at afferent

synapses or intrinsic synapses (Sussillo and Abbott,

2009; Sussillo et al., 2015). In the mammalian cortical

systems, the rapid transmission of information is largely

mediated by glutamatergic synaptic transmission involv-

ing the synaptic release of glutamate that causes rapid

opening of ion channels in glutamatergic AMPA and

NMDA receptors (Cotman and Monaghan, 1986;

Sherman, 2016). The dynamics of excitatory activation

are regulated by fast GABAergic synaptic transmission

mediated by ionotropic GABAA receptors (Rabow et al.,

1995) and the deep learning and recurrent neural network
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models address the effects of rapid excitatory and inhibi-

tory synaptic transmission and demonstrate strong

capacities for behaviors such as visual categorization.

However, these models neglect the slower dynamics of

metabotropic receptors. This impairs the ability of deep

learning and recurrent models to implement internal regu-

latory mechanisms for network behavioral functions,

including internal regulation of transitions between encod-

ing and retrieval and off-line consolidation (Hasselmo,

2006), internal regulation of directed and sustained atten-

tion (Hasselmo and McGaughy, 2004), and the contextual

gating of higher order cognitive representations

(Hasselmo and Stern, 2018).

In contrast to these models focused on fast dynamics,

many of the physiological properties of individual neurons

undergo regulation by a range of different

neuromodulatory neurochemicals that activate

metabotropic receptors. These receptors respond to

neurochemicals by activating intracellular second

messenger pathways that require energy-consuming

enzymatic activation, hence the term metabotropic.

Metabotropic receptors modulate a range of neural

functions that are important to behavior (Hasselmo,

1995, 2006). Some of the dimensions of physiological

neural function that are regulated by metabotropic mech-

anisms are summarized in Fig. 1. Deep learning and

recurrent neural network models address dimensions of

neural functions such as synaptic plasticity and depolar-

ization. However, those models do not explore a number

of dimensions of function shown in the figure, including

spiking adaptation, persistent spiking, presynaptic inhibi-

tion, rebound spiking, nonlinear dendritic interactions,

inhibitory gating and modulation of synaptic plasticity.

Metabotropic receptors influence all of these dimensions

of function as described briefly here and at greater length

in the section on dimensions of metabotropic effects

below.

Neurochemicals can influence the intrinsic properties

described above and in Fig. 1 via a range of

metabotropic receptors including metabotropic

glutamate receptors (mGluRs) (Walker et al., 2017),
Fig. 1. A sketch of the many dimensions of neural function that are

modulated by metabotropic receptors. Many of these dimensions

have not been extensively explored in models of neural circuits. The

underexplored dimensions include many different intrinsic physiolog-

ical parameters. Underexplored dimensions include metabotropic

modulation of intrinsic dynamics such as spike frequency adaptation,

persistent spiking and rebound spiking. Underexplored dimensions of

the modulation of synaptic interactions include presynaptic inhibition,

disinhibitory circuits or effects such as axoaxonic inhibition. Under-

explored dimensions also include the complex nonlinear interactions

of voltage-dependent conductances in the dendritic tree.
metabotropic GABA receptors (e.g. GABAB receptors)

(Ault and Nadler, 1982), muscarinic acetylcholine recep-

tors (Hasselmo, 2006), most of the serotonin receptor

subtypes (Matias et al., 2017; Lottem et al., 2018) and

all receptors to dopamine (Durstewitz and Seamans,

2002) and norepinephrine (Usher et al., 1999). As

reviewed more extensively in later sections of this article,

these metabotropic receptors can influence neuronal

properties including long-term synaptic plasticity

(Burgard and Sarvey, 1990; Hasselmo and Barkai,

1995; Patil et al., 1998; Fernandez de Sevilla et al.,

2008), short-term presynaptic inhibition of synaptic trans-

mission (Ault and Nadler, 1982; Hasselmo and Bower,

1992; Hasselmo and Schnell, 1994; Fernandez de

Sevilla et al., 2002; Fernandez de Sevilla and Buno,

2003) and intrinsic properties of membrane potential reg-

ulated by voltage and calcium-dependent conductances

such as spiking adaptation, persistent spiking and

rebound spiking (Madison and Nicoll, 1986; Barkai and

Hasselmo, 1994; Heys et al., 2010). A broad body of

research has addressed the functional role of these mod-

ulatory receptors (Hasselmo, 1995, 2006), but the space

of possible functional models has not been fully explored.

This paper will describe some under-explored dimensions

of the space of possible functional neural models.
THE UNDER-EXPLORED SPACE OF NEURAL
MODELS

The scientific exploration of new domains of knowledge

can benefit from a clear characterization of what is

known and what is not known. For example, the

collection of knowledge in Europe about the

(Eurocentric) geography of the earth progressed via the

creation of maps that plotted degrees of latitude and

longitude, clearly showing the current maps of known

territory, and leaving blank the range of locations on the

sphere of the earth that had not been mapped by

European explorers (see Fig. 2). Similarly, the

understanding of chemistry benefited from the

development of the periodic table of the elements that

could quantify the known elements and predict the

potential properties of unknown elements (Mendeleev,

1869).

Neuroscience has made tremendous advances in

understanding molecular ionotropic and metabotropic

receptor subtypes and their potential physiological

mechanisms. In addition, there have been several

waves of exploration of the potential functional

capabilities of ever larger networks of interacting

neurons. However, there are many regions and

dimensions of the functional space of models that have

been under-explored. The space is multidimensional

and difficult to plot in a simple graph, but Figs. 3 and 4

provide an effort to demonstrate the breadth of

unexplored model space in neuroscience.

Fig. 3 plots the number of intrinsic conductances

incorporated into individual neurons in computational

neuroscience or connectionist models versus the

number of layers or regions in the individual models.

The intrinsic parameters plotted on the y-axis in Fig. 3



Fig. 2. Example of mapping of explored and unexplored territory. This map was created as part of an atlas by the cartographer Battista Agnese from

Genoa (U.S. Library of Congress, online catalog 1071805) to show the known territory of the world and the approximate trajectory of Magellan’s

circumnavigation of the globe. The map shows how the lines of latitude and longitude provided a unifying framework for plotting the territory

previously explored by European explorers, and explicitly delineated the regions of the globe unexplored by Europeans (such as the western coast

of North America and the South Pacific). A framework of unexplored space could be useful for guiding exploration of new parameter space by

computational neuroscience models.
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include intrinsic conductances due to voltage-dependent

and calcium-dependent intrinsic conductances as well

as ionotropic and metabotropic receptors. As can be

seen in the plot, due to the constraints of simulation

complexity, most models of intrinsic conductances focus

on the function of neurons in a single region with a

relatively small number of synaptic connections. The

figure provides the citations for a sampling of

computational neuroscience models that spread out

vertically along the y-axis with varying numbers of

intrinsic parameters per neuron but very few layers or

regions (open circles in figure). In contrast, recent

research on artificial neural network models have

incorporated ever larger numbers of regions or layers

(e.g. deep neural networks) while incorporating only

very simplified intrinsic neuronal properties, as can be

seen by the models spread horizontally along the x axis.

These deep neural networks primarily use highly

simplified representations of connections with single

values representing the instantaneous strength of the

effects of excitatory ionotropic glutamatergic synapses

or inhibitory GABAA receptors. In these deep neural

network models, individual units have simple rectified

linear input output functions (ReLU) which represent the
spiking threshold and define firing rate increases with

depolarization. These models spread out along the x
axis with varying number of layers, but a fixed small

number of intrinsic parameters. This plot focuses on

illustrating the broad unexplored space that could

involve multi-region models using biophysically detailed

models of intrinsic conductances. The lack of

metabotropic receptors in artificial neural networks

models may reflect a lack of communication between

fields.

The exploration of parameter space is partly a product

of the limitations on computing time that restricts the

complexity of neurons that can be incorporated in a

large scale model with large numbers of neurons and a

large number of synaptic parameters for connections

between those neurons. For large scale simulations with

complex intrinsic properties, simulating a single second

of neural time can take hours. Fig. 4 depicts examples

of individual computational models in terms of the

number of parameters of intrinsic conductances

(reflecting the complexity of individual neurons) versus

the number of synaptic parameters (reflecting the

number of neurons and the connectivity between

neurons). Here the models trend downward from left to
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Fig. 3. Diagram of the space of neural models showing number of

layers or regions in the model on the x axis, with number of intrinsic

parameters per modelled neuron on the y-axis. This diagram was

designed to highlight the strong difference in exploration by different

types of neural models. Computational neuroscience models (open

circles) cluster vertically along the y-axis, as they contain large

numbers of parameters for representing the dynamics of membrane

conductances, including those modulated by metabotropic receptors,

but they usually focus on a single regions or functional layer. In

contrast, artificial neural network models (labelled with x) cluster

horizontally along the x-axis as they contain ever-increasing numbers

of processing layers as models become more sophisticated, but

almost uniformly represent neuron intrinsic properties with a simple

rectified linear input–output function, which at most has parameters of

threshold, slope and bias. Note that some citations refer to review of

multiple models. The citations in the figure are numbered as follows:

1–10 (Destexhe et al., 1994b), 11 (Poirazi et al., 2003), 12

(Izhikevich, 2003), 13 (Hasselmo et al., 1995), 14–17 (Destexhe

et al., 1996), 18, 19 (Traub et al., 2005), 20 (Potjans and Diesmann,

2014), 21 (Nadim et al., 1998), 22 (Lytton et al., 1997), 23 (Hill et al.,

2003), 24 (Bartos et al., 2002), 25 (Wang and Buzsaki, 1996), 26

(Markram et al., 2015), 27 (Krizhevsky et al., 2017), 28–32

(Simonyan and Zisserman, 2015), 33–37 (He et al., 2015).

Fig. 4. Number of total intrinsic parameters versus number of

synaptic parameters. This diagram shows the same models plotted

for number of intrinsic parameters per neuron versus total number of

synaptic parameters in the simulation (which scales with number of

neurons and connections between neurons). Computational neuro-

science models are marked with open circles and artificial neural

network models with x. Here the distribution covers the space of

possible models somewhat more extensively. However, the difficulty

of combining large numbers of intrinsic conductances with large

populations of neurons is highlighted by the sparsity of models in the

upper right.
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right along the x axis, as models with more synaptic

connections have fewer intrinsic parameters per neuron.

A few models have succeeded in exploring the space in

the upper right with large numbers of neurons and

extensive intrinsic conductances. However, the space

can still only be sparsely explored relative to the number

of functionally relevant dimensions due to computational

and analytical limitations.

The plots in Figs. 3 and 4 were not intended to include

all neural models, but compares a subset of recent

artificial neural network deep learning models with

models classified as ‘‘Realistic Networks” on the

ModelDB database (senselab.med.yale.edu). For the

intrinsic parameters, conductance parameters and

shape parameters were counted once for each

compartment of the neuron model, but environmental

parameters such as temperature and ion reversal

potentials were counted once for the whole model.

Together, Figs. 3 and 4 highlight the dichotomy

between models that focus on multiple feedforward
layers of processing versus the computational function

of metabotropic receptors. This dichotomy partly arises

from the focus of artificial neural network deep learning

models on fast sensory processing of sensory stimuli

(such as visual images) or on recurrent neural networks

using fast synapses to generate network dynamics.

These models contrast with computational neuroscience

models that address the complex dynamics of neural

circuits that include the broadly distributed influence of

neuromodulatory agents activating metabotropic

receptors. Fig. 5 schematizes the broad range of

temporal and spatial scales of the effects of

neuromodulators and hormones that activate

metabotropic receptors. The difficulty of simulating

biophysically detailed models makes it particularly

difficult to simulate metabotropic receptor effects with

their slower time courses. Metabotropic receptor effects

require long duration simulations to model the

transitions between different functional phases. These

modulators strongly regulate the physiological effects

that provide a range of possible functional dimensions

shown in Fig. 1 that could be incorporated into models.

In the future, research should converge on an accurate

model of brain function that exists somewhere in this

multi-dimensional space, but we do not yet know what

are the most functionally relevant dimensions, and how

to simplify the representation of this space in a manner



Fig. 5. Time constant and spatial distribution of neuromodulator

effects compared to neurotransmitter effects. The lower left corner

shows the fast time course and narrow spatial range of ionotropic

receptors such as glutamate (GluR), GABAA and nicotinic acetyl-

choline (nAChR) receptors. The rest of the diagram shows the

approximate time course (y-axis) and spatial scale (x-axis) of the

effects of metabotropic receptors for some common neuromodulators

and hormones. mAChR=muscarinic acetylcholine receptor,

DAR= dopamine receptors, NAR= norepinephrine receptors,

5HTR= serotonin receptors. Hormones BDNF= brain derived neu-

rotrophic receptor. NGF= nerve growth factor. The focus on fast

conductances in most artificial neural network models partly arises

from the very broad scope of potential time courses and spatial

distributions for neuromodulatory effects at metabotropic receptors.
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that allows effective knowledge of what we know and

prediction of what we need to explore further.
FRAMEWORK OF CELLULAR MODELS

The success of theoretical frameworks in other fields of

science arises from the capacity to find unifying

principles without itemizing every feature of the physical

system. For example, in Physics, the ideal gas law

described interacting properties of pressure, volume and

temperature without quantifying the position and velocity

of every molecule of gas in a volume. Similarly, the

periodic table of elements described systematic

principles of the mass and properties of chemical

interaction of different elements before there was

scientific understanding of underlying factors such as

electron orbitals and the number of electrons and

protons in an atomic nucleus. Only later were these

properties linked to number of electrons and electron

orbits, and even later were unified with an elegant

mathematical framework of the Schrödinger equation.

So far, much of theoretical neuroscience at the network

level has focused on the unproven assumption that

firing rate provides an accurate summary of neural

activity. However, this firing rate code does not account

for phenomena such as the fact that spiking phase

contains information about behavioral variables such as

position (O’Keefe and Recce, 1993; Skaggs et al.,
1996). There must be more to a neural code than vectors

of firing rate.

Neuroscience suffers from a shortage of unifying

principles. This can be observed just by the

heterogeneity of undergraduate teaching. A physics

program can teach undergraduates for four years with

theories that are almost unanimously accepted by all

physics faculty. Similarly, there is a mass of knowledge

in chemistry and electrical engineering that requires

years to impart to students. In contrast, undergraduate

courses in neuroscience contain a vast quantity of

disparate information based on experimental data, but

once computational neuroscience teaching moves

beyond the generally accepted principles at the cellular

level, it reaches the realm of many competing unproven

hypotheses about network function.

Most of the accepted principles of neural function

pertain to the function of individual neurons. Central

theories of neuroscience that are almost unanimously

accepted include the use of cable theory for describing

passive membrane potential dynamics (Rall, 1959,

1989), the role of voltage-sensitive sodium and potassium

currents in action potential generation (Hodgkin and

Huxley, 1952), and the use of the Hodgkin-Huxley formal-

ism for describing other voltage-sensitive intrinsic conduc-

tances such as A current or M current (Brown and Adams,

1980; Yamada et al., 1989). Other widely accepted theo-

ries include the mechanisms of synaptic transmission at

the neuromuscular junction and central glutamatergic

synapses (Eccles, 1982), and the mechanisms of recep-

tor kinetics (Destexhe et al., 1994a). These theories are

vitally important, but mostly apply at the cellular and

molecular level.

As noted above, the Hodgkin-Huxley formalism

provided an initial unifying quantitative theory for

replicating the properties of a broad range of membrane

conductances (Hodgkin and Huxley, 1952). This theory

uses first order differential equations to describe

voltage-sensitive channels in terms of the voltage-

dependence of the steady state and the time constant

of activation variables m and inactivation variable h for

the voltage-sensitive sodium conductance. Similarly, for

other, slower voltage-dependent conductances such as

the A current, the M current, and the H current, the

voltage-dependence of the steady state and time con-

stant of activation can be experimentally derived and sim-

ulated using the Hodgkin Huxley formalism (Brown and

Adams, 1980; Rush and Rinzel, 1995).

There has been much less focus on potential unifying

principles that account for the substantial redundancies in

the physiological effects of membrane conductances on

the physiological properties of neurons. For example,

the phenomenon of spike frequency accommodation

can be simulated by interactions of a range of different

conductances including the M current and the calcium-

dependent potassium current (IAHP) (Yamada et al.,

1989; Traub et al., 1991; Barkai and Hasselmo, 1994).

The focus on physiological phenomena rather than just

conductance parameters is important, because the inter-

action of multiple membrane conductances does not

always depend on the interaction of the mean value of
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conductances, but instead depends on specific combina-

tions of conductances (Prinz et al., 2003). These param-

eters are degenerate, such that many combinations of

parameters can result in the same physiological phenom-

ena. Another important factor that influences the use of

network models is the difficulty of reproducing models

due to the tremendous complexity of these models.

Reproducibility of methods and results could be achieved

by following guidelines (Gutzen et al., 2018) providing suf-

ficient details about the procedures and model parame-

ters and performing quantitative validation of the models

using standardized statistical test metrics.

A potential mathematical unification of physiological

properties was developed by Izhikevich to combine

together long-term influences on cellular membrane

potential including both voltage-dependent and calcium-

dependent conductances (Izhikevich, 2003, 2004). This

provides one of the potentially best mathematical tools

for addressing the common principles of physiological

function that can arise from a diversity of membrane con-

ductances, including many that involve metabotropic

receptors. In particular, the Izhikevich model describes a

broad range of neuronal function using four parameters

(Izhikevich, 2003, 2004). Thus, this could allow mapping

of cellular physiological properties to a four-dimensional

space. Adding synaptic connectivity parameters would

expand this space, but could still provide a multi-

dimensional map of unexplored model space to guide

future exploration. Most experimentally described neu-

rons will fall within specific ranges of this model space

(a lower dimensional manifold), but it is highly likely that

only a tiny percentage of this experimentally-relevant

range of model space has been explored. Random explo-

ration of the space may not be productive. The explo-

ration should be guided by implementation of specific

desired functional properties by neural circuits of different

scales.

Simpler neural network models have been developed

that generate spiking activity without the full complexity of

the Hodgkin-Huxley representation of conductances (Amit

and Brunel, 1997; Compte et al., 2000; Sommer and

Wennekers, 2001; Maass et al., 2002). These models

provide a framework for analyzing fundamental properties

of the functional dynamics of spiking networks. Many of

these spiking models use linear or exponential integrate

and fire neurons that generate spikes, but the neurons

in these network do not contain extensive slow conduc-

tance dynamics (Compte et al., 2000; Rasmussen and

Eliasmith, 2014; Ocker and Doiron, 2019). These models

focus on the dynamics of network spiking due to interac-

tions with fast synaptic connectivity, without addressing

the function of slower conductances under the regulation

of metabotropic receptors.

The molecular pathways for the influence of

metabotropic receptors have been described in a range

of studies focused on the coupling of metabotropic

receptors with G-proteins (Andrade et al., 1986). These

G-proteins mediate activation of second messenger path-

ways that include the activation of the enzyme phospholi-

pase C to convert phosphatidylinositol 4,5-bisphosphate

into diacyl glycerol and inositol triphosphate (Pian et al.,
2007), or that cause activation or inactivation of the

enzyme adenylate cyclase which synthesizes cyclicAMP

from adenosine triphosphate (Nicoll, 1988). Some models

have addressed the kinetics of these pathways (Nair

et al., 2014, 2016). However, there is a shortage of exper-

imental data on the kinetics of second-messenger path-

ways activated by metabotropic receptors, hampering

the capacity to directly map individual metabotropic influ-

ences to specific time courses of effect on membrane

potential. This lack of knowledge about the kinetics of

second messenger pathways is a major difficulty for link-

ing metabotropic receptors to the time constants of their

functional role in neural circuits. However, the principles

of homeostatic self-regulation of cellular properties sug-

gest that neurons might genetically code a particular

physiological phenotype and tune the interaction of inter-

nal conductances to maintain a stable physiological phe-

notype (Marder and Prinz, 2002; Turrigiano, 2007, 2011).
DIMENSIONS OF METABOTROPIC RECEPTOR
EFFECTS

The plots in Figs. 3 and 4 provide a general idea of the

scope of unexplored space for neural models. The

actual space of possible neural models is high

dimensional and difficult to illustrate in a single figure,

but a rough sketch is provided in Fig. 1. Here we will

review just a few dimensions of metabotropic function

that have received attention at the single cell level, but

could be explored more thoroughly in terms of network

function.

Membrane potential. There is still a tendency to

describe metabotropic receptors in terms of synaptic

transmission rather than neuromodulation, resulting in

simplistic descriptions of modulatory metabotropic

receptor effects as ‘‘excitatory” or ‘‘inhibitory.” This

description is an oversimplification, but in some cases

modulatory activation of metabotropic receptors does

cause direct changes in membrane potential. For

example, activation of the metabotropic receptor GABAB

or the serotonin receptor 5HT1A generates a G-protein

mediated process that directly opens potassium

channels (Andrade et al., 1986), causing a relatively rapid

hyperpolarization with an onset time constant of about 10

msec and a decay time constant of 100 ms. Activation of

muscarinic receptors causes a transient activation of

potassium channels causing hyperpolarization (Gulledge

and Kawaguchi, 2007; Gulledge et al., 2007; Desikan

et al., 2018) followed by a slower closing of potassium

channels that causes a long, slow depolarization of mem-

brane potential over 20–30 s (Cole and Nicoll, 1984;

Barkai and Hasselmo, 1994). These effects have been

incorporated in some network models (Barkai et al.,

1994; Hasselmo and Wyble, 1997), but phenomena such

as the biphasic influence of muscarinic receptors on

membrane potential have not been modeled.

Spike frequency adaptation. In addition to direct

effects on membrane potential, metabotropic receptors

also indirectly influence the frequency of ionotropic

spiking activity. For example, a majority of cortical

neurons referred to as ‘‘regular spiking neurons” show a
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reduction of spike frequency during sustained

depolarization, called spike frequency adaptation

(McCormick et al., 1985). This is due to calcium influx

through calcium-dependent receptors causing activation

of calcium-dependent potassium currents (IAHP). This

specifically prevents the neurons from firing in a regular

manner, but instead results in a predominant (‘‘regular”)

pattern in which there is a decrease in firing rate (adapta-

tion). Several metabotropic receptors reduce the AHP

current, resulting in more sustained spiking response to

depolarization (Madison and Nicoll, 1984). These recep-

tors include muscarinic acetylcholine receptors, beta-

adrenergic receptors and serotonin 5HT2 receptors

(Madison and Nicoll, 1986; Madison et al., 1987; Barkai

and Hasselmo, 1994). The suppression of adaptation

has been shown to enhance encoding in functional mod-

els (Barkai et al., 1994; Hasselmo and Wyble, 1997), but

again has not been incorporated into most network

models.

Modulation of synaptic plasticity. Synaptic plasticity

appears to depend on the ionotropic NMDA receptor,

but the mechanisms of synaptic modification are

complex. Metabotropic receptors have been shown

extensively to modulate synaptic plasticity in a range of

systems (Hasselmo, 1995). For example, activation of

muscarinic receptors has been shown to enhance long-

term potentiation in cortical structures including the hip-

pocampus (Burgard and Sarvey, 1990; Fernandez de

Sevilla et al., 2008), the piriform cortex (Hasselmo and

Barkai, 1995), and primary visual cortex (Brocher et al.,

1992). Similarly, norepinephrine enhances long-term

potentiation in the hippocampus (Hopkins and Johnston,

1988), and dopamine enhances long-term potentiation in

the basal ganglia (Wickens, 2009). More recently, studies

have focused on modulation of spike-timing dependent

plasticity (STDP), which includes effects of modulators

on the synaptic change induced by specific timing of

pre- and post-synaptic spikes (Pawlak et al., 2010;

Sugisaki et al., 2011). These effects could influence the

mechanisms for synaptic plasticity on a behavioral time

scale as well (Bittner et al., 2015, 2017). Simulations of

the metabotropic modulation of synaptic plasticity demon-

strate how modulation by neurochemicals such as acetyl-

choline can enhance encoding of novel stimuli (Hasselmo

et al., 1995; Hasselmo and Wyble, 1997; Hasselmo,

2006). Simulations have also addressed the interaction

of nonlinear dendritic dynamics with synaptic plasticity

(Saudargiene et al., 2005; Ebner et al., 2019).

Presynaptic inhibition. Another under-explored

dimension of metabotropic receptors concerns the

presynaptic inhibition of synaptic transmission, in which

a neuromodulator influences the release of

neurotransmitters. This can include autoreceptor effects,

in which release of a transmitter reduces further release

of the same transmitter. For example, activation of

presynaptic metabotropic glutamate receptors can

strongly regulate glutamate release (Koerner and

Cotman, 1981; Hasselmo and Bower, 1991). This can

also involve a modulator influencing the release of other

neurotransmitters. For example, when acetylcholine acti-

vates presynaptic muscarinic M4 receptors (Dasari and
Gulledge, 2011), this strongly reduces glutamate release

and the size of synaptic potentials at glutamatergic

synapses in the hippocampus (Yamamoto and Kawai,

1967; Valentino and Dingledine, 1981; Hasselmo and

Schnell, 1994; Fernandez de Sevilla et al., 2002;

Fernandez de Sevilla and Buno, 2003; Hasselmo,

2006), piriform cortex (Hasselmo and Bower, 1992), and

neocortical structures including somatosensory cortex

(Gil et al., 1997) and auditory cortex (Hsieh et al.,

2000). Other presynaptic modulators of synaptic trans-

mission include GABA, which can regulate the release

of glutamate via activation of presynaptic GABAB recep-

tors (Ault and Nadler, 1982; Isaacson et al., 1993; Tang

and Hasselmo, 1994; Molyneaux and Hasselmo, 2002).

Dopamine has been shown to alter the strength of NMDA

conductances in cortical neurons (Cepeda et al., 1992;

Seamans et al., 2001). Another phenomenon involves

presynaptic inhibition of GABA release based on depolar-

ization of the postsynaptic target neuron, which causes

presynaptic inhibition via cannabinoids acting as retro-

grade messengers (Wilson and Nicoll, 2001). Presynaptic

inhibition has been shown to enhance encoding by pre-

venting interference from retrieval of prior associations

in models of cortical circuits (Hasselmo and Wyble,

1997; Hasselmo, 2006), but has not been addressed in

most network models.

Afterdepolarization and persistent spiking. Many

experimental studies on modulation focus on spiking

activity directly induced by depolarizing current injection.

However, neuromodulators can cause neurons to

maintain their spiking after the end of a depolarizing

current injection by activating an afterdepolarization

caused by cation currents activated by calcium influx

during spiking. For example, cholinergic activation of

muscarinic receptors can cause persistent spiking in

neurons of the entorhinal cortex (Klink and Alonso,

1997; Egorov et al., 2002; Reboreda et al., 2007;

Yoshida et al., 2013), the prefrontal cortex (Haj-

Dahmane and Andrade, 1999), the cingulate cortex

(Zhang and Seguela, 2010), and the hippocampus

(Jochems and Yoshida, 2013; Knauer et al., 2013). The

persistent spiking requires a balance of calcium depen-

dent afterdepolarization currents and calcium-dependent

afterhyperpolarization currents (Fransén et al., 2006).

These phenomena of afterdepolarization and persistent

spiking have been shown to have potentially important

network effects for working memory for novel information

(Fransén et al., 2002; Hasselmo and Stern, 2006).

Rebound spiking. Many neurons show the capacity to

generate rebound spikes after a sustained period of

hyperpolarization. This can be mediated by the

hyperpolarization activated cation current (H current),

which reacts to membrane potential hyperpolarization by

allowing depolarizing current through the membrane

(Chen et al., 2001). The H current is mediated by the

HCN channel, which stands for Hyperpolarization-

activated Cyclic-Nucleotide gated channels. This channel

was specifically named for the gating by the second mes-

senger cyclicAMP (Santoro et al., 1998, 2000; Wainger

et al., 2001), and has been shown to be suppressed by

second messenger pathways and by metabotropic recep-
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tor effects such as muscarinic acetylcholine receptors

(Heys et al., 2010; Heys and Hasselmo, 2012). This

rebound spiking could have important functional effects

in regulating the phase of neural firing (Rotstein et al.,

2005; Ferrante et al., 2016; Shay et al., 2016).

Individual models have incorporated these individual

effects, focusing on questions about the function of

individual modulators or conductances. However, few

models have combined the metabotropic modulation of

these physiological effects in a cohesive theoretical

framework that accounts for the functional role of

multiple interacting conductances and their regulation by

multiple metabotropic pathways.
NETWORK LEVEL THEORY AND DIMENSIONS
OF METABOTROPIC RECEPTOR EFFECTS

There are a few theories at the network level that have

been influential. Here we will review the potential role of

metabotropic receptors in some existing network level

theories, and the need for further research.

The Hebb rule. The Hebb rule addresses the

important network memory function that arises from

synaptic modification that depends upon the conjunction

of presynaptic and postsynaptic activity (Hebb, 1949).

The Hebbian property of synaptic modification has been

supported by a number of experimental studies in the hip-

pocampal formation including extracellular recording

(McNaughton et al., 1978; Levy and Steward, 1979),

and intracellular recording (Gustafsson and Wigstrom,

1986; Wigstrom et al., 1986; Gustafsson et al., 1987;

Gustafsson and Wigstrom, 1988). This basic principle

was extended to address the detailed timing of presynap-

tic and postsynaptic spikes in specific cases (Levy and

Steward, 1983; Markram et al., 1997; Bi and Poo,

1998). As noted above, metabotropic receptors have

been shown to modulate the mechanisms of synaptic

plasticity, including the regulation of Hebbian modification

by direct influences on NMDA receptors or indirect effects

on the molecular pathways mediating synaptic plasticity.

The Hebb rule has been used in a wide range of network

models, but most models do not focus on the modulation

of Hebbian modification, which could provide a method for

regulating the network dynamics for encoding, retrieval or

consolidation (Hasselmo, 1999, 2006).

Associative memory function. The basic principle of

the Hebb rule or spike timing dependent plasticity have

been explored in a wide range of network functional

contexts. Within the domain of memory research, the

important role of Hebbian modification has been

proposed in associative memory function in the

hippocampus (Marr, 1971; McNaughton and Morris,

1987), as supported by behavioral data from blockade

of NMDA receptors (Morris et al., 1986). In these associa-

tive memory models, a vector represents the neural activ-

ity of a population of neurons, and the effective retrieval of

a previously stored memory is commonly measured by

the dot product (inner product) of the retrieved vector with

the previously encoded vector (Anderson, 1972;

Kohonen, 1972; Hopfield, 1982, 1984; Kohonen, 1984;

Hasselmo et al., 1992). These models do not yet address
how these memory vectors can represent the full scope of

encoded experience, which includes representation of

agents and objects and their behavioral trajectories within

an environment (Hasselmo, 2009; Hasselmo et al., 2010).

In addition, as described next, models of associative

memory do not usually address the modulatory mecha-

nisms for the shift in functional dynamics between encod-

ing and retrieval for associative memory.

Associative encoding versus retrieval. An important

aspect of associative memory function concerns the

difference in dynamics during encoding versus retrieval

(Hasselmo et al., 1995; Hasselmo, 2006). Most associa-

tive memory models have specific dynamics during

encoding, in which the external input is clamped on the

network to set the pattern to be encoded, and modifiable

recurrent synapses undergo Hebbian modification without

altering the postsynaptic pattern of activity (Anderson,

1972; Kohonen, 1972, 1984; Hopfield, 1982, 1984). In

contrast, during retrieval in these models, the external

input provides an initial cue, but modifiable recurrent

synapses dominate the network retrieval dynamics with-

out undergoing modification, Physiological mechanisms

for this transition between encoding and retrieval dynam-

ics could involve activation of metabotropic receptors

(Hasselmo, 2006). Specifically, cholinergic activation of

muscarinic receptors can simultaneously enhance synap-

tic modification (Hasselmo and Barkai, 1995; Fernandez

de Sevilla et al., 2008), while also causing presynaptic

inhibition of glutamate release (Hasselmo and Schnell,

1994; Hasselmo et al., 1995; Fernandez de Sevilla

et al., 2002; Hasselmo, 2006). Modeling shows that this

presynaptic inhibition prevents previously modified

synapses from interfering with the new pattern of input

being encoded (Hasselmo and Schnell, 1994; Hasselmo

et al., 1995; Hasselmo and Wyble, 1997; Hasselmo,

2006).

Attractor dynamics. Another common network

mechanism that receives extensive attention in the field

concerns attractor dynamics (Hopfield, 1982, 1984;

Amit, 1988). The usual mechanism for attractor dynamics

concerns the use of excitatory recurrent connections to

drive neural activity into a previously encoded pattern.

This essentially concerns the dynamics of retrieval, which

as noted above needs to be separated from the dynamics

of encoding for associative memory function (Hasselmo

et al., 1995; Hasselmo and Wyble, 1997). Attractor

dynamics have been proposed in many models of the

maintenance of sustained activity for working memory

function (Compte et al., 2000). Stable mechanisms of

attractor dynamics could also apply to the bistable

dynamics of single neuron persistent spiking mediated

by the interaction of metabotropic receptor effects on

afterdepolarization (via the CAN current) and afterhyper-

polarization (via the AHP current) (Fransén et al., 2006).

Some biophysical models show how detailed modulation

of synaptic transmission and intrinsic currents by metabo-

tropic receptors could regulate attractor dynamics for

working memory function in behavioral tasks with a delay

period (Durstewitz et al., 2000b; Fransén et al., 2002), but

most network models do not incorporate this modulation

of attractor dynamics.
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Regulation of attention. Modulatory systems that

regulate norepinephrine and acetylcholine have been

shown to play a role in sustained attention and selective

attention (Hasselmo and McGaughy, 2004), as demon-

strated by enhancement of attention by drugs such as

amphetamines and caffeine. This modulation of attention

depends upon metabotropic receptor effects and has

been incorporated in some neural circuit models of atten-

tion effects (Hasselmo et al., 1997; Patil and Hasselmo,

1999; Pauli and O’Reilly, 2008). Most classical neural net-

work models do not have internal mechanisms for self-

regulation of attention (LeCun et al., 2015; Krizhevsky

et al., 2017), but attention has started to be incorporated

in some recent network models (Vaswani et al., 2017).

Self-organization of feature detectors. The Hebb rule

has also been used extensively in models of the self-

organization of feature detectors in the primary visual

cortex (Miller et al., 1989). In contrast to associative mem-

ory function, self-organization can occur if the modifiable

synapses are the predominant influence on postsynaptic

activity (Hasselmo, 1995). The role of Hebbian modifica-

tion dependent on NMDA receptors has been supported

by changes in network feature detector properties after

blockade of NMDA receptors (Sato and Stryker, 2008).

The influence of modulators such as acetylcholine and

norepinephrine has also been shown in experimental

studies of the self-organization of feature detectors

(Bear and Singer, 1986). However, most neural network

models develop feature detectors by using gradient des-

cent based on error correction at individual synapses

(Rumelhart et al., 1986; McClelland and Rumelhart,

1988; He et al., 2015; LeCun et al., 2015; Simonyan

and Zisserman, 2015; Krizhevsky et al., 2017), rather

than using metabotropic modulation of unsupervised

self-organization, though recent models incorporate more

biophysical mechanisms for credit assignment (Richards

and Lillicrap, 2019).

Reinforcement learning. The concept of learning

guided by reward has a long history in the field of

psychology. A large body of mathematical research

focused on properties of classical and operant

conditioning. As a brief overview, the Rescorla-Wagner

learning rule accounted for a range of experimental

phenomena in the learning literature (Rescorla and

Wagner, 1972). This can be seen as a precursor to the

development of the temporal difference learning rule

(Sutton, 1988), in which the value of actions can be prop-

agated back through a sequence of states and actions.

This framework resulted in the theory that the activity of

dopaminergic neurons could reflect the temporal differ-

ence error in the temporal difference learning rule

(Schultz et al., 1997). Reinforcement learning models of

the behavioral function of dopamine commonly use the

relatively abstract formalism of reinforcement learning

(Schultz et al., 1997; Daw et al., 2005) rather than the

detailed biophysics of metabotropic modulation of intrinsic

conductances, but some approaches integrate more

detailed neural dynamics of dopamine (Hazy et al., 2010).

Example biophysical models. All of these network

principles have proven highly useful and productive in

generating new models and new experiments for testing
those models. Thus, they have served an important

purpose. However, none of these frameworks account

for the broad categories of widespread conductances

modulated by metabotropic receptors as described

above. On the positive side, many network models have

been constructed to replicate the dynamical properties

of neural circuits (Traub et al., 1989, 1992, 2005;

Rotstein et al., 2005; Markram et al., 2015; Bezaire

et al., 2016). In addition, there are some examples of net-

work models that have focused on individual modulatory

agents and individual functions and effectively included

subsets of these modulatory effects on synaptic transmis-

sion and intrinsic conductances (Traub et al., 1992).

These biophysical models have been used to address

the circuit mechanisms for network oscillatory dynamics

(Traub et al., 1989, 1992, 2005; Rotstein et al., 2005;

Markram et al., 2015; Bezaire et al., 2016), including the

regulation of both theta and gamma frequency oscillations

by metabotropic receptors for acetylcholine (Traub et al.,

1992; Whittington et al., 2001) and metabotropic gluta-

mate receptors (Whittington et al., 1995). These network

oscillatory dynamics could be regulated by modulatory

input from the medial septum to the hippocampus and

entorhinal cortex (Dannenberg et al., 2015, 2017;

Robinson et al., 2016). Simulations show that functional

dynamics for encoding and retrieval can occur on different

phases of theta rhythm oscillations (Hasselmo et al.,

2002) which can depend on regulation of spiking and

synaptic plasticity by changes of inhibition at different

phases of theta (Cutsuridis and Hasselmo, 2012;

Saudargiene et al., 2015).

In another set of biophysical models, the

dopaminergic modulation of attractor dynamics was

explored in detailed models of the prefrontal cortex

(Durstewitz et al., 2000b,a; Durstewitz and Seamans,

2002). These models have addressed the potential func-

tional role of dopaminergic modulation of synaptic recep-

tors such as NMDA receptors. They have also

incorporated dopaminergic modulation of other intrinsic

conductances that influence membrane potential. Simi-

larly, there have been models of the cholinergic modula-

tion of intrinsic persistent spiking and its potential role in

regulating working memory function in delayed match to

sample tasks (Fransén et al., 2002, 2006). There have

also been models of cholinergic modulation of associative

memory function, with a focus on how cholinergic

enhancement of spiking to afferent input and cholinergic

presynaptic inhibition of modifiable recurrent synapses

could enhance encoding relative to retrieval or consolida-

tion dynamics (Barkai et al., 1994; Hasselmo et al., 1995;

Hasselmo, 2006). Often, these network level models have

adopted mechanisms from more artificial neural network

models and implemented them using more biophysically

detailed simulations. There have not been many exam-

ples where simulations of metabotropic receptor effects

on intrinsic conductances have been used to endow net-

works with novel functions, though the effect of drugs on

behavior suggest an important functional role of these

metabotropic receptor effects. As an example of the

essential role of modulators in cognition, at high doses,

the muscarinic receptor antagonist scopolamine causes
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a major impairment of cognitive function and puts sub-

jects into a state of delirium (Safer and Allen, 1971).

POSSIBLE THEORETICAL FRAMEWORKS FOR
PLOTTING THE EXPLORED AND UNEXPLORED

SPACE OF MODELS

How can we start a map of the explored and unexplored

space of network models? Unfortunately, in contrast to

the simple two-dimensional surface of the earth, the

multidimensional nature of this space makes a simple

framework for mapping unclear. A few possible

frameworks are briefly reviewed here.

Multi-dimensional parameter space. One way of

seeing the unexplored space is to generate plots of the

parameter space as suggested in Figs. 1, 3 and 4,

where intrinsic parameters are plotted relative to each

other or relative to parameters such as number of

neurons and number of layers or regions. These provide

a broad message about the lack of exploration of

intrinsic parameters in multi-layer/multi-region functional

models. More detailed models could explore the

functional dynamics obtained from different

combinations of parameters. This has been done in

some explorations of parameter space (Prinz et al.,

2003). However, because each parameter has the poten-

tial to add a dimension for exploration, this is an enormous

space. In the study by Prinz et al. (2003), variation of 8

maximal conductance values in a lobster stomatogastric

ganglion model produced a database of 1.7 million mod-

els, which took over a month of simulation on a high-

performance computing cluster. Processing speed has

increased since then, but characterizing a parameter

space by random or grid spaced sweeps is computation-

ally demanding. Exhaustive automated exploration may

not be fruitful unless we have a clear theoretical frame-

work for evaluation of the different points in the model

space.

Many efforts have been made to optimize parameters

to fit specific sets of data based on matching to

physiological data (Markram et al., 2015; Gorur-

Shandilya et al., 2018). However, experimental data does

not yet provide detailed parameters for all the intrinsic

conductances and all the different effects of metabotropic

receptors on these conductances in the broad variety of

cell types in neural circuits. In addition, experimental

recordings reveal variability between individual cells or

different animals, and modeling shows that obtaining

parameter ranges or obtaining an average value is insuf-

ficient to replicate physiological properties (Golowasch

et al., 2002). Modeling also demonstrates the degeneracy

of parameter space (Prinz et al., 2004; Stelling et al.,

2004; Marder et al., 2014; Alonso and Marder, 2019;

Rathour and Narayanan, 2019), such that many different

combinations of parameters can replicate the same phys-

iological phenomena. This suggests that neural systems

may be structured to generate physiological properties

rather than fixed parameter ranges. These redundancies

could contribute to the robustness that neural systems

can show in response to changes in environment such

as changes in temperature (Marder et al., 2015).
Research may be better guided by matching the physio-

logical properties of neurons rather than attempting to

replicate the full parameter space of a neuron.

As noted above, the Izhikevich model (Izhikevich,

2003, 2004) provides a smaller, four dimensional param-

eter space that focuses on replicating physiological prop-

erties and can be explored for the combination of

parameters that produce a range of qualitative phenom-

ena such as adaptation, bursting, delayed spiking,

rebound spiking and resonance. This could be useful,

but requires a framework for mapping the simplified model

back to the Hodgkin-Huxley space of individual conduc-

tances, and also requires some functional network frame-

work for evaluating combinations of neurons. The

functional mapping to network dynamics will require some

framework for understanding what are the crucial features

of network function to be tested with different parameters.

Mapping of dynamical systems. Another approach to

exploring the space of neural models could be applying

mathematical techniques from dynamical systems.

Fig. 6A shows a framework that describes the functional

properties of two-dimensional dynamical systems based

on coupled differential equations. This framework shows

how the dynamics of a two-dimensional system can be

linked to the determinant and the trace of the dynamical

system matrix A, allowing division of the system space

into stable nodes, stable spirals, stable centers,

unstable spirals, unstable nodes and unstable saddle

points. This could be expanded to higher dimensional

dynamical systems. Alternately, these component

dynamical systems could be combined as elements in a

larger scale network that incorporates individual

elements of dynamical systems as described in the next

section.

Unifying principles of network function based on

network dynamics might exist. Modeling of invertebrate

systems such as the stomatogastric ganglion

demonstrate that highly similar dynamics of a network

activity can be obtained in networks that vary widely in

both intrinsic cellular parameters as well as network

synaptic connectivity (Prinz et al., 2004). This suggests

the validity of using similar nework dynamics as the ele-

mental building block of network models.

Mapping of functional elements. Related to the

dynamical systems approach, another approach could

be an effort to define specific elements of function, in

analogy with the definition of elements in chemistry.

Obviously, the scale of neural circuits is far above that

of individual atoms. However, the analogy could work if

we consider that the properties of elements can be

defined by the orbitals described by the Schrödinger

equation. The Schrödinger equation starts with basic

mathematical principles and derives the properties of

individual atomic orbitals. When individual atomic

orbitals are filled based on the number of electrons in

different atomic elements, this results in the chemical

properties of the different atomic elements. The

discovery of periodic properties of chemical elements

relative to atomic weight was described by Mendeleev

and others (Mendeleev, 1869). This provided a framework

for predicting the chemical properties and atomic weights
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Fig. 6. Examples from other fields of potentially useful frameworks that could be utilized for mapping

what is the explored space and what is the unexplored space of neural models. (A) The mathematical

diagram shows the effective mapping of functional properties of linear coupled differential equations

with constant coefficients described by the matrix A (Hirsch and Smale, 1974; Jira, 2015). As shown

here, the parameters of the determinant of the matrix A (Det) and the trace of the matrix A (Tr) lay out

all the types of functional dynamics, ranging from top left to top right as stable nodes, stable spirals,

centers, unstable spirals, and unstable nodes. The curved line shows where the discriminant (Tr)^2 –

4*Det = 0. On the bottom of the plot are saddle points (Hirsch and Smale, 1974). (B) This text from a

German abstract of Mendeleev’s work shows his initial sketch of the periodic table of the elements that

systematized the properties of known elements. The empty points in table effectively predicted the

range of atomic weights and chemical properties of undiscovered elements such as Gallium

(Mendeleev, 1869).
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of previously undiscovered elements (Fig. 6B), and ulti-

mately led to the description of chemical properties in

terms of the structure of atoms.
By analogy, the dynamical

properties of local neural circuits

could result in particular

properties of interaction with other

neural circuits. The basic

principles of differential equations

can be used to define different

dynamical properties of the

system and describe the borders

of these elemental properties in

parameter space. A similar

approach could be used to

describe the interaction of

elementary dynamical systems

describing local neural circuits.

The properties of local circuit

elements could combine into

larger functional properties of

interacting neural circuits that

could be conceived as molecules

of neural function. For example,

dynamics of local circuits could

mediate representations of

properties of the world such as

trajectories, borders, surfaces and

combinations of properties. Of

course, this raises the further

question of how to combine the

elements into molecular

structures. In chemistry, these

interactions involve changes in

the energy state of the network. If

the elements of neural circuit

function are not assumed to be

locked to specific neurons, but

instead could spread between

different circuits based on shared

properties of neural circuitry, this

could allow different dynamical

elements to shift between

different neural circuits to allow

their interaction in a manner

similar to chemical elements. This

is a very speculative concept that

needs to be explicitly simulated in

biophysical simulations of neural

circuits.

This article has attempted to

describe the scope of unexplored

territory in neural modeling.

Unfortunately, we do not yet have

a simple and generally accepted

unifying framework for mapping

out what is explored and

unexplored in the space of neural

models. Simple plots on

dimensions such as number of

intrinsic parameters versus
number of synaptic parameters or number of layers

show that current efforts have explored some

dimensions in depth, without exploring the full space of
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brain function. For example, computational neuroscience

models have explored detailed models of single neurons

without usually addressing the interacting function of

large number of neurons or regions. In contrast, deep

neural networks have explored the use of large number

of layers and neurons while using highly simplistic

intrinsic parameters of rectified linear unit (ReLU) input–

output functions. The human brain simultaneously

contains large numbers of neurons and regions as well

as highly complex dynamics mediated by intrinsic

conductances. A successful biophysical model that

addresses aspects of human behavior will lie

somewhere in the unexplored space involving both large

numbers of neurons and regions and large numbers of

intrinsic parameters.

The solution to this problem is not just to blindly

explore the space of parameters. That would be unlikely

to give insights even if it were possible. What is needed

is more complex frameworks for building a structure of

network theory that moves beyond feedforward or

recurrent networks with simple intrinsic properties and

complex intrinsic properties in small circuit simulations.

We need more unifying structures of network models

that address complex dynamics. This could involve

more sophisticated focus on the categories of

physiological responses of neurons, as shown in models

that demonstrate shared properties with wide ranges of

Hodgkin-Huxley conductances (Prinz et al., 2003, 2004),

or in models that simplify the interaction of large numbers

of conductances (Izhikevich, 2003, 2004). In addition, we

need a framework for describing the elemental properties

of different network subcomponents that could interact on

multiple temporal and spatial scales, perhaps in analogy

with the interaction of atoms to form molecules and larger

scale chemical compounds.
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