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Abstract--In models of cortex, the spread of actwtty along prevlously strengthened synapses durmg synapttc mod- 
tficatton can result m an exponenttal growth of a large number of synaptlc connecttons, here termed runaway synaptlc 
modtficatton Analysts of thts phenomenon may provide a theoretwal framework for descrlbmg the mtttatwn and 
progresswn of the cortwal neuronal degeneration found m Alzhetmer's dtsease Here. the dynamics of learmng m a 
cortical model are described, focusing on the exponenttal growth produced by allowmg synaptw transmtsston at 
prevtously modtfied synapses durmg learnmg of a new pattern It ts shown that suppression of synapttc transmission 
during learnmg can prevent the strengthenmg of undeswed connections, whtle allowing destred connecttons to grow 
raptdly However, an tmbalance of corttcal parameters, or storage of overlappmg patterns in excess of capacity, can 
lead to interference during learmng and runaway synapttc mod~catton This runaway synaptic modlficatwn can 
progress between different regtons These phenomena are discussed with reference to the neuropathologtcal evtdence 
on the mttiatton and progresston of neuronal degenerauon m Alzhetmer's disease and the behavtoral evMence on 
associated memory deficits 

Keywords--Associative memory, Stability, Hippocampus, Learning, Alzheimer's disease, Interference. 

1. INTRODUCTION 

In models of cortex, synaptic transmission during syn- 
aptic modification can lead to instability in the form 
of exponential growth of synaptic strength (Grossberg, 
1987; Kohonen, 1988; yon der Malsburg, 1973). This 
instability is referred to as runaway synaptic modifi- 
cation. If modifiable synapses can influence their own 
growth in real cortical networks, then physiological 
mechanisms for preventing this instability must exist. 
Here the phenomenon of runaway synaptic modifica- 
tion and possible physiological mechanisms for pre- 
venting this instability will be described analytically 
and in simulations of cortical function. This phenom- 
enon will be discussed in relation to the neuropatho- 
logical features of Alzheimer's disease. 
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Different strategies for maintaining stability during 
learning have been used in different cortical models. 
In models with associative memory function, the most 
common technique consists of suppressing normal ac- 
tivation dynamics within the network during learning 
(Amit, 1988; Anderson, 1972, 1983; Hopfield, 1984; 
Kohonen, 1972, 1988). Although the spread of activity 
within these models forms the basis of memory function 
during the recall phase, this spread of activity is not 
permitted during the learning of new memories. More 
sophisticated approaches were used to maintain sta- 
bility without suppression of activation dynamics in 
early models with associative memory function 
(Grossberg, 1967, 1970, 1972a). These models used 
modifications of the learning rule such as normalization 
and the decay of synaptic strength. 

Associative memory models that suppress normal 
activation dynamics during learning do so in a variety 
of ways. In hnear associative memory models, the ac- 
tivity of units within the model is clamped to the input 
pattern during learning, ignoring intrinsic synaptic 
transmission (Aman, 1977; Anderson, 1972; Mc- 
Clelland & Rumelhart, 1988), or the spread of acti- 
vation is assumed slow relative to the speed of learning 
(Kohonen et al., 1977; Kohonen, 1988). In most at- 
tractor neural network models, the learning rule is 
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computed for the patterns separately from the network 
(Amit, 1988: Amlt, Evan, & Abeles, 1990; Hopfield, 
1984), or during application of a "strong external field" 
(Amit, 1988). 

Previously, no biological justification has been pro- 
vlded for this difference in the spread of activation dur- 
ing recall and learning. In fact, most biological theories 
of synaptic modification depend upon synaptic trans- 
mission at the synapse being modified (Brown, Kairiss, 
& Keenan, 1990: Gustafsson and Wigstrom, 1988). 
Therefore, biologically realistic associative memories 
must allow for some synaptic transmission during 
learning. Although most associative memory models 
have focused on the dynamics of recall (Amlt, 1988; 
Hertz, Krogh, & Palmer, 1991; Hopfield, 1984), the 
dynamics of learning must also be considered (Gross- 
berg, 1970, 1972a). As described here, synaptic trans- 
mission during learning can enhance the growth of de- 
sired connections, but it can also lead to interference 
between patterns during learning, which may result in 
runaway synaptic modification. 

Recent work has suggested a new neurophysiological 
mechanism for the suppression of activation dynamics 
during learning (Hasselmo, Anderson, & Bower, 1991, 
1992: Hasselmo, 1993). The cortical neuromodulator 
acetylcholine has been shown to selectively suppress 
excitatory synaptic transm~ssmn at intrinsic synapses 
( i.e., synapses between pyramidal cells within one cor- 
tical region), while allowing afferent fiber synaptlc 
transmission (1 e., transmission at axons entering the 
cortex ) to operate at full strength (Hasselmo & Bower, 
1992 ). Here this effect is analyzed in terms of learning 
dynamics, and it is shown that it can completely prevent 
interference during learning when coupled with intrin- 
sic inhibition, a threshold of synaptlc modification, or 
decay of synaptlc strength. This effect of acetylchohne 
is consistent with behavioral ewdence suggesting a role 
of acetylcholine m memory function (Ghonheim & 
Mewaldt, 1975: Hagan & Morris, 1989; Kopelman, 
1986). However, this mechanism can break down at a 
certain capacity determined by the overlap between 
stored patterns, beyond which runaway synaptic mod- 
ification will occur. 

Runaway synaptlc modification can also occur at 
modifiable synapses undergoing self-orgamzatlon (von 
der Malsburg, 1973; Grossberg, 1976, 1987; Linsker, 
1988; Miller, Keller, & Stryker, 1989). Associative 
memory functmn and self-organization are distin- 
guished here on a single bas~s: the extent to which post- 
synaptic activity depends upon the modifiable synapses. 
Modifiable synapses with associative memory function 
are not the predominant influence on postsynaptic ac- 
tivity during learning, which ~s separately influenced 
by other input often referred to as a UCS (Amari, 1977: 
Anderson, 1972; Grossberg, 1967, 1970, 1972a; Ko- 
honen, 1972, 1988). Associative memory synapses store 
associations between the presynaptic and postsynaptic 

activity ehclted by elements of external (afferent) input 
patterns. In contrast, modifiable synapses undergoing 
self-organization are the predominant influence on 
postsynaptic activity during learning (von der Mals- 
burg, 1973; Grossberg, 1976, 1987: Linsker, 1988: 
Miller et al., 1989). Thus, rather than storing an as- 
sociatmn between elements of externally presented 
patterns, these synapses form new representations of 
the presynaptic activity. Instabihty of self-organizing 
synapses is usually prevented by placing various con- 
straints on synaptic weight through normalization that 
ensures the sum of synaptlc weights or the sum of 
squares of synaptic weights remains constant (von der 
Malsburg, 1973; Linkser, 1988; Miller et al., 1989; Oja, 
1989), or by relying upon gated decay of synaptic 
strength coupled with inhibitory competition between 
neurons (Grossberg, 1976; Carpenter & Grossberg, 
1987) 

The phenomenon of runaway synaptic modification 
may prove relevant to describing the initiation and 
progression of the neuronal degeneration assocmted 
with Alzheimefs disease. Alzheimer's disease has been 
the focus of chnical research for many years, with a 
w~de range of evidence showing it is associated with a 
severe impairment of memory function in a range of 
tasks (Corkln, 1982; Kopelman, 1985; Morris & Ko- 
pelman, 1986 ). Neuropathological research shows that 
the d~sease involves neuronal degeneration selective to 
certain cortical structures (Arnold et al., 1991; Ball, 
1972; Braak & Braak, 1991; Brun & Gustafson, 1976: 
Hyman et al, 1984). One of the main markers for this 
degeneration is the development of neurofibrillary tan- 
gles, which are associated with a breakdown in the nor- 
mal neurofilament structure of neurons and are often 
left as remnants of cells that have died. Evidence sug- 
gests that the neurofibrillary tangles first appear and 
attain the h~ghest density in cortical regions associated 
with memory function, including layer II of the ento- 
rhmal cortex, region CA 1 of the hippocampus, and the 
subiculum (Arriagada & Hyman, 1990; Arriagada, 
Marzloff, & Hyman, 1992: Braak & Braak, 1991; Hy- 
man et al., 1984: Ulrich, 1982). In later stages of the 
disease, neuronal degeneration appears to progress into 
regions of association cortex, following the estabhshed 
patterns of intracort~cal connectivity (Arnold et al., 
1991; Pearson et al., 1985 ). While a vast range of com- 
peting theories of the etiology of the syndrome have 
been proposed, few of them have focused on accounting 
for the striking initial anatomical specificity of the neu- 
ronal degeneration for regions implicated in memory 

function, and the subsequent progression along ana- 
tomical pathways. The analysis of the breakdown of 
the essential mechanisms of cortical memory function 
presented here suggests a possible framework for de- 
scribing the initiation and progression of neuronal de- 
generation m Aizheimer's disease. 
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2. ASSOCIATIVE MEMORY FUNCTION 

Runaway synaptic modification can occur in a range 
of associative memory architectures. Here I describe 
interference during learning for a simple linear asso- 
ciative memory, using a Hebbian learning rule. The 
network described here is presented in Figure 1. This 
is a linear heteroassociative memory with the input unit 
activity in region 1 represented by the activity vector 
~a(t),  output unit activity in region 2 represented by 
the activity vector 2a(t), and connections from units 
in region 1 to units in region 2 with strengths repre- 
sented by the matrix W. Neither the afferent input nor 
the strength of connections goes below zero. 

The network stores associations between input and 
output patterns. For each association q, the input pat- 
tern presented to region 1 is represented by ~a (q) and 
the output pattern presented to region 2 is represented 
b y  2a  (q). (Each pattern consists of n active lines where 
a} q) = 1, and all other lines with a} q) = 0.) 

The activation rule for the network describes the 
activity 2a as a sum of the input to this region 2 a (q )  and 
the spread of activity from ta along the connections W 

2a(t + 1 ) = 2 a(p) -I- W ] a ( t ) .  ( 1 ) 

Note that this is a system with a single synchronous 
cycle of update, rather than the long-term asynchronous 
settling of models based on the spin-glass analogy. Pre- 
vious work shows that associative memory models are 

Learning Recall 
Tlr7 TTT 

2~,o 2,-* -~) 2 ~  
1 a ( p )  1 a i a ( p )  i a 

FIGURE 1. A schematic representation of the simple hetaroas- 
sociative network presented here, with a set of connections W 
between region 1 neurons (with activity la) and region 2 neu- 
rons (with activity 2a ). During leaming, afferent pattems of ac- 
tivity influence the activity of region 1 (input la (p)) and region 
2 (input 2a (P)), and the connections W are modified according 
to a Hebl)ian learning rule. During recall, only the input to region 
1 ( la (P)) is presented. Activity spreads along the connections 
to result in region 2 activity closely resembling the previously 
associated pattern (2a (P)). 

sensitive to the spread of activation during learning with 
asynchronous dynamics as well (Hasselmo et al., 1991 ). 

For simple Hebbian learning within this network, 
the connections are strengthened in proportion to the 
outer product of the presynaptic activity ]a and post- 
synaptic activity 2a. If we assume synaptic modification 
depends upon the presynaptic activity reaching the 
presynaptic terminal, which is assumed in most theories 
of long-term potentiation (Brown et al., 1990; Gus- 
tafsson & Wigstrom, 1988), then we must use a learning 
rule incorporating postsynaptic activity at time t + l, 
with presynaptic activity at time t. 

A W ( t  + 1 ) = 1__ za( t  + l ) t a ( t )  r (2) 
n 

where n is the number of active lines, and the superscript 
T represents the transpose of the vector. In most as- 
sociative memory models, recall dynamics are sup- 
pressed during learning. Thus, the connection strengths 
in these models are modified based on the activities ]a 
and 2a being clamped to the specific desired patterns. 
That is, if the effect ofsynaptic transmission is ignored, 
for each association an input pattern will be clamped 
on the input units [~a(t) = l a  (q)] and a specific output 
pattern will be clamped on the output units [2a(t) = 
2a(t + 1 ) = 2a(°)]. In this case, over m different asso- 
ciations, the final pattern of connectivity will take the 
form: 

1 m 
W = -  ~ 2a(q)la(q)r. ( 3 )  

n q=l 

This is a familiar form of the Hebbian learning rule 
(Hertz et al., 1991; Kohonen, 1988), and is approxi- 
mated by the simulation results shown on the right in 
Figure 2. 

3. INTERFERENCE DURING RECALL 

Interference during recall occurs when overlapping 
patterns have been stored in the network. Consider a 
case during recall, when the input pattern p to region 
1 is presented [la(t) = la(P)], but the associated output 
pattern p to region 2 has not been presented. In this 
case, the activation rule for region 2 from equation l 
takes the form 

q = l  

m 

= I__ (la(p)Tla(P))2a(P) + _i ~ (la(q)rla(P))2a<q). (4) 
n n q÷p 

Since ( 1/n)(la(P)rla(P)) = I, the first term gives the 
proper recall of the associated output pattern 2a (p). 
However, the second term shows the interference from 
other stored patterns, proportional to the dot product 
between the input pattern p and every other input pat- 
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FIGURE 2. Runaway synaptic modification. Final connect,vity of the simulation shown m Figure 3 is presented with size of black 
squares representing the strength of individual connections. Note that runaway synaptic modification due to interference during 
learning in the network causes strengthening of a large number of connections [resulting in connectivity similar to that described 
m eqn (14)] .  By comparison, far fewer connections are strengthened in a simulation without interference during learning (Figure 
6), with connectivity similar to that described in eqn (3). 

tern q. This interference term has been described pre- 
viously in associative memory models with the term 
"crosstalk" (Kohonen, 1972; Hertz et al., 1991 ). I will 
refer to this effect as interference during recall. Note 
that it depends only on the direct overlap between the 
stored patterns. 

4. INTERFERENCE DURING LEARNING 

The recall of other stored patterns can interfere with 
learning, based on the same activation equation pre- 
sented above. However, by occurring during learning, 
this type of interference can enhance subsequent in- 
terference and have an even more serious effect on the 
accuracy of learning within the network. As noted 
above, with certain exceptions (Grossberg, 1970, 1972a; 
Kohonen, 1988) this problem has been prevented in 
most models by ignoring the actwatlon rule during 
learning, that is, ignoring the effect of synaptic trans- 
mission during synaptic modification. However, no 
physiological justification for ignoring the spread ofac- 
twity during learning has been presented previously. 
Interference durmg learning can be seen quite clearly 
if we combine the equations for recall and learning 
[eqns ( 1 ) and (2)] with la(t) = i a(p). 

A W ( t +  1)=~_a(l + 1) ta( t )  r 

- (2a (p) + Wla~Pl)la ~v)r (5 )  

In this case, assuming W C l > = 2a ( 1 ) ta ~ I)T association 
1 will interfere with the learning of association 2 as 
follows 

A W  <2~ = [2a (2) + (la(l)rlat2>)2a(l>]lat2>r. (6 )  

Thus, the amount of interference is proportional to 
the overlap between the input patterns being learned, 
as represented by the scalar product (dot product) t a <l)T 
~a <2). I will refer to this form of interference during 

learning as first-order interference because it is due to 
the direct overlap between two input patterns. However, 
once the interference during learning term has been 
added to the connection matrix, subsequent learning 
can involve higher-order interference. For instance, for 
a third pattern stored, both first- and second-order m- 
terference can appear, as represented here 

AW{3) : [2a (3) + (laI2)rla(3))2a(2) 

+ (laIl)Tla(2))(la(2)Tta(3))2a~D]ta(3)r. (7 )  

In this case, patterns 1 and 3 may be orthogonal, but 
as long as they both overlap with pattern 2, higher- 
order interference during learning will occur. Ulti- 
mately, learning of each new pattern can suffer from 
interference during learning with any previously 
learned pattern e~ther by direct first-order interference, 
or through higher-order interference, resulting in the 
final connectivity matrix 

m[ 
W : ~ 2a(.) + S~ (laCqOTla(q2)) 

p = l  ql<q2<q3< <qm~P 

X (latq2)Tla(q3)) .(lafqm)TlatP))2a(q°]la(p)T, (8 )  

where m ~s the order of interference. This suggests that, 
when higher-order interactions are taken into account, 
mterference can spread to all patterns stored within the 
network as long as there is no group of patterns that is 
entirely orthogonal to other patterns being stored. This 
effect can be seen quite readily in simulations of cortical 
associative memory function (see Appendix for de- 
scription of model). If synaptic transmission is allowed 
during learning, the network rapidly displays runaway 
synaptic modification of all connections between units 
activated by at least one pattern, resulting in confound- 
ing of all patterns during recall, as shown in Figure 3. 
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FIGURE 3. (A)  Schematic diagram of interference during learning in associative memory function. During leaming of the first 
association, no interference occurs. However, during learning of a second and third association, the spread of activity along 
previously strengthened connections results in strengthening of additional, undesired connections, shown with broken lines. (B) 
Interference during learning in a simulation of cortical associative memory function. On the left, the afferent patterns presented to 
regions I and 2 during learning of association I are shown. Learning is alternated between this and four other associations stored 
in the network. On the right, the recall of the network in response to the input pottem in region 1 is shown after each cycle of 
leaming. Note that as leaming progresses, interference causes the network to respond to the input to region 1 with components 
of all pattems stored in region 2. Accompanying graph shows the performance measure P that was used to evaluate the recall of 
all five memories after each cycle of learning (see Appendix). This shows an early increase followed by a decrease to values 
below 0 due to interference. 

5. EXPONENTIAL GROWTH OF 
SYNAPTIC CONNECTIONS 

The effect of synaptic transmission during synaptic 
modification can also be described by solving the 
learning rule as a differential equation. This shows that 
when connections can enhance their own growth, the 
result is an exponential strengthening of synapses unless 
other factors in the learning rule such as decay (Gross- 
berg, 1970; Kohonen, 1988) or constraints on total 
synaptic strength (Grossberg, 1967, 1969; Linsker, 
1988; vonder Malsburg, 1973; Miller et al., 1989; Oja, 
1989) are sufficient to overcome this effect. In the no- 
tation provided here, application of a Hebbian learning 
rule will allow the connection W,j to grow based on a 
differential equation combining the activation rule [ see 
eqn ( 1 )] and the learning rule [see eqn (2)]: 

( dt 7/ 2a}V) + ~ "'" t,)] iv) = k=~ W,klak ) la l  (9) 

where n is the learning gain and n is the number of 
units in the network. For learning of a single stored 
pattern with initial values W,k(0), this is a system of 
nonhomogeneous linear differential equations with 
constant coefficients that can be solved on a row-by- 

row basis. The coefficient matrix ~a(k v) ~a(j v) is the outer 
product of the input patterns. Thus, the matrix has 
rank 1, and the system has one nonzero eigenvalue 
equal to the trace of the outer product matrix (Strang, 
1988). The system has the following solution 

where 

W,j = Z,j( et/" J - 1) + W,j(0) 

Zu : [ 2a}") + ~k W'k(O)'a(kP) 'a(kP) 

(10) 

and 

[ "rj = 71,a~ v) ,a~ p) . 
k 

Note that the effect of connections on their own 
growth is to cause exponential strengthening with a time 
constant reciprocal to the eigenvalue, which is propor- 
tional to the sum of the active input lines ~k la(k p). 
Thus, patterns with more active elements will more 
rapidly strengthen connections. Each new pattern 
learned by the network wiU have as the initial conditions 
for this equation the pattern of connectivity associated 
with storage of previous patterns. The interaction be- 
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tween the new pattern p and initial conditions set by 
previously learned patterns takes the form 

(q~=l (q)(q)'(p)),ak 
z z 2a, 

~ [ 2 a l q ) ~ ,  (q) (,),1 = tla~ lak )J ( 11 ) 
q= l  k 

For learning of the first pattern, or learning of or- 
thogonal input patterns, eqn ( 11 ) is equal to zero. In 
this case, eqn (10) takes the form: 

14 ; J - (Ekla~{exp[ r / l a~P ' (~  -- } 

+ l~j(0) (12) 

Thus, for the first pattern, or for orthogonal patterns, 
learning only occurs at synapses on neurons in region 
2 that are directly activated by the afferent input pattern 
(2a, ~ 0). 

However, for nonorthogonal patterns, eqn (11) is 
nonzero. In this case, previously learned patterns in- 
terfere with the learning of new patterns, allowing 
strengthening of undesired connections onto neurons 
not receiving direct postsynaptic afferent input :a, = 
O. In this case, strengthening of these undesired con- 
nections takes the form: 

+ W,j(0) (13) 

In these equations, as in eqns (7) and (8),  interfer- 
ence during learning progresses in proportion to the 
overlap between input patterns in region 1. It is shown 
explicitly that the positive feedback due to connections 
enhancing their own growth causes these additional 
connections to grow exponentially. In real cortical net- 
works and in nonlinear simulations, the growth of un- 
desired connections may be limited at some saturating 
value equal to the saturating value of desired connec- 
tions. However, higher-order relationships between 
patterns spreads interference more widely, as shown in 
eqn (8),  and the positive feedback due to connections 
enhancing their own growth causes these connections 
to grow to their saturating value. Thus, even when the 
interference due to higher-order overlap is initially very 
small, this effect causes the interference due to higher- 
order overlap to grow exponentially, until the network 
suffers from very severe interference. 

6. RUNAWAY SYNAPTIC MODIFICATION 
AND ALZHEIMER'S DISEASE 

The results in the previous two sections show that when 
higher-order interactions are taken into account, in- 
terference during learning can gradually spread to all 
patterns stored within the network, as long as there is 

no group of patterns that is entirely orthogonal to other 
patterns being stored. Once undesired connections are 
first strengthened, they can grow exponentially to their 
saturating value. The combination of these two effects 
will be referred to as runaway synaptic modification. 
Ultimately, with repeated learning of interfering pat- 
terns, as shown in Figure 2, the final connectivity of 
the network can approximate: 

m m 

W = ~ ~ 2a(q)la(P)r. (14) 
p - I  q - I  

Thus, after runaway synaptic modification, presen- 
tation of any one pattern p to region 1 recalls all patterns 
q stored in region 2, as shown in Figure 3. The con- 
nectivity becomes very dense, as seen on the left side 
of Figure 2, which shows simulation results approxi- 
mating eqn (14) versus eqn (3). With runaway synaptic 
modification, the total number of connections modified 
m the network is on the order of n2rn 2 (where n is the 
average number of neurons activated in each region by 
each pattern, and rn is the number of patterns stored 
in the network). The number of connections modified 
during learning without interference [eqn (3)] is on 
the order of n 2rn. Thus, runaway synaptlc modification 
results in an increase in the number of synapses being 
strengthened that is proportional to the number of pat- 
terns stored in the network, m. This difference in con- 
nectlvity can be seen m Figure 2, which shows the con- 
nectlvity of the network trained in Figure 3 [eqn ( 14)], 
versus a network trained without any interference dur- 
ing learning [ eqn ( 3 ) ]. 

This large increase m the number of connections 
modified would place considerable demands on the 
mechanisms of synaptic modification within a cortical 
associative memory. These increased demands might 
have serious effects on the function of the network. A 
breakdown in function of this type may even be in- 
volved in the neuronal degeneration found in Alzhei- 
mer's disease. For example, the excessive strengthening 
of excitatory synaptic connections may result in exci- 
totoxic effects on neurons. The neuronal degeneration 
in Alzheimer's disease has been suggested to arise from 
excitotoxic effects (Beak 1992: Lawlor & Davis, 1992: 
Pomara et al., 1992) 

Alternately, runaway synaptic modification would 
place considerable additional demands on both pre- 
synaptic and postsynaptic mechanisms of synaptlC en- 
hancement, including the production of new proteins, 
the transport of structural components along axons and 
dendrites, and the overall metabolism of the cells. This 
might account for some of the characteristics of neu- 
ronal degeneration found in Alzheimer's disease. The 
build-up of amyloid precursor protein (Tanzi, George- 
Hyslop, & Gusella, 1991; Selkoe, 1991 ) might reflect 
excessive production of a protein for maintaining syn- 
aptic contacts. Many forms of this protein contain an 



Runaway Synapttc Modtficatlon m Corttcal Models 19 

extracellular protease inhibitor domain (Hyman et al., 
1992) that could play a role in maintaining synaptic 
connections, and there is evidence that increased 
expression of this protein occurs in regions undergoing 
the initial degeneration of Alzheimer's disease (Roberts 
et al., 1993). In addition, the abnormal phosphoryla- 
tion of tau protein (Grundkeiqbal et al., 1986; Har- 
rington et al., 1991 ) and the development of neurofi- 
brillary tangles might reflect a breakdown in axonal 
transport mechanisms under the excessive demands of 
runaway synaptic modification. In particular, this latter 
framework could explain the fact that development of 
neuritic plaques is not necessarily associated with de- 
velopment of tangles in the same region, but in several 
cases appears associated with development of tangles 
in afferent regions (Arnold et al., 1991; Hof & Morri- 
son, 1990). That is, in some areas, the primary neu- 
ronal degeneration appears to be presynaptic. The ex- 
cessive demands on presynaptic neurons to strengthen 
additional connections due to runaway synaptic mod- 
ification might explain this characteristic of Alzheimer's 
disease neuropathology. 

7. SUPPRESSION OF SYNAPTIC 
TRANSMISSION A N D  RUNAWAY 

SYNAPTIC MODIFICATION 

The cortex must have some mechanism for preventing 
interference during learning and runaway synaptic 
modification. As noted above, many previous associa- 
tive memory models have avoided interference during 
learning by preventing the spread of activation during 
learning, but no physiological mechanism has been de- 
scribed for this widely used modeling feature. 

Recent work (Hasselmo et al., 1991, 1992; Has- 
selmo, 1993) has described a possible neurophysiolog- 
ical mechanism for preventing the development of in- 

terference during learning. Experimental evidence from 
brain slice preparations of the olfactory cortex (Figure 
4) show that the neuromodulator acetylcholine selec- 
tively suppresses synaptic transmission between pyra- 
midal cells within the cortex, and has almost no effect 
on the afferent input to the region (Hasselmo & Bower, 
1992). Other neuromodulators may have a similar ef- 
fect on synaptic transmission. If applied selectively 
during learning but not recall, this suppression can 
prevent interference during learning. Runaway synaptic 
modification can also be prevented by incorporating 
strong decay of synaptic strength coupled with a 
threshold linear output function (Grossberg, 1970, 
1972). 

To analyze the effect of suppression and of other 
cortical parameters on learning, we can modify eqn (9) 
to include the suppression of synaptic transmission ( 1 
- Csup), a homogeneous level of postsynaptic inhibition 
(H), a threshold of synaptic modification (f~), and a 
decay term (3,) gated by presynaptic activity. In addi- 
tion, because this simplified network has a feedforward, 
heteroassociative structure, we can include the effect of 
an output function g(a) for presynaptic neurons, that 
could include a threshold for output. All of these pa- 
rameters are reasonable within the scope of existing 
physiological evidence, and the value of cholinergic 
suppression of synaptic transmission has been directly 
derived from experimental data (Hasselmo & Bower, 
1992). 

When combined with the activation equation, the 
learning equation takes the form: 

n 

dW'ldt - 71[ 2a~p) + (1 - c~,p) Z W, kg(,a(k p)) 
k=l 

- H - ~2 - 3,W,j]g(,a~P)). (15) 
J 

/ q N o  cholinergic suppression i 

Afferent fibers / /  I / ~ k  f x k  I 

lUgS\ I 
~ Control 1001a, M Carbachol 

FIGURE 4. Cholinergic suppression of synaptic transmission. Experimental results from brain slice preparations of olfactory cortex 
show selective suppression of intrinsic end associational fiber synaptic transmission but not efferent fiber synaptic transmission 
by cholinergic egonists (Hesselmo & Bower, 1992). Synaptic potentials elicited by stimulation of fibers arising from the olfactory 
bulb and terminating in the superficial layer of piriform cortex do not change in the presence of the cholinergic agonist carbachol 
(100 .M) .  However, syneptic potentials elicited by stimulation of fibers arising from within piriform cortex or adjacent cortical 
regions show over 70% suppression in the presence of carbachol (100 .M) .  
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This y~elds the solution 

I4]: = Z u ( e ~ / ~  - 1) + W,j(O) (16) 

where 

Zo = 

• { p )  
,_al p~ + ( 1 - c s . . )  Y~], 1 4 , k ( O ) g ( l a k  ) 

--  V I 4 ; j ( O )  -- ( H  + ~2) 

(1 - c~up) Z ~ g ( l a ~  p)) - 3" 

and 

.}g,:,) 
Note that for the desired connections, as C~up goes 

to 1 with 3' = 0, the equation approaches the linear 
growth of Wdependent on the strength of afferent input 
to region 1 and region 2 

I4;: = ~[2a~ p) - (H + f~)],a)P't. (17) 

In contrast, for undesired connections [where 
-(P) 0],aSCsuogoesto 1 and3, 0,~---~ ~ andthe  2Ut = = 

equation wdl maintain a steady state at the starting 
point of I4"(0). However, setting Csup to 1 is physiolog- 
ically unrealistic for two reasons. First, experimental 
evidence shows that suppression of synaptic transmis- 
sion does not go above an average maximum of about 
70% (Hasselmo & Bower, 1992). Second, most theories 
of synaptlc modification depend upon synaptic trans- 
mission at the synapse being modified (Gustafsson & 
Wigstrom, 1988; Brown et al., 1990); thus, the learning 
rule should have a gain factor containing the term for 
suppression. In this case, setting csup to 1 would com- 
pletely shut off learning. 

However, due to the additional terms H and ft m 
the equation, it is not necessary to completely suppress 
synaptic transmission in order to prevent interference 
during learning. This can be seen if we consider eqn 
( 16 ) for modification of undesired connections [where 
2a~ p) = 0 ] .  

= [(1 - Csup) ~f, 14;k(0)g(la~k p)) -- 3'14",:(0) -- ( H +  ~2)] 

( 1 - cs~o) Y~x g( la tk  p)) --  3" 

+ 14;,(o) (18) 

As can be seen from this equaUon, the additional 
postsynaptlc terms H and ~2 allow interference during 
learning to be prevented with only partial suppression 
of synaptic transmission. Here, H and f~ do not differ 
m their-mathematical features because inhibition is 
represented as a constant. However, inhibition H will 
normally vary depending upon input activity (feedfor- 

ward inhibmon) and activity within the network (feed- 
back inhibition). A full consideration of these effects 
is beyond the scope of the present treatment. 

The postsynaptic threshold ofsynaptlc modification 
was motwated by evidence from physiological studies 
of  long-term potentmtion suggesting a difference be- 
tween the threshold for neuronal output and the 
threshold for synapt~c mo&fication (Gustafsson & 
Wigstrom, 1988). However, previous analytical work 
(Grossberg, 1970: Grossberg & Pepe, 1971) suggests 
that a postsynaptic threshold of synapt~c modification 
causes some maccuracies in the stored representation 
of afferent input, particularly for analog valued input. 
As an alternative to a postsynaptic threshold, cholin- 
erg~c suppression can also completely prevent the 
growth of undesired connections when combined with 
either gated or ungated decay of synaptic strength, 
which have been used to maintain stability during 
learning In previous assoclatwe memory models 
(Grossberg, 1970, 1972a) 

Equation 18 and simulations show that the decay of 
synaptic strength gated by presynaptic activity can 
maintain stability if it IS sufficiently strong to cause r 
to take a negative value. In this case, desired connec- 
uons grow with an asymptotic value determined by the 
afferent input, and undesired connections decay ex- 
ponentially to zero, as shown in Figure 7. A similar 
effect is seen with ungated decay of synaptic strength, 
which causes exponential decay of all synapses not re- 
ceiving postsynaptic afferent input (Grossberg, 1970, 
1972a). Mathematically, chohnergic suppression of  
synaptlc transmission is analogous to a decay gated by 
both pre- and postsynaptic activity and restricted to 
values less than 1. In fact, chohnergic suppression (c) 
decreases the values of decay (3') necessary to obtain 
exponentml decreases in the strength of undesired con- 
nections and asymptotic growth of desired connections. 
Because the network being analyzed in this section is 
a single-layer heteroassociatwe (feedforward) network, 
the output threshold only affects the values of the af- 
ferent input to neurons in region 2, not the subsequent 
spread of activity within the network. However, in net- 
works with autoassociatwe or multilayer structure, 
havmg a nonzero output threshold also helps to restrict 
the spread of interference (Grossberg & Pepe, 1970, 
1971: Hasselmo et al., 1992: Hasselmo, 1993). In fact, 
a decrease in this parameter allows greater interference 
between stored patterns, and has been suggested as a 
possible model for behavioral features of schizophrenia 
such as the loosening of associations (Grossberg & Pepe, 
1970) 

For the network being discussed here, the proper 
combination of parameters necessary to prevent the 
spread of interference into undesired connections (and 
runaway synaptic modification) can be determined by 
setting the coefficient Z or the reciprocal of the time 
constant r o feqn  (16) to zero or less 
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FIGURE 5. Schematic representation of the conditions neces- 
sary to prevent interference during leaming [eqns (19) and 
(20)]. Interference during learning involves strengthening of 
connections to units in region 2 that do not receive direct af- 
ferent input (undesired connections shown with dashes). In- 
terference during leaming can be prevented if the total excit- 
atory input to these units along previously strengthened con- 
nections [W~(0)laj] is suppressed (1 - c,~) sufficiently to bring 
the postsynaptic activity below the level of postaynaptic inhi- 
bition (H), the threshold of synaptic modification (ft), and the 
decay of synaptic strength (~,W~). 

(1 - C~up) ~ W,k(O)g(,a(k p)) 
k 

or, 

- 7W, j(O) - (H  + fl)] < 0 (19) 

Thus, as shown in Figure 5, with sufficient suppres- 
sion of synaptic transmission to bring the spread of 
activity within the network below the level of inhibition, 
the threshold of synaptic modification or the decay of 
synaptic strength, interference during learning can be 
prevented. In simulations, it can be shown that incom- 
plete suppression of synaptic transmission can prevent 
the progression of runaway synaptic modification, as 
shown in Figure 6 (see Appendix for description of 
model). Thus, for Z _< 0 or 1 / r  < 0 when 2a~ ") = 0, 
interference during learning will not progress. 

An important factor in the above equation is the 
amount of overlap between the stored patterns. If we 
substitute the relation from eqn ( 11 ) into eqn (19) and 
solve for Csup, we obtain a notion of the condition that 

A Learning 
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,a( ) c la~) C ]aO) c 

Recall 

i ao) 
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FIGURE 6. (A) Schematic diagram showing that suppression of synaptic transmission during learning prevents the spread of activity 
along previously strengthened connections. This allows strengthening of only desired connections (connections between neurons 
receiving direct afferent input)• (B) Suppression of synaptic transmission during learning prevents interference in a simulation of 
cortical associative memory function. On the left, the afferent patterns presented to regions 1 and 2 during learning of association 
1 are shown. On the right, the recall of the network in response to the input pattem in region I is shown after each cycle of leaming. 
Note that as learning progresses, the network begins to recall the correct associated pattern in region 2, with only slight interference 
during recall due to first-order overlap with other patterns. The accompanying graph shows that with suppression, the performance 
measure P increases to a stable level over 0.8. 
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feedback regulation of cholinergic modulation would 
need to satisfy for each neuron i: 

(q) (0)~ 

> 1 - (21) ~:TM [2(l~q) "g 'nt  , ( q )  . ( P ) ~ I  - -  Csup. 
~ q = l  ~A~lt~£ I¢~A YJ 

Note that as the number of patterns stored within 
the network increases, the sum of the scalar products 
of the new pattern p with all previously stored patterns 
q will increase. If the value of C~up is fixed, then this can 
be seen as a capacity measure for the network, above 
which interference during learning can result in run- 
away synaptic modification. In addition, a network with 
a high correlation between previously stored patterns 
and new patterns being stored will be more sensitive 
to runaway synaptic modification. Finally, once a single 
pattern starts to cause runaway synaptic modification, 
by strengthening additional undesired connections it 
enhances the hkelihood of  addltional patterns causing 
interference during learning. 

8. REGULATION OF CHOLINERGIC 
MODULATION 

Equation 21 shows the level of cholinerglc suppressmn 
necessary to prevent interference from other stored 
patterns during learning. If cholinergic modulation 
maintains this relationship, runaway synaptlc modifi- 
cation can be prevented. Therefore, it might be expected 
that feedback mechanisms regulating the cholinergic 
innervation of the cortex would keep cholinergic mod- 
ulahon within this range over the long term. In addition, 
as noted above, this analysis assumes that acetylcholine 
is primarily released during learning of new stimuli, 
and not during recall of previously learned information. 
Thus, there must be some short-term mechanism for 
regulating the cholinergic modulation of cortical struc- 
tures depending upon whether the afferent stimulus is 
novel or famihar. 

Chohnergic mnervatlon of cortical structures arises 
from nuclei of the basal forebram. The medial septum 
and vertical limb of the diagonal band of Broca inner- 
vate the hippocampus, the horizontal limb of the di- 
agonal band of Broca innervates the olfactory cortex 
and bulb, and the magnocellular nucleus basalis of  
Meynert innervates neocortical structures (Mesulam 
et al., 1983). Among the influences on these nuclei are 
inhibitory (GABAergic) inputs from the nucleus ac- 
cumbens, which may serve to downregulate the cho- 
linergic modulation of cortex (Sarter, Bruno, & Dud- 
chenko, 1990). The inhibitory regulation of the basal 
forebrain may be influenced by output from the hip- 
pocampus entering the lateral septum and the nucleus 
accumbens. It is unlikely that a signal as specific as eqn 
(21 ) could be computed by the feedback to the basal 

forebrain, but an approxlmat~on of this term could take 
the form of a measure of the variance of the activity 
levels within a cortical region. The response to unfa- 
miliar patterns will cause little activation, while the 
progression of runaway synaptic modification will cause 
actwity that is too broadly d~stributed. In both cases, 
low variance would occur m s~tuations where it would 
be desirable to increase cholinerg~c modulation. In 
contrast, effective recall of specific patterns would be 
expected to strongly activate a specific subset of neu- 
rons, resulting in a higher variance. The neurophysl- 
ologlcal and computational characteristics of the feed- 
back mechanisms that modulate chohnergic suppres- 
sion of synaptic transmission remain an important topic 
for future research. 

9. TH E INITIATION AND PROGRESSION 
O F  ALZHEIMER'S  DISEASE 

If the neuronal degeneraUon in Alzheimer's disease is 
due to runaway synaptic modification, then eqn (16) 
may provide a theoretical framework for describing the 
initiation and speed of progression of AlzheJmer's dis- 
ease. If Z > 0 and 1/z > 0 for A, = 0 in eqn (16), 
runaway synaptlc modification will be initiated. Once 
runaway synapt~c modification occurs, ~t will progress 
with a t~me course determined by the size of the coef- 
ficient Z and the t~me constant of the exponential r, as 
shown m eqn (16) and dlustrated m Figure 7. Figure 
7 shows the growth of undesired connections (2a~ p) = 

0) with different values of 3', Csup, and H.  For larger 
values of Csup, the growth of desired connections ap- 
proaches a linear increase, and the growth of undesired 
connections becomes increasingly slow. If the neuronal 
degeneration m Alzheimer's disease is due to runaway 
synaptlc modification, then the equation for growth of 
undesired connections might provide a rough mathe- 
matical approximation of the imtiation and speed of 
progression of  Alzheimer's disease. 

This theoreucal framework for describing the neu- 
ronal degeneration of Alzhelmer's disease is largely 
neutral with respect to specific et~olog~cal factors. Es- 
sentially, anything that affects the balance of the dif- 
ferent corhcal parameters described in eqns (19) and 
(20) will affect the propensity for initiation of runaway 
synapt~c modification. Thus, runaway synaptlc modi- 
fication could be due to a chronic decrease m the levels 
of cortical inhibition H,  the threshold ofsynaptic mod- 
ification f~, the decay of synaptic strength 3', or the 
suppression of synaptic transmission c~up. In th~s 
framework, the initiation of runaway synaptic modi- 
fication is also sensitive to the amount of overlap be- 
tween the input activities, which increases with number 
of patterns stored or the average overlap between pat- 
terns, as shown in eqn (21). Thus, this equation can 
be seen as a capacity measure for the network, above 
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FIGURE 7. (A)  Change in strength of desired and undesired 
connect ions W~ computed from eqn (16) with ~ la~ p) = 6, 
g(la~ p)) = tanh(~a~P)), W(0) = 1.0, H = 0.1, and ~ = 0. With 
c.,p set to 1.0, desired connect ions (D) grow l inearly due to 
pre- and postaynapt ic act iv i ty remaining constant, and unde- 
sired connect ions (U) decrease l inearly due to postsynapt ic 
activity being below the threshold ~. With c u set to 0.9, un- 
desired connect ions still decay, and desired connect ions grow 
exponential ly. (B) Change in desired synaptic connections with 
the same condit ions except  c .~  = 0.5, H = 0.0, and 3, > 0. The 
addit ion of decay al lows desired connect ions to grew asymp- 
totically for values of 3, satisfying (1 - c ,~ )  ~ g(la~ p)) = 2.28 
< ~. Thus, for ~. = 2.8 growth is asymptot ic,  for ~ = 2.28 growth 
is l inear, and for 3, = 2 growth is exponent ial .  (C) Change in 
undesired synapt ic connect ions with the same conditions as 
in (B).  For ~ = 2.6 synapses decay exponent ia l ly ,  for ~ = 2.28 
synaptic strength remains constant, and for ~ = 2 growth is 
exponent ial .  Thus, for insufficient decay relat ive to synapt ic 
suppression, runaway synaptic modif icat ion can occur. (D) 
Growth of desired and undesired connect ions W~ computed 
from eqn (16)  with ~ ,  W,(O)Ia}Y ) = 6, f l = 0, 3, = 0, and c w  
and H set to dif ferent values such that Z = 0.01 but r changes 
value. For larger values of c.,p, r is larger, and growth of un- 
desired connect ions is slower. For smal ler values of c.,p, r is 
smaller, result ing in a more rapid growth of undesired connec- 
t ions. A greater imbalance of cort ical parameters result ing in 
larger Z also results in a more rapid growth of undesired con- 
nections. These differences in the balance of cort ical param- 
etera might underlie the earlier appearance and possible faster 
progression of preseni le dement ia.  

which interference during learning can result in run- 
away synaptic modification. 

Sensitivity to runaway synaptic modification de- 
pends upon the capacity for Hebbian modification of 
synapses. Without Hebbian synaptic modification, eqn 
(15) depends only upon the presynaptic activity 

(p) • . ~aj , m which case the solution takes the form W u ( t )  

= la(j p) t .  In this case, interference during learning does 
not occur. In addition, the speed of progression of run- 
away synaptic modification depends upon the gain of 
the learning rule. Thus, for n that is small, the time 
constant z in eqn (16) will be large, and the progression 
of runaway synaptic modification will be correspond- 
ingly slow. Where the gain of the learning rule is large, 
runaway synaptic modification will progress more rap- 
idly. 

These characteristics could explain the selectivity of 
neuronal degeneration in Alzheimer's disease for those 
regions that have strong properties of synaptic modi- 
fication and are implicated in associative memory 
function. The selectivity of Alzheimer's disease for 
components of the hippocampal formation is sum- 
marized in Figure 8. The earliest and most severe de- 
velopment of neurofibrillary tangles in Alzheimer's 
disease appears in layer II of the entorhinal cortex, 
among cells giving rise to the perforant path projection 
to the molecular layer of the dentate gyrus (Arriagada 
& Hyman, 1990; Arnold et al., 1991; Braak & Braak, 
1991; Arriagada et al., 1992; Hyman et al., 1984). This 
pathway was the first where experiments demonstrated 
Hebbian long-term potentiation properties (Mc- 
Naughton, Douglas, & Goddard, 1978; Levy & Stew- 
ard, 1979 ). In contrast, the granule cells of the dentate 
gyrus show comparatively few neurofibrillary tangles 
(Arnold et al., 1991; Arriagada et al., 1992; Ball, 1972; 
Hyman et al., 1984). The mossy fiber projection of 
these granule cells into region CA3 of the h~ppocampus 
shows long-term potentiation that depends only upon 
presynaptic activity, not a Hebbian conjunction ofpre- 
and postsynaptic activity (Zalutsky & Nicoll, 1990). 

Equations (19 ) and (20) suggest that sensitivity to 
runaway synaptic modification depends upon the level 
of suppression of synaptic transmission during learning, 
Csup. Less suppression of synaptic transmission during 
learning will allow more chance of Z or 1/T being 
greater than zero. In other words, Hebbian synaptic 
modification without suppression of synaptic trans- 
mission will make synapses more sensitive to interfer- 
ence during learning. The perforant pathway projection 
to the outer molecular layer of the dentate gyrus does 
not show suppression of synaptic transmission by cho- 
linergic agonists, in contrast to the projection to the 
middle molecular layer (Yamamoto & Kawai, 1967; 
Kahle & Cotman, 1989). Thus, it might be expected 
that the region giving rise to the innervation of the outer 
molecular layer would be more sensitive to Alzheimer's 
dtsease neuropathology. Indeed, the development of 
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FIGURE 8. Schematic diagram of the major subregions and connections of the hippocampus, show,ng the distribution of neuronal 
degeneration associated with Alzheimer's disease in relation to Hebbian synaptic modificat,on and cholinergic suppression of 
synaptic transmission. Hebbian synaptic modification is represented by the label Hebb, and evidence for cholinergic suppression 
of synaptic transmission is represented by ACh. Neuritic plaques (Plaques) may be associated with runaway synaptic modification 
due to Hebbian learning without cholinergic suppression, and neurofibrillary tangles (Tangles) may develop in regions giving rise 
to terminals affected by this runaway synaptic modification. Lack of Hebbian synaptic modification of the mossy fibers may prevent 
development of tangles in the dentate gyrus, and cholinergic suppression of synaptic transmission at axons arising from region 
CA3 may prevent development of tangles in this region. 

neurofibrillary tangles m entorhinal cortex layer II may 
show its earhest appearance in the most lateral region 
(Braak & Braak, 1991 ), which gives rise to the projec- 
tion to the outer molecular layer. 

In the framework presented here, suppression of 
synaptic transmission by neuromodulators such as 
acetylcholine can prevent the initiation and progression 
of runaway synaptic modification. Thus, it might be 
expected that once interference during learning starts 
to occur, the brain would possess a feedback mechanism 
whereby the chohnergic suppression of synaptlc trans- 
mission would increase in response to runaway synaptic 
modification. In Alzheimer's disease, it has been shown 
that the cholinergic innervation of the molecular layer 
of the dentate gyrus shows sprouting of cholinergic in- 
nervation (Geddes et al., 1985 ) and increased staining 
for AChE in some cases (Hyman et al., 1986). This 
has previously been attributed to the loss of the per- 
forant pathway innervation from entorhinal cortex, but 
may actually reflect an earlier process in response to 
the initiation of runaway synaptic modification. A sim- 
dar effect might underlie the increases of neuronal size 
m the rostral portion of the medial septum in nonhu- 
man primates showing age-related memory deficits 
(Rapp & Amaral, 1992). Cholinergic innervation could 
respond to external messengers released during runaway 
growth of synaptic connections with a corresponding 
increase. This might explain regions of dense cholin- 
ergic innervation found even in normal cortex (Me- 
sulam et al., 1992). Alternately, a more complex feed- 
back mechanism sensitive to the variance of neuronal 
activity could trigger increased cholinergic input in re- 
sponse to the greater spread of activity in the network. 

In later stages, Alzheimer's disease is characterized 
by striking decreases in the cortical levels of cholinergic 

enzymes (Davies & Maloney, 1976; Perry et al., 1977 ) 
and a degeneration of the nuclei of the basal forebrain 
giving rise to this cortical innervation (Whitehouse et 
al., 1982). The loss of cholinergic innervation could 
underlie the initiation of runaway synaptic modification 
in Alzhelmer's disease. Alternately, it might be expected 
that the increased feedback demands on the cholinergic 
innervation to slow the progression of runaway synaptic 
modification could caused degeneration of this system. 

The effect of acetylcholine on cortical synaptlc 
transmission has been shown to follow a dose-response 
curve that was fitted with the following equation (Has- 
selmo & Bower, 1992): 

J=0.72 1 + +0.28 (22) 

where C is the concentration of chohnergic agonist, and 
f i s  the percentage of synaptic transmission remaining 
during cholinerg~c modulation. This equation shows 
that on average about 72% of synaptic transmission 
was sensitwe to cholinergic suppression, with a K d of 
about 6 uM,  while 28% of synaptic transmission was 
not sensitive, leading to the asymptotic minimum. The 
portion of synaptic transmission insensitive to cholin- 
erg~c suppression may be necessary to maintain the 
capabihty for synaptic modification. 

Feedback mechanisms may increase the amount of 
cholinergic synaptic transmission ( f  = 1 - c) in pro- 
portion to the requirement presented in eqn (21 ). Ini- 
tially, increases in concentration (C) will be capable of 
preventing runaway synaptic modification. But as the 
level of synaptic transmission during learning ap- 
proaches the asymptote (0.28 in the equation above), 
the concentration required to maintain the relationship 
in eqn 21 goes to infinity. This would occur when the 
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top part ofeqn 21 approaches 1/0.28 times the bottom 
part. At this point, feedback activation of cholinergic 
modulation will be unable to prevent the progression 
of runaway synaptic modification, but the feedback 
mechanisms may place increasingly greater demands 
on the cholinergic innervation. The feedback mecha- 
nisms could ultimately underlie the development of 
neuronal degeneration in the basal forebrain cholinergic 
nucleL It should be noted that synaptic decay that is 
proportional to the strength of a synapse (Grossberg, 
1970) will help considerably in preventing these in- 
creased feedback demands. 

10. COMPARISON WITH A NONLINEAR 
SIMULATION OF CORTICAL PARAMETERS 

The results presented here apply to a linear associative 
memory, and cortical associative memory function has 
clear nonlinear properties. However, comparison with 
nonlinear simulations of cortical associative memory 
function suggests that the analysis of linear function 
provides a good qualitative description of the effect of 
interference during learning in a nonlinear network. 
The simulation presented here is similar to previous 
autoassociative memory simulations, which were stud- 
ied with both one-step synchronous dynamics and 
multi-step asynchronous dynamics (Hasselmo et al., 
1991, 1992; Hasselmo, 1993). However, this simulation 
has a heteroassociative structure intended to resemble 
associational connections between cortical regions. The 
details of the simulation are presented in the Appendix, 
along with a description of a performance measure 
based on normalized dot products. 

As shown in Figure 3, despite the nonlinearities, in- 
terference during learning causes runaway synaptic 
modification in this simulation of cortical heteroasso- 
ciative memory function. Ultimately, the network re- 
sponds to an individual input pattern presented to re- 
gion 1 during recall with elements of all patterns stored 
in region 2. As shown in Figure 6, 70% suppression of 
synaptic transmission during learning prevents this 
runaway synaptic modification. The final synaptic 
connectivity in these two simulations is illustrated in 
Figure 2, showing the dramatically increased number 
of connections modified during runaway synaptic 
modification. 

The simulation allowed testing of suppression of 
synaptic transmission during learning at a range of val- 
ues. The time course of change of performance in the 
simulation can be compared with the results from the 
analysis of the linear system. To obtain a notion of the 
relative time course of change of desired and undesired 
connections for different values of cs,p, we can deter- 
mine the time required to obtain a given connection 
strength W(t) for both the desired connections and the 

undesired connections. Rearranging eqn ( 16 ), we ob- 
tain 

t=  rjlog( [w(t) - W(O)] + (Zu)) . 
Z,j 

(23) 

The time required to reach a connection strength of 
W,j(t) = 1.0 from a starting strength of W,j(0) = 0 is 
shown for desired and undesired connections in Figure 
9, with the level of cholinergic suppression csup plotted 
on the y axis. In this case, the sum of input lines was 
6 and fl = 0. In this graph, the curve was computed 

(P) for desired connections with 2,,, - 1 and Z~ × 
W,k (0)2a ~P) = 0. For undesired connections, the curve 

"~P) W,k(O)2a~ p) 1. was computed with 2-, = 0and Y~× = 
As an approximation for the fact that undesired con- 
necUons would not grow in the simulations until desired 
connections had been strengthened, the curve for un- 
desired connections is added to the curve for desired 
connections. 

This analysis gives a good qualitative description of 
results from the nonlinear simulation of cortical asso- 
ciative memory function. Results from the simulation 
of cortical associative memory are plotted on the right 
in Figure 9, with larger black squares representing better 
performance (higher values of the performance measure 
P presented m the Appendix). The figure shows that 
the speed of learning to obtain good recall performance 
for a desired pattern compared to the speed of inter- 
ference from other patterns shows qualitatively the same 
pattern as the curves computed analytically. This is de- 
spite the fact that the simulation contains nonlinear 
input-output relations and nonlinear (saturating) 
growth of synapt~c connections. The qualitative features 
of the simulation are very close to the characteristics 
of eqn (23). In addition, very similar patterns of per- 
formance were found in simulations of olfactory cortex 
associative memory function (Hasselmo et al., 1992), 
even when the simulation utilized asynchronous settling 
dynamics similar to those of attractor neural networks 
(Hasselmo et al., 1991). 

Figure 9 also displays the curves obtained for dif- 
ferent values of H, showing that, with greater inhibition 
and a higher threshold of synaptic modification, the 
period of time for growth of undesired connections is 
larger. Note that in the equation for undesired connec- 
tions the time to attain a strength of 1 goes to infinity 
as H + f~ approaches ( 1 - Csup) Z~ W,k(O)latg p). Thus, 
undesired connections do not grow when synaptic 
transmission is suppressed below the level of inhibition 
and the threshold of synaptic modification. This indi- 
cates again that there is a proportional relation between 
the level of cholinergic suppression necessary to prevent 
interference during learning and the level of inhibition 
and the threshold of synaptic modification. As shown 
in Figure 9, results from simulations show a similar 
relationship between these variables. 
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FIGURE 9. Comparison of the results from analysis of the linear system [eqn (23)] with performance results from a nonlinear 
simulation of cortical associative memory function (Appendix). On the left, the time to attain a connection strength of Wg = 1 as 
computed with eqn (23) is shown for different values of c,~ in each graph. On the right, the performance measure computed from 
the nonlinear simulation of cortical associative memory function is shown across a number of learning cycles for different values 
of c u in each graph. Size of black squares represents performance level. The time course of growth of undesired connections in 
the equation corresponds to the time course of decay of performance in the nonlinear simulation. Different graphs are shown for 
different values of inhibition. As the level of inhibition (H) increases, less cholinergic suppression (c.,p) is necessary to prevent 
interference during learning. Thus, the growth of undesired connections and the decay in performance measure are delayed for 
values of (1 - c,,~) just above H, and are prevented for values of (1 - c,,p) less than or equal to H. 

11. RUNAWAY SYNAPTIC MODIFICATION 
IN SELF-ORGANIZING SYSTEMS 

In contrast to models of associative memory function, 
synaptic transmission at synapses undergoing Hebbian 
synaptic modification is a regular feature in models 
concerned with the self-organizing properties of cortical 
networks, since these models do not contain a separate 
input providing the predominant influence on post- 
synaptic activity• However, these models avoid the ex- 
ponential growth of a broad population of synapses by 
implementing various methods for ensuring that total 

synaptlc strength within the network stays within cer- 
tain bounds. The mechanisms for maintaining stability 
in many of these networks are difficult to relate to real 
biological systems, since many of them use afferent 
synapses which are both excitatory and inhibitory and 
perform learning on input patterns with a zero mean 
(Llnsker, 1988; Oja, 1989; Xu, 1993). These models 
differ from real cortical networks in that most inhibitory 
connections within cortical structures are purely local, 
and the longer-range afferent and associational con- 
nections of cortical structures appear to be primarily 
excitatory. In some of these networks, synaptic growth 
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is simply limited at certain positive and negative values 
(Linsker, 1988), and in others the learning rule is mod- 
ified to ensure that the sum of squares of synaptic 
weights remains constant (Oja, 1982, 1989). 

In networks using purely excitatory afferent syn- 
apses, some methods used to prevent runaway synaptic 
modification include the normalization of total synaptic 
strength arising from an individual input neuron (von 
der Malsburg, 1973; Miller et al., 1989) and decay of 
synaptic strength dependent upon postsynaptic activity 
(Grossberg, 1976; Carpenter & Grossberg, 1987). 
These features allow learning to be directly influenced 
by synaptic transmission without allowing the expo- 
nential growth of synaptic connections. A general no- 
tion of the characteristics of runaway synaptic modi- 
fication in a self-organizing system can be obtained if 
we consider a modification of eqn (9) in which mod- 
ifiable connections are the predominant influence on 
postsynaptic activity (i.e., 2a (p) = 0), and synaptic decay 
3" is gated by postsynaptic rather than presynaptic ac- 
tivity. Certain models of cortical self-organization use 
this type of postsynaptic gating of decay, along with 
numerous other features not present in these equations 
(Grossberg, 1972b; Grossberg, 1976; Carpenter & 
Grossberg, 1987). Here, a very simplified form is pre- 
sented simply to illustrate basic characteristics. The 
equation takes the following form: 

dl~)j (k~l ... (p)~. (p~ 
dt - ~ n , t l a ~  ]tlaj - 3'). (24) 

In this case, the system has the solution 

U ' , j  = Z e (  e t / *  j - 1) + 14"~j(O) (25) 

with 

Z,j k ~a ~ = i a 

and 

[ ,:)]l 
rj = 0(~a p)-  3" ~a ) . 

This form of the equation ensures that synaptic con- 
nections with postsynaptic activity but without presyn- 
aptic activity will decay exponentially because for ~a (p) 
-- 0 and 3" > 0, (~a (p) - 3") < 0. Although the exact 
mathematical features of this learning rule have not 
been demonstrated experimentally, the qualitative fea- 
tures of this effect resembles heterosynaptic depression, 
which has been shown in experimental preparations of 
structures such as the dentate gyrus (Gustafsson & 
Wigstrom, 1988; Sejnowski & Stanton, 1990). This 
form of the learning rule allows synapses with presyn- 
aptic activity to grow exponentially, as long as (~a (p) - 

3") > 0. If decay is scaled to synaptic weight (i.e., 3"W,k 

in place of 3"), the growth of synapses is asymptotic, 
as discussed above with reference to decay gated by 
presynaptic activity. 

This learning rule allows the feedforward connec- 
tions to region 2 to self-organize in response to an input 
pattern presented to region 1. Depending upon the ini- 
tial connectivity, sets of individual neurons in region 2 
can become strongly tuned to particular input patterns. 
As discussed further below, this mechanism may un- 
derlie the rapid formation of representations of episodic 
events in the dentate gyrus. If subsequent input activates 
some of the same neurons in region 2, these neurons 
will weaken their connections with components of the 
first pattern (due to the gated decay), and strengthen 
their connections with components of the second pat- 
tern. The weakening of specific connections is vital to 
maintaining stability in the system. 

As can be seen from the equation, insufficient decay 
strength can allow a breakdown in function, resulting 
in runaway synaptic modification within the network. 
In the extreme case, if 3' = 0, each synapse with pre- 
synaptic activity will grow exponentially, but excessive 
growth will occur even with decay if the decay rate is 
too slow to remove undesired connections during 
learning, or if partial presynaptic activity exceeds the 
level of decay. The problem is illustrated here for a 
network using decay, but would apply to an imbalance 
in any mechanism for the normalization of synaptic 
strength (Linsker, 1988; vonder Malsburg, 1973; Miller 
et al., 1989; Oja, 1989), though networks with the more 
realistic feature of purely excitatory connections be- 
tween layers will be more sensitive to this effect. Here 
it is proposed that neuronal degeneration in some re- 
gions in Alzheimer's disease may result from runaway 
synaptic modification due to an imbalance of the 
mechanisms of normalization of synaptic strength. 
Such an imbalance might result from flaws in the nor- 
mal molecular mechanisms regulating the strength- 
ening and weakening of synaptic connections, which 
could include mutations or overproduction of the amy- 
loid precursor protein, or molecular mechanisms re- 
sulting in the improper phosphorylation of the tau pro- 
tein. 

Normalization and decay of synaptic strength can 
be incorporated in associative memory models without 
disrupting their function, but in those cases, synaptic 
transmission must not be the predominant influence 
on postsynaptic activity during learning. Thus, once 
feedback connections are incorporated (Grossberg, 
1976; Carpenter & Grossberg, 1987) or information in 
separate processing streams is combined (Carpenter, 
Grossberg, & Reynolds, 1991 ), actwation dynamics 
must be controlled in a manner that prevents previously 
modified connections from interfering with the learning 
of new associations. In previous simulations, this in- 
volves complex activation dynamics resulting in the -~ 
rule (Carpenter & Grossberg, 1987; Carpenter et al., 
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1991), but a similar effect can be obtained with 
suppression of synaptic transmission during learning. 

12. OVERVIEW OF CORTICAL FUNCTION 

A full characterization of the behavioral deficits of Alz- 
heimer's disease will ultimately require a full working 
model of human memory function. This is beyond the 
scope of the present article, but a general framework 
will be provided for discussing the spread of neuropa- 
thology and the neuropsychological implications of 
these ideas. Already, considerable research on amnes]cs 
has indicated a heterogeneity of memory phenomena, 
with different aspects of memory function having dif- 
ferent anatomical localization (Squire, 1992). The 
memory deficits associated with the anatomical spec- 
ificity of Alzheimer's disease fit the general framework 
of this anatomical localization. In this framework, the 
behaworal symptoms of the disease can be character- 
lzed m terms of the initial progression of interference 
within the hippocampal formatmn, causing a break- 
down in memory function placing high demands on 
contextual and relational representations with an in- 
termediate time course. This accounts for the fact that 
in early stages of Alzheimer's disease, remote memory 
and impliot memory are retained--factors also re- 
tamed m amnesics. In the model, the gradual spread 
of interference into neocortical areas eventually per- 
turbs semantic representations and implicit memory, 

M E Has~elmo 

causing phenomena such as a broadening of semantic 
categories and hyperprimlng phenomena. Ultimately, 
the model suggests that the spread of interference phe- 
nomena into the long-term semantic representations 
of neocortical structures causes severe language and 
perceptual impairments such as those noted in late 
stages of Alzheimer's disease. Note that dependent upon 
the progression of runaway synaptic modification rel- 
ative to the nature of cognitive representations, the im- 
pairment could show greater relative severity for lan- 
guage or for visuospatml function. 

The overview of cortical function is presented m 
Figure 10. In this framework, the primary visual, sen- 
sory, auditory, and motor cortices would be the lowest 
layer of the hierarchy, with assocmtlon areas of pro- 
gressively higher order being represented by higher lev- 
els in the hierarchy (naturally, a more sophlst]cated 
representation will allow connections crossing levels of 
the hierarchy). The entorhinal cortex would be anal- 
ogous to the highest level of the neocortical regions. 
This area then projects into the dentate gyrus of the 
hlppocampal formation, whtch projects onward to re- 
gion CA3 and CA1. CA1 projects back to entorhlnal 
cortex either directly or via the subiculum (Amaral & 
Witter, 1989 ). In addition, the hlppocampal formatzon 
may influence the chohnergic modulatton of cortical 
structures arismg from the nuclei of the basal forebrain. 
This would include regulation of the cholinergic mod- 
ulation of the hippocampal formation arising from the 
medml septum vm output to the lateral septum, as well 

CA3 CA 1 

Dentate( )( )( )( )( )( ) J-,. eL. )~. .Z.  ~ 
gyrus ~ Sub]culum 

cortex 

°~i~rtl~efortlces 
FIGURE 10. Schematic diagram of the overview of cortical function. The three bottom layers are neocort,cal structures characterized 
by self-organizing feedforward end associative feedback connections between layers. Activity in primary cortical areas is associated 
with specific sensory stimuli and particular motor responses, association cortical regions form stable higher-order representations 
of this activity, and parahippocampal and entorhinal cortices form representations of information from different modalities. Layer 
II of entorhinal cortex projects to the dentate gyms, which is here assumed to form rapid representations of episodic events. 
Dentate gyms projects onward to region CA3, which has autoassocistive connections providing completion of missing elements 
of dentate gyms activity. The Schaffer collaterals linking region CA3 to region CA1 are assumed to store associations between 
CA3 activity and direct entorhinal input to CA1. Region CA1 projects to layer IV of entorhinal cortex (here layers II and IV are 
represented by a single set of neurons) either directly or via the subiculum, allowing the hippocampal representation to activate 
components of neocortical representations. The direct projection from entorhinal cortex to regions CA1 and CA3 is not shown. 
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as regulation of the cholinergic modulation of other 
cortical structures. 

The neocortical components of this framework con- 
sist of functional modules with self-organizing feedfor- 
ward connections and associative feedback connections. 
In this framework, cholinergic modulation plays an 
important role in setting the proper dynamics for 
learning and recall. During learning, modulation shuts 
down the associative feedback connections sufficiently 
such that feedforward connections are the predominant 
influence on neuronal activity at each level. This allows 
the hierarchy to develop a self-organized representation 
of the afferent information with progressively higher 
levels of representational sophistication, as in other 
models of self-organizing systems (Carpenter & Gross- 
berg, 1987; Linsker, 1988 ). Depending upon the learn- 
ing rule, the normalization of synaptic weights and the 
neuronal input-output functions, these self-organizing 
feedforward connections can form representations of 
specific input patterns or features of these patterns 
(Carpenter & Grossberg, 1987 ), or they can form prin- 
cipal component or subspace representations of the in- 
put covariance matrix (Oja, 1989; Xu, 1993). 

At the same time as these feedforward self-organized 
representations are being formed, the feedback con- 
nections will function as associative memory synapses. 
They will not be the predominant influence on post- 
synaptic activity, but they will be strengthened in a pat- 
tern such that they form an association between the 
higher-order representation and the representation at 
a lower level. The ultimate result is a network with 
essentially symmetric connections in which the feed- 
back connection matrix is the transpose of the feed- 
forward connection matrix. This resembles the types 
of representations formed by autoassociative back 
propagation (Baldi & Hornik, 1989), counter-propa- 
gation networks (Hecht-Nielsen, 1987), and instar- 
outstar networks (Grossberg, 1972b). However, in this 
case the network is folded back on itself such that the 
input layer and output layer are the same, as in adaptive 
resonance networks (Carpenter & Grossberg, 1987). 

During recall, removal of cholinergic modulation 
allows this network to show the essential characteristics 
of an associative memory, but in contrast to a single 
layer associative memory, this structure has a greater 
capacity and responds to input according to the higher- 
order representation of the input covariance matrix in 
different cortical layers. Specific behavioral tasks can 
be modeled in this framework as involving afferent in- 
put to particular primary cortical areas, and requiring 
motor responses based on specific representations ac- 
tivated by the afferent input. For example, naming of 
a hammer would involve visual input of a hammer 
coupled with a question "What is it?" Within the model 
cortex, a higher order representation will be activated 
by the input activity, and a response, "hammer," will 
be generated in cortical areas mediating speech. Note 

that this response does not require activation of the 
hippocampal formation. Aspects of implicit memory 
such as priming can also be described within this 
framework without involving activation of the hippo- 
campal formation. For instance, if subtle changes in 
weight due to Hebbian synaptic modification occur 
during the response to the hammer, subsequent stem 
completion of "ham--"  will more rapidly converge to 
the word "hammer" than to other words such as 
"hamper." 

This framework also attempts to account for the rel- 
atwe necessity of the hippocampus, entorhinal cortex 
and parahippocampal gyrus for explicit memory or re- 
lational memory. For example, if on the following day 
the subject is asked "What did I show you during testing 
yesterday?", the afferent input will not converge to a 
specific response based only on the representations ex- 
isting in neocortical structures. Instead, this type of 
representation is presumed to depend upon the highest 
levels of the cortical model--the subregions of the hip- 
pocampus. This relative segregation of the rapidly 
formed representations of explicit or relational memory 
might be required to provide greater stability for the 
neocortical representations. If neocortical representa- 
tions are constantly being updated by new information, 
this will cause instability of semantic representations 
(Gluck & Myers, 1992; McClelland et al., 1992; Rueckl, 
1992). This instability can be prevented if explicit or 
relational information initially has its strongest influ- 
ence within the hippocampus, and only gradually in- 
fluences cortical representations through the influence 
of feedback connections activated during subsequent 
behavior or possibly during sleep. Naturally, the more 
rapid modification of connections within the hippo- 
campus would make it more sensitive to runaway syn- 
aptic modification. Thus, the increased gain of the 
learning rules in the hippocampus would have to be 
accompanied by very strong normalization mecha- 
nisms, or very strong decay of previously formed rep- 
resentations. 

In this framework, the hippocampus forms rapid 
representations that underlie the intermediate com- 
ponent of exphcit memory, before the feedback from 
the hippocampus sufficiently alters neocortical pro- 
cessing to constitute consohdation of the new infor- 
mation. The strictly feedforward input to the dentate 
gyrus probably performs a major part of this process, 
forming representations similar to the self-organizing 
feedforward connections of other cortical layers, but 
forming them more rapidly, and drawing on broader 
relations received from the high-order representations 
of a variety of modalities. The output from these rapid 
representation neurons then projects via the mossy fi- 
bers to region CA3, where autoassociative mechanisms 
will ultimately provide completion capabilities. Finally, 
the representation is passed on to region CA 1 and the 
subiculum, which form associative connections with 



30 M E Hasselmo 

the entorhinal cortex. This framework resembles pre- 
vious theoretical frameworks for hippocampal function 
(Marr, 1971; McNaughton & Morris, 1987; Rolls, 
1990). 

In terms of the specific example presented above, 
the question "What did I show you in the test yester- 
day?" will activate a general representation of the ex- 
perimenter and the concept of testing. In a subject with 
an intact hippocampus, this activation should be suf- 
ficient to activate at least a component of the rapid 
representation formed in the feedforward connections 
to the dentate gyrus on the previous day, possibly based 
primarily on the appearance of the experimenter and 
the room itself. Within region CA3, this activity will 
undergo completion, activating the components asso- 
crated with the hammer. This activity will propagate 
back through region CA1 and the subiculum to the 
entorhinal cortex, and on to visual areas encoding the 
appearance of the hammer and the language areas that 
constitute the response "a hammer." Within this general 
framework, the spread of neuropathological features, 
and the neuropsychological symptoms of Alzheimer's 
disease will be discussed. Obviously, this is only an ini- 
tial sketch. More detailed computational treatments are 
m preparation. 

13. SPREAD OF INTERFERENCE DURING 
LEARNING IN MULTISTAGE MODELS  

Interference during learning and runaway synaptic 
modification has the capacity to spread between dif- 
ferent regions of a cortical model such as the one pro- 
posed in the previous section. In particular, the asso- 
ciative feedback connections can provide the basis for 
the spread of runaway synaptic modification from the 
hippocampus back into neocortical structures. This 
spread occurs more easily ff the patterns being asso- 
ciated at each level are overlapping. However, interfer- 
ence can spread to a region in which orthogonal pat- 
terns are being stored if the patterns are presented more 
than once out of sequence. Consider, for example, a 
network with three regions, with activity of the units 
in each region designated by la, 2a, and 3a. The activity 
between regions 1 and 2 shows the first-order interfer- 
ence described previously in eqn (6).  The learning rule 
for the connections between region 2 and region 3 will 
then have as its presynaptic component the activity in 
region 2 [that was presented as postsynaptlc activity in 
eqn (6)] .  The focus of this section is to show that in- 
terference will spread between regions, not to fully 
characterize that interference. For simplicity, the equa- 
tions will include only a portion of the effects ofsynaptic 
transmission at each stage. For considering the effects 
of first-order interference, the equations will ignore the 
component of learning due to synaptic transmission 
from region 2 to region 3, leaving us with only the 
postsynaptic activity due to direct afferent input (satP)). 

Thus, for learning of patterns q2, analogous to eqn (6),  
the learning rule will take the form 

A3/W(t + 2) = 3a(t + 2)2a(t + 1) r 

= [3a~q2)][2 a(qz) + (la~q')Tla~'q2))2a(q')]T. (26) 

For considering the spread of interference into the 
next set of connections during learning of patterns p, 
we consider the effect ofsynaptic transmission between 
region 2 and region 3, but not between region 1 and 2, 
and obtain for the learning rule 

A32W = (3a(P) + 32W2a~,P))2atP)I 

: 3 alp) -1- Z "~a(q2)2a(q2)12a(P) -]- 3 a(q2) 
q2: I 

2 l } X (la(qDTla(q2))2a(qO 2 a(p) 2 a(p)l  
1. q l :  1 

= 3 a ( p )  + 2a(q2)I2alP) -~- ~ (la(qOTla(q2)) 
Lq2=[ q l = l  

X (2a(qOl2a(P))]3a(q2)}2a(p)T (27) 

This equation shows that interference developing m 
the set of connections from region 1 to region 2, de- 
pendent on the overlap between patterns in region 1 
(latq')T~a(q2)), can influence the interference during 
learning in the connections from region 2 to region 3. 
However, the interference can only spread to region 3 
m proportion to the overlap between patterns in region 
2 (2a~q')r2alP)). Thus, orthogonal patterns in region 
2 will allow no spread of interference into the connec- 
tions beyond region 3 if each pattern is learned only 
once. However, repeated learning of the same patterns 
in region 2 will result in a spread of interference because 
the scalar (dot) product of pattern q~ with pattern p is 
nonzero if q~ = p 

These effects can be observed m simulations of a 
multilayer associative memory, as shown in Figure 11. 
Here, a three-region network has been trained with 
overlapping patterns in region 1, and orthogonal pat- 
terns in regions 2 and 3. Note that interference develops 
initially on the connections between region 1 and 2, 
but with repeated learning of patterns in region 2, in- 
terference spreads into region 3. Associative learning 
between 2 and 3, without activity in region 1, does not 
develop interference during learning because the pat- 
terns are orthogonal. 

The analysis and simulations in this section suggest 
a framework for describing the progression of neuronal 
degeneration between different cortical regions in Alz- 
heimer's disease. Neuronal degeneration appears to 
spread along well-established intracortical connections 
in Alzheimer's disease (Pearson et al., 1985; Arnold et 
al., 1991 ). This has previously been attributed to the 
spread of a specific external pathogen, but if runaway 
synaptic modification underlies the neuronal degen- 
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FIGURE 11. (A) Spread of interference between different layers 
of a multilayer associative memory. Region 1 receives five 
overlapping input patterns, while regions 2 and 3 receive five 
nonoverlepping (orthogonel) input patterns. The recall of the 
entire network in response to afferent input panems comprising 
elements of a single association is shown for different stages 
of learning. Results show that interference during learning in 
the connections between regions 1 and 2 gradually causes 
runaway syneptic modification end more intrusions from other 
patterns during recall. Eventually, the interference during 
leeming spreads to the connections between regions 2 end 3, 
causing runaway synaptic modification and a decay of recall 
in region 3 as well• (B) Leeming in regions 2 and 3 without 
input to region 1 does not show interference during learning 
because the input patterns to regions 2 and 3 are orthogonel, 
preventing any development of interference. 

eration of Alzheimer's disease, the spread of progression 
between different regions may follow a mechanism such 
as that described in eqn (26). 

14. RELATION TO NEUROPSYCHOLOGICAL 
EVIDENCE 

The theoretical framework of cortical function de- 
scribed here can be used to model some of the neu- 
ropsychological symptoms of patients with senile de- 
mentia of the Alzheimer type (SDAT). A schematic 
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representation of the development and spread of run- 
away synaptic modification in different stages of the 
cortical model is shown in Figure 12. In this schematic 
representation, runaway synaptic modification initially 
appears in the projection from the entorhinal cortex 
to the dentate gyrus, subsequently influencing the pro- 
jection from CA 1 to the entorhinal cortex, and finally 
spreading along feedback connections to progressively 
lower-order neocortical structures. This matches the 
description of the progression of degeneration based on 
neuropathological evidence (Braak & Braak, 1991 ). 
The figure also gives a very simplified overview of how 
this breakdown in function might be able to account 
for some of the following experimental data. 

1. Patients with SDAT show evidence for increased 
intrusions in a number of different tasks (Fuld et al., 
1982; Troster et al., 1989; Jacobs et al., 1990; Delis et 
al., 1991 ). In the Visual Reproduction Test of the 
Wechsler Memory Scale-Revised (WMS-R), SDAT 
patients show increased numbers of intrusions, adding 
components of previously learned visual patterns dur- 
ing free recall of single patterns (Troster et al., 1989; 
Jacobs et al., 1990). In the California Verbal Learning 
Test, SDAT patients show high levels of free-recall and 
cued-recall intrusions, similar to Korsakoff's patients 
(Delis et al., 1991 ). 

In the framework presented here, these effects are 
attributed in initial stages of the disease to runaway 
synaptic modification in the innervation of the molec- 
ular layer of the dentate gyrus by neurons of layer II of 
entorhinal cortex. These connections have a strong ca- 
pacity for synaptic modification, as shown in studies 
of long-term potentiation (McNaughton, et al., 1978). 
Although cholinergic suppression of synaptic trans- 
mission in the middle molecular layer (Kahle & Cot- 
man, 1989) may give these synapses associative mem- 
ory function and greater stability, the synapses of the 
outer molecular layer presumably have a significant in- 
fluence on postsynaptic activity during learning, giving 
them self-organizing characteristics. Thus, these con- 
nections might be more sensitive to the runaway syn- 
aptic modification described in eqn (25). If this region 
provides the basis for immediate retention of a wide 
range of episodic information, then it would have to 
deal with a buildup of considerable overlap between 
stored information [as illustrated in eqn (21 )] due to 
the constant storage of information and the fact that 
episodic memories frequently consist of rearrangements 
of previously stored information. 

The synapses of the dentate gyrus could avoid run- 
away growth by a number of mechanisms. As noted 
above, the outer molecular layer does not show 
suppression of synaptic transmission. However, gated 
or ungated decay of synaptic strength could help reduce 
the pressure on the capacity of this system by gradually 
removing initial conditions due to previously stored 
information. Phenomena of heterosynaptic and homo- 
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FIGURE 12. A simplified representation of how runaway synaptic modification might progress in cortical regions, and the effect of 
this progression on memory function. Populations of neurons in different areas are represented by circles, with darker shading 
representing greater activity. Only connectivity strengthened during particular learning episodes is shown. In the column on the 
left, cortical activity is shown during learning of new stimuli, while the column on the right shows the recall in response to a context 
cue. Rows A-E show different stages of the spread of runaway synaptic modification. (A) Normal function during exposure to the 
visual image of a saw presented in a specific context. Neocortical representations of the visual image of the saw and the corresponding 
name have been formed previously, allowing presentation of the stimulus to activate higher-order representations that allow the 
response "saw." Activity in association cortices activates a particular pattem of neurons in the entorhinal cortex. Spread of activity 
from the entorhinal cortex to the dentate gyms activates two neurons, and connections between these two neurons and the active 
entorhinal neurons are strengthened, rapidly forming a new representation of the episodic memory. Activity spreads along the 
mossy fibers to region CA3, where autcassociative synapses are strengthened. In addition, activity spreads along the Schaffer 
collaterals into region CA1, activating a sparser representation of the episodic memory. Finally, connections between neurons in 
CA1 and the subiculum and active neurons in entorhinal cortex are strengthened (layers II and IV of entorhinal cortex are represented 
by the same set of circles). During recall, presentation of only the context directly activates only one neuron in enterhinal cortex. 
This neuron weakly activates a dentate gyms neuron. In region CA3, autcassociative recall allows the weak input from the dentate 
gyms to activate the full representation of the episode, with activity spreading on to CA1 and the subiculum. The spread of activity 
back to entorhinal cortex activates other components of the episode, allowing recall of the visual image of the saw and the proper 
response "saw." (B) Early stage of runaway synaptic modification during learning and recall of a second item. A visual image of 
a hammer is presented, activating neocortical representations that result in a pattem of activity in entorhinal cortex sharing components 
with the previous activity due to the context and the category of the item as a tool. This activates a subset of dentate gyms neurons 
overlapping with the previous subset. With insufficient normalization or decay of synaptic connections, the porforant pathway from 
entorhinal cortex to the dentate gyms (arrow) shows the initiation of runaway synaptic modification due to partial recall of the saw 
episode (see Figure 13 for more detail). However, the activity in the additional neuron is not sufficient to perturb the representation 
of the hammer episode in region CA3, and a separate, orthogonal representation is formed in region CA1 and the subiculum. Thus, 
during recall, presentation of the context activates the hippocampal circuit in such a manner that the item hammer can be recalled 
correctly. (C) Progression of runaway synaptic modification into back projections from region CA1 and subiculum to entorbinal 
cortex (arrow). If runaway synaptic modification has caused a greater overlap in the representation formed in the dentate gyms, 
or the imbalance of cortical parameters is larger, the presentation of the hammer might cause a greater spread of activity into 
dentate gyms neurons previously activated by the saw episode. In this case, the CA3 representation links components of both 
episodes, and neurons in CA1 and the subiculum representing both episodes are activated. Activity spreads beck to entorhinal 
neurons involved in encoding both episodes, resulting in runaway syneptic modification of the back projections (note that excess 
activity spreads into neocortical areas, but these more stable representations are not yet perturbed, allowing proper identification 
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FIGURE 13. Schematic representation of runaway synaptic 
modification in the perforant path. (A) Presentation of the saw 
in a particular context activates a subset of three entorhinal 
cortex neurons. Two dentate gyrus neurons receiving input from 
all three of these neurons are activated and those connections 
are strengthened. (B) Leaming with decay. During presentation 
of the hammer in a similar context, two dentate gyrus neurons 
are activated, including one activated during presentation of 
the saw. Connections between active neurons are strength- 
ened, while postsynaptic normalization or gated decay allows 
weakening of connections from inactive entorhinal neurons. If 
a postsynaptic threshold of synaptic modification is assumed, 
presynaptic normalization or gated decay can cause weakening 
of connections to the less active dentate gyros neuron (con- 
nections decreasing in strength are shown with dashed lines.) 
(C) Learning without decay. With the second input, runaway 
synaptic modification can occur if gated decay is not sufficiently 
strong. In this case, the spread of activity representing the 
recall of the previous event (learning of the saw) activates the 
top dentate gyros neuron, leading to strengthening of input to 
this neuron, and growth of additional connections between en- 
torhinal neurons encoding the hammer episode and the dentate 
gyros neuron previously representing the saw episode. In ad- 
dition, the connections from the inactive entorhinal cortex neu- 
rons are retained, which will exacerbate later runaway synaptic 
modification. 

synaptic long-term depression (Sejnowski & Stanton, 
1989) suggest that pre- or postsynaptic activity alone 
can lead to weakening of synaptic connections, sup- 
porting the possibility of postsynaptic and presynaptic 
gated decay. Mechanisms involving axonal transport 
may allow for a rapid reallocation of presynaptic re- 
sources, allowing normalization of synaptic strength 

due to newly strengthened synapses removing resources 
from previously strengthened synapses. [ Synapses that 
show long-term potentiation also show considerable 
posttetanic potentiation (PTP) ( McNaughton, 1982 ), 
a rapidly decaying form of synaptic modification (r < 
100 s) that might be the basis of some immediate or 
iconic memory function.] 

In the framework presented here, recall of previously 
learned information during storage of new information 
could cause a mingling of representations of the infor- 
mation in the dentate gyrus, as shown in Figures 12 
and 13. For example, these figures show a highly sim- 
plified representation of cortical activity during learning 
and recall of a particular stimulus. In a trial in which 
the subject is presented with a saw, a subset of dentate 
gyrus granule cells might be activated. Synapses be- 
tween active entorhinal cortex neurons and active 
granule cells will be strengthened. 

Subsequently, during the trial in which the subject 
views a hammer, neurons in the entorhinal cortex ac- 
tivated during the viewing of a saw might be activated 
due to some shared feature of the stimulus or the con- 
text. That is, the entorhinal representation of the epi- 
sode in which the saw was presented might overlap with 
the entorhinal cortex activity generated during presen- 
tation of the hammer. In this case, some of the dentate 
gyrus granule cells activated by the hammer episode 
might also have been activated by the saw episode. In 
a normal subject, decay gated by postsynaptic activity 
or the postsynaptic reallocation of synaptic strength 
would weaken the synapses between any inactive en- 
torhinal neurons that previously represented the saw 
and the dentate gyrus granule cells that are active during 
presentation of the hammer. Connections undergoing 
decay are shown as dotted lines in Figures 12 and 13. 
In this manner, the granule cells representing the ham- 
mer episode weaken their connection with most com- 
ponents of the saw episode, and strengthen their con- 
nection with entorhinal neurons active during the 
hammer episode. During recall, this will decrease the 
likelihood of components of the previous saw episode 
activating granule cells representing the hammer epi- 
sode. At the same time, decay gated by presynaptic 

of the hammer during its presentation). In this case, during recall, presentation of the context may activate only a subset of dentate 
gyros neurons, but region CA3 will recall elements of both stored patterns, causing activation of neurons representing both events 
in region CA1, the subiculum and entorhinal cortex. This could result in the erroneous response of "saw" rather than "hammer," 
or an inability for neocortical structures to settle into any response. Note that the likelihood of intrusions or interference should be 
greater for more similar events. (D) Frequent coactivation of cortical representations causes runaway synaptic modification to 
spread to the more slowly modified neocortical representations (arrow). Frequent interference during learning such as that shown 
in (C) has led to consistent coactivation of neurons in entorhinal cortex associated with both tools during presentation of either 
the hammer or the saw. This has led to strengthening of feedforward and feedback connections between the visual and verbal 
representations of the saw and the semantic representation of the hammer, and vice versa, representing the spread of runaway 
synaptic modification into neocortical structures. Thus, in response to presentation of the visual image of the hammer, the subject 
has all representations activated, and may respond with "saw" or "tool," instead of "hammer." (E) Recall is shown at an even 
later stage of degeneration, when runaway synaptic modification has led to neuronal death, destroying input and output from the 
hippocampus. In this case, presentation of the context does not activate any component of the hippocampus, and episodic memory 
is severely impaired. 
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activity or the presynaptic normalization of synaptic 
connections between entorhinal neurons activated by 
the hammer episode and inactive granule cells that rep- 
resented the saw episode. During recall, this will de- 
crease the likelihood of components of the hammer 
episode activating granule cells representing the saw 
episode. 

As shown on the right in Figure 13, impairment of 
these mechanisms of decay or normalization would al- 
low the connections confounding the two events to re- 
main. In addition, these connections and additional 
undesired connections would be strengthened due to 
the spread of activity along previously strengthened 
connections. In this case, upon being presented with 
the context for viewing the hammer, the entorhinal 
neurons encoding this episode would activate dentate 
gyrus neurons encoding both the hammer episode and 
the saw episode. This might result in a response of 
"saw," which would be interpreted as an intrusion from 
previous learning trials. Interference effects within a 
more complicated cortical model have been used in a 
similar framework to describe some of the neuropsy- 
chologacal features of schizophrenia (Grossberg & Pepe, 
1970, 1971 ). In particular, the development of spurious 
associations due to crosstalk in the network was linked 
to punning behavior in schizophrenics. In some cases, 
SDAT patients show memory deficits without intrusions 
of previous information (Kopelman, 1985 ). However, 
this does not necessarily mean that interference has 
not occurred because the activation of representations 
of multiple different episodes might make it impossible 
for any specific response to be generated, as proposed 
in discussions of the interference theory of memory 
function (Postman & Underwood, 1973). 

2. Interference effects in tests of short-term reten- 
tion. Patients with SDAT show deficits in the Brown- 
Peterson task, which requires free recall of three items 
presented before a period in which a distractor task is 
performed (Corkin, 1982: Kopelman, 1985; Morris, 
1986). They also show deficits on delayed recall (after 
2 mln) of 16 stimuli that had been presented repeatedly 
in a Delayed Recognition Span Test (Moss et al., 1986). 
Impairments on the Brown-Peterson task have previ- 
ously been attributed to proactive interference effects 
from previously learned material because even normal 
subjects show much better recall on the first few trials 
(Keppel & Underwood, 1962). In addition, it has been 
shown that neurological syndromes such as Korsakoff's 
disease increase the sensitivity to proactive interference 
from similar stimuli in a preceding trial in this task 
(Butters & Cermak, 1980). Currently, tests are being 
performed to determine if subjects with SDAT show a 
similar increased sensitivity to proactive interference 
in this task. 

Once interference during learning begins to occur, 
it will lead to increased overlap between new memories 

and previously stored information [eqn (21)], thereby 
enhancing interference during subsequent behavior. In 
this framework, the more rapid loss of information 
during the first 2 rain before free recall in SDAT patients 
(Moss et al., 1986) is attributed to interference from 
the intervening information. It is plausible that perfor- 
mance at 15 s depends largely on persistent activity or 
effects of posttetanic potentiation within neocortical 
structures. Recall based on these phenomena will not 
show sensitivity to interference during learning because 
they do not involve synaptic modification that is Heb- 
bian in nature. In contrast, recall at 2 min may depend 
upon Hebbmn synaptic modification of the input to 
the dentate gyrus, which is sensitive to interference 
during learning. 

3. Sparing of certain aspects of implicit memory 
function. In particular, SDAT patients show normal 
priming in certain tasks such as perceptual priming 
(Nebes, Martin, & Horn, t984; Keane et al., 1991) 
with hyperpriming phenomenon in certain semantic 
priming tasks (Chertkow & Bub, 1990). In other stud- 
ies, SDAT patients show priming that does not show 
differences dependent on semantic-relatedness (Chert- 
kow, Bud, & Seidenberg, 1989), and there is evidence 
for impaired priming in other tasks (Keane et ai., 
1991 ). It is possible that these different effects represent 
different stages of the breakdown of function in Alz- 
heimer's disease. 

In the framework presented here, implicit memory 
phenomena are presumed to be mediated not by the 
hippocampal formation, but by neocortical structures. 
In the model, these structures are assumed to have a 
smaller gain ()7)of synaptic modification. Thus, while 
presentation of information causes large changes in 
synaptic strength within the dentate gyrus and hippo- 
campal formation, much smaller changes are caused 
in neocortical structures. Although long-term poten- 
tiation has been described in neocortical structures 
(Bear, Press, & Connors, 1992), it IS more difficult to 
obtain and generally smaller in amplitude. In the model 
presented here, these changes are presumed to occur 
at a representational level below that of episodic events. 
At this level in the model, specific convergence to a 
word such as hammer in a very general context (free 
recall) is more difficult to obtain. However, with cues 
that partially activate specific connections primed pre- 
viously, such as " h a m - - , "  convergence to "hammer" 
rather than "hamper" will appear more rapidly and 
with higher probability. Because this priming involves 
smaller changes at connections between representations 
that are modified only very slowly, they will be less 
sensitive to interference during learning and runaway 
synaptic modification than the representations formed 
in the hippocampal formation. However, once runaway 
synaptic modification spreads along back projections 
into neocortical structures, the result could be hyper- 
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priming and priming independent of semantic cate- 
gories, such as that observed in some studies (Chertkow 
& Bub, 1990; Chertkow et al., 1989). 

4. Eventual deficits in semantic memory. In naming 
tasks, SDAT patients show frequent reversion to su- 
perordinate semantic categories and errors using se- 
mantic-associative terms that increases in longitudinal 
tests (Bayles & Tomoeda, 1983; Hodges, Salmon, & 
Butters, 1992; Huff, Corkin, & Growdon, 1986; Martin 
& Fedio, 1983; Nebes, 1989; Ober et al., 1986). This 
effect would depend upon the spread of runaway syn- 
aptic modification along feedback connections from the 
hippocampal formation and entorhinal cortex to re- 
gions of the association cortex, as shown in Figure 12. 
Within any one cortical region, runaway synaptic 
modification will tend to follow the boundaries of cog- 
nitive representations, lumping together representations 
of items that share features. Thus, a group of objects 
with similar attributes will be analogous to binary pat- 
terns with a higher dot product between patterns within 
the set than with patterns from other categories. Pat- 
terns of the same type will interfere with each other 
before interfering with other categories, resulting in an 
intermediate stage where runaway synaptic modifica- 
tion occurs along category boundaries, lumping indi- 
vidual tools together and individual vegetables together, 
without lumping tools with vegetables. At this stage, 
convergence to a single exemplar of a category, such as 
hammer or saw, is less accurate, but the activity all falls 
within a single superordinate category such as tool. This 
phenomenon could account for the semantic associate 
errors and use of superordinate terms in naming tasks 
by patients with SDAT (Bayles & Tomoeda, 1983; 
Hodges et al., 1992; Huffet al., 1986; Martin & Fedio, 
1983; Nebes, 1989; Ober et al., 1986). 

5. Temporally homogeneous impairments of remote 
memory function. SDAT patients show consistent ev- 
idence for an impairment of remote memory without 
a temporal gradient, that is, without consistent differ- 
ences in memory for different decades (Wilson et al., 
1981; Corkin et al., 1984). Though the effects of in- 
terference during learning will be most marked for new 
information being stored, the spread of runaway syn- 
aptic modification back initially into temporal lobe 
neocortex and ultimately other cortical areas will grad- 
ually cause retroactive interference with the informa- 
tion referred to as remote memory. Thus, the model 
could account for the consistent evidence for impair- 
ments of remote memory function in SDAT (Wilson 
et al., 1981; Corkin et al., 1984). Because the interfer- 
ence will depend more upon the similarity of the in- 
formation than upon temporal recency, the effects of 
Alzheimer's disease on remote memory should be rel- 
atively diffuse, rather than showing a consistent tem- 
poral gradient. Although the stereotype of senility usu- 
ally includes a bias toward preserved recall of early 

memories, experimental data shows relatively even im- 
pairment across different decades (Wilson et al., 1981 ). 
The apparent preservation of early memories is attrib- 
uted to frequent recital of well-rehearsed early mem- 
ories or confabulation (Corkin et al., 1984). In fact, 
the frequent referral to a few memories is suggestive of 
a system in which all memory function has become 
focused on a few stored associations. This could result 
from the mathematical tendency of a matrix of con- 
nections to push postsynaptic activity progressively to- 
ward the eigenvectors with the largest eigenvalue. In- 
terference during learning could result in the persistent 
recall of a few very strong memories. 

6. Modular specificity of deficits in SDAT. In dif- 
ferent cases, impaired cognitive function can show se- 
lectivity for particular modalities, more strongly influ- 
encing either language function or visuospatial pro- 
cessing (Albert & Lafleche, 1991 ). In the framework 
described here, this can be accounted for by simply 
extending the phenomenon described for semantic cat- 
egories. If the initial occurrence of runaway synaptic 
modification follows the bounds of semantic categories 
(due to local imbalances of specific parameters or due 
to the amount of correlation between the different pat- 
terns being stored), then further growth will follow the 
bounds of larger-scale categorical distinctions. If run- 
away synaptic modification initially occurs within cor- 
tical language areas, it will subsequently spread to neu- 
rons sharing components with the affected areas, that 
is, other language areas; if the phenomenon initially 
occurs in areas subserving visuospatial processing, the 
subsequent spread will more strongly influence regions 
involved in visuospatial processing. Although descrip- 
tions of the progression of Alzheimer's disease that de- 
pend on the spread of an internal pathogen must appeal 
to the spatial proximity of these pathways, the frame- 
work presented here allows for a description of pro- 
gression that actually links functional cognitive struc- 
tures to the pattern of progression of pathology. 

15. DISCUSSION 

The dynamics of learning in a model of cortical asso- 
ciative memory function can be described by solving 
a system of nonhomogeneous differential equations 
combining the learning rule and activation rule, as 
shown in Section 5. This analysis shows that when syn- 
aptic transmission is allowed during synaptic modifi- 
cation, previously strengthened connections enhance 
their own growth, allowing for exponential growth of 
connections required for associative memory function. 
However, this same effect can lead to the exponential 
growth of undesired connections due to interference 
between patterns. This interference during learning can 
impair associative memory function by causing run- 
away synaptic modification within the network, as 
shown in Figures 2 and 3. 
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Suppression ofsynaptic transmission during learning 
(Figure 4) can slow the progression of runaway synaptic 
modification, as discussed in Section 7. This suppres- 
sion can completely prevent the initiation of interfer- 
ence during learning if it brings the activity of neurons 
not receiving direct afferent input below the threshold 
of synaptic modification, as shown in Figures 5 and 6. 
However, as additional associations are stored within 
the network, eventually a critical capacity will be 
reached beyond which interference during learning 
cannot be prevented. The metabolic demands or ex- 
citotoxic effects of runaway synaptic modification could 
be severe enough to cause neuronal degeneration. Thus, 
the analysis presented here could provide a theoretical 
framework for describing the initiation and progression 
of neuronal degeneration found in Alzheimer's disease. 

Most previous models of cortical associative memory 
function have ignored the normal activation dynamics 
of the network during learning (Amari, 1977: Ander- 
son, 1972; Amit, 1988; Amlt et al., 1990; Kohonen et 
al., 1977; Kohonen, 1972; Hopfield, 1982). These re- 
searchers realized that allowing synaptic transmission 
during synaptic modification in an associative memory 
would cause the connectivity within the network to 
"blow up" (Kohonen, 1988 ). However, most prevailing 
theories of long-term potentiation depend upon some 
synaptic transmlssmn at the synapse being modified 
(Gustafsson & Wigstrom, 1988; Brown et al., 1990). 
Therefore, it appears biologically unrealistic to com- 
pletely suppress activation dynamics during learning. 
As shown here, partial suppression of synaptic trans- 
mission during learning coupled with inhibition or de- 
cay of synaptlc strength (Grossberg, 1970, 1972a) can 
prevent the development of interference. Thus, evidence 
for selective cholinergic suppression of intrinsic fiber 
synaptic transmission (Hasselmo & Bower, 1992) pro- 
vides a putative neurophysiological mechanism for what 
has been a standard feature of associative memory 
models for over 30 years. 

As summarized in Sections 6, 8, and 12, this work 
suggests a theoretical framework for describing the se- 
lective distribution of neuronal degeneration in Alz- 
heimer's disease (Ball, 1972; Brun & Gustafson, 1976: 
Hyman et al., 1984; Arnold et al., 1991; Braak & Braak, 
1991 ). Interference during learning would put demands 
on an activated neuron to strengthen connections at a 
considerably greater number of synapses than in normal 
learning. The metabolic demands or excitotoxic effects 
of this runaway synaptic modification might result in 
the type of neuronal degeneration found in Alzheimer's 
disease. Regions showing Hebbian modification without 
suppression of synaptic transmission will be particularly 
vulnerable to the initiation of runaway synaptic mod- 
ification, as illustrated in F~gure 8. This might explain 
the selective sensitivity to neuronal degeneration of 
neurons in the lateral entorhinal cortex layer II pro- 

jecting to the outer molecular layer of the dentate gyrus 
(Hyman et al., 1984; Arnold et al., 1991; Braak & 
Braak, 1991 ). These connections show strong associa- 
tive long-term potentiation (McNaughton et al., 1978: 
Levy & Steward, 1979), without suppression of syn- 
aptic transmission by acetylcholine (Kahle & Cotman, 
1989). This would also predict that projections from 
the neurons showing neuronal degeneration in region 
CA1 and the subiculum have a strong capacity for 
Hebbian synaptic modification, without cholinerg~c 
suppression. 

This work suggests that the effect of neuromodula- 
tory agents such as acetylcholine may play a vital role 
in preventing the breakdown of associative memory 
function. Experimental evidence for selective cholin- 
ergic suppression of synaptic transmission was obtained 
from the primary olfactory cortex ( Hasselmo & Bower, 
1992). However, cholinergic suppression of synaptlc 
transmission has been found in the hippocampus and 
neocortex, though its selectivity for afferent versus in- 
trinsic fiber pathways has not been investigated (Ya- 
mamoto & Kawal, 1967; Hounsgaard, 1978; Valentino 
& Dingledine, 1981 ; Kahle & Cotman, 1989; Sheridan 
& Sutor, 1990). This cholinergic suppression of syn- 
aptic transmission may prevent runaway synaptic 
modification at sets ofsynaptic connections such as the 
Schaffer collaterals, which show long-term potentiation 
with Hebblan properties (Wigstrom et al., 1986; Kelso, 
Ganong, & Brown, 1986). Much theoretical work has 
focused on the possible role of the hippocampus as an 
associative memory (Marr, 1971; McNaughton & 
Morris, 1987). Previously, the clamping of activity 
during learning m this region has been attributed to 
very strong synaptic inputs referred to as detonator 
synapses (Marr, 1971; McNaughton & Morris, 1987 ), 
but with cholinerglc suppression of synaptic transmis- 
sion during learning, such synapses need not be present. 

This theory of the progression of Alzhelmer's disease 
is neutral with respect to specific etiological factors. 
The initiation of runaway synaptlc modification could 
result from a subtle imbalance of the parameters of 
cortical function, including but not limited to the 
threshold of synaptic modification, the level of feedback 
or feedforward inhibition, the decay of synaptic 
strength, the strength of activation along previously 
modified connections, and the cholinergic suppression 
of synaptlc transmission. Other factors that might play 
a role are the threshold of action potential generation 
and the cholinerglc enhancement of postsynaptic ex- 
citability (Hasselmo & Barkai, 1992; ffrench-Mullen 
et al., 1983). Such an imbalance could be caused by 
genetic factors, environmental factors, or simply by ex- 
ceeding the effective capacity of the network. This sug- 
gests that features of the molecular biology of Alzhel- 
mer's disease, such as the build-up of amyloid protein 
(Selkoe, 1991; Tanzi et al., 1991; Roberts et al., 1993) 
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and the development of paired helical filaments 
(Grundkeiqbal et al., 1986; Harrington et al., 1991 ), 
should be associated with excessive demands upon the 
cellular mechanisms of synaptic modification. 

If the neuronal degeneration of Alzheimer's disease 
results from the effects of runaway synaptic modifica- 
tion, then eqn (16) might provide a mathematical ap- 
proximation of the time course of initiation and pro- 
gression of this degeneration. As shown in eqn (16) 
and Figures 7 and 9, the progression of runaway syn- 
aptic modification depends upon the size of the coef- 
ficient Z and the time constant r. For a small imbalance 
of cortical parameters, the network can function nor- 
mally for a considerable period. However, when the 
network starts to reach the limits of its capacity, inter- 
ference during learning enters a positive feedback cycle, 
resulting in the exponential progression of runaway 
synaptic modification. A more severe imbalance of 
cortical parameters will cause an earlier development 
of interference during learning, and in this case the 
progression will be more rapid. This feature of the 
model would be in keeping with evidence suggesting a 
more rapid progression of Alzheimer's disease with a 
presenile onset (Hansen et al., 1988; Seltzer & Sherwin, 
1983). However, some clinical evidence does not sup- 
port this difference in speed of progression (Huff et al., 
1987). Interestingly, this analysis suggests that Alzhei- 
mer's disease may not be a disorder with a specific time 
course, but may progress with a continuum of time 
courses dependent upon the severity of the underlying 
cortical imbalances. In particular, it suggests that the 
neuronal degeneration may progress at an unnoticed 
level for many years prior to the onset of a pathological 
state. This is supported by evidence showing a similar 
distribution of neuropathology on a much smaller scale 
in normal aging (Ulrich, 1982; Berg, 1985; Arriagada 
& Hyman, 1990; Arriagada et al., 1992). 

If cholinergic innervation plays a role in preventing 
interference during learning, then it might be expected 
that interference during learning would activate feed- 
back mechanisms to enhance cholinergic modulation, 
thereby delaying the progression of runaway synaptic 
modification. Such a mechanism might explain the in- 
creased cholinergic innervation of the molecular layer 
of the dentate gyrus in some cases of Alzheimer's disease 
(Geddes et al., 1985; Hyman et al., 1986). As runaway 
synaptic modification progresses, it may place increas- 
ing demands on the cholinergic innervation, ultimately 
resulting in a neuronal degeneration of the feedback 
pathway. This provides a possible explanation for the 
degeneration of the basal forebrain (Whltehouse et al., 
1982) and the decrease in cortical cholinergic inner- 
vation found in Alzheimer's disease (Davies & Maloney, 
1976; Perry et al., 1977; Coyle et al., 1983). 

Once interference during learning appears in one 
set of connections, it will increase the amount of overlap 

in the postsynaptic activity within this region. If this 
postsynaptic activity provides the presynaptic activity 
for another set of connections with associative memory 
function, then the interference during learning can 
spread between regions (as outlined in Section 13). 
This characteristic of the spread of interference during 
learning between regions could provide an explanation 
for the progression of neuronal degeneration from those 
regions initially affected into adjacent regions of asso- 
ciation cortex. This spread of interference appears to 
occur along established anatomical connections (Pear- 
son et al., 1985; Arnold et al., 1991 ). As discussed in 
Section 14, the progression of runaway synaptic mod- 
ification from the hippocampus to neocortical struc- 
tures could explain the characteristic behavioral fea- 
tures of senile dementia of the Alzheimer type. 
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A P P E N D I X :  M O D E L  O F  C O R T I C A L  

A S S O C I A T I V E  M E M O R Y  F U N C T I O N  

The role of different cortical parameters in associative memory func- 
tion has been investigated in a non-hnear model of cortical associative 
memory function Previously this model was based on plrlform cortex 
anatomy, and had an autoassociatlve structure with either one-step 
synchronous dynamics ( Hasselmo et a l ,  1992 ), or longer-term asyn- 
chronous settling dynamics (Hasselmo et al., 1991 ) However, the 
model has been modified to have a heteroassociatwe structure that 
would provide a notion of the functional characteristics of associational 
connections between different cortical regions. The output of these 
simulations are illustrated in Figures 2, 3, 6, 9, and 10 The simulations 
were based on application of one step of the activation rule 

2a(t + 1 ) - 2 air) + ( 1 -- ~sup)Wg[la(t)] - Hg[2a(t)] (28) 

where g[aj(t)] = 0 for aj(t) < u (the presynaptlc fring threshold) 
For aj(t) > ~, the activity was determined by 

g[aj(t)] = t a n h [ a , ( t ) -  u] (29) 

In this model, learning was applied after a single step of the ac- 
tivation rule (that Is, after synaptJc transmission at the synapse being 
modified) The weights between units were limited to an asymptotic 
value, by first computing a learning rule for the matrix M, and then 
transforming the result into the weight matrix 14" 

AM(t + 1 ) = rt[2a(t + 1 ) ~]g(~a(t) - u) r 

14",1 = ~( 1 - e M,j) (30) 

where fl = the postsynaptic threshold of synaptlc modification, and 
= the gain of the input-output function The recall of this network 

at many stages of learning is illustrated in Figures 2, 6, 9, and 10. In 
ad&t~on, Figures 2, 6, and 9 illustrate a performance measure based 
on normalized dot products, in which a measure of similarity to the 
desired pattern was computed, and a measure of similarity to other 
patterns stored within the network was subtracted from the measure, 
as follows 

-v:lVm [D(a~V', amp)) Zq'pD(a~q)'aRW))]m_ 1 

P = (31) 
m 

where m = the number of associations stored in the network, a tpj 
represents the full input to all regions of the network for the desired 
association, a (q) represents the full Input for other associations stored 
in the network, and a R~p) represents the incomplete version of  the 
association presented during testing of recall The function D provides 
a measure of the change in angle between two vectors It consists of 
normalized dot products comparing activity after one step of the ac- 
twatton rule, with g[ a( t + 1 ) (p~] representing the response to the full 
input assocmtlon and g[a(t + 1 )mr)] representing the response to 
the incomplete version of the assocmtlon D takes the form 

D(a~,) aRIp)) 

g[a(t + 1)iv) l r  gia(t + 1 )mv~] a(t)(vJr a(t)Rtv) 

_ {]g[a(t + l)(°)]lJJJg(a[/+ I)R(P)]Jl Ila(tYP)lllla(t)R<o)ll 
(32) a(t) (v)r a(t) my) 

l -  
Ila(t)~P)lllla(t)R~)l] 

This performance measure is sensitive to the relative rate of growth 
of desired and undesired connections, increasmg as desired conneclaons 
are strengthened, but decreasing as undesired connections are 
strengthened. The changes in P after different periods of learning are 
shown in Figures 3 and 6, showing that in both cases P increases as 
desired connections are strengthened, but as interference during 
learning causes poorer recall of the association m Figure 3, the per- 
formance measure decreases back below zero Thus, the performance 
measure shows that increases m the cholinergtc suppression of synapUc 
transmission during learning (C~p) greatly enhance the stablhty of 
learning. The performance measure has been computed at different 
stages of  learning for a full range of values of cholinergic suppression, 
as shown in Figure 9 This shows that with greater values ofchohnerglc 
suppression, the decay in performance slows and eventually stops, 
allowing the network to maintain a high level of recall 


