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ABSTRACT 

Neurons in the retrosplenial (RSC) (Alexander et al., 2020a; LaChance and 

Hasselmo, 2024) and postrhinal cortex (POR) respond to environmental boundaries and 

configurations in egocentric coordinates relative to an animals current position. Neurons 

in these structures and adjacent structures also respond to spatial dimensions of self-

motion such as running velocity (Carstensen et al., 2021; Robinson et al., 2024). Data 

and modeling suggest that these responses could be essential for guiding behaviors such 

as barrier avoidance and goal finding (Erdem and Hasselmo, 2012; 2014). However, 

these findings still leave the unanswered question: What are the features and what are 

the coordinate systems of these features that drive these egocentric neural responses? 

Here we present models of the potential circuit mechanisms generating egocentric 

responses in RSC. These can be generated based on coding of internal representations 

of barriers in head-centered coordinates of distance and angle that are transformed based 

on current running velocity for trajectory planning and obstacle avoidance. This 

hypothesis is compared with an alternate potentially complementary hypothesis that 

neurons in the same regions might respond to retinotopic position of features at the top, 

bottom or edges of walls as a precursor to head-centered coordinates. Alternate 

hypotheses include the forward scanning of trajectories (ray tracing) to test for collision 

with barriers, or the comparison of optic flow on different sides of the animal. These 

hypotheses generate complementary modeling predictions about how changes in 

environmental parameters could alter the neural responses of egocentric boundary cells 

that are presented here. 
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INTRODUCTION 

The generation of behavior in spatial environments requires the formation of 

internal representations of relevant spatial features to guide behavior to avoid obstacles 

and barriers, while planning and following a pathway to a desired goal location. We 

commonly map the position of barriers, objects and animals relative to the world, using 

allocentric world-centered coordinates such as north-south, east-west (Figure 1A). 

However, sensory receptors on an animal initially detect environmental features in 

egocentric head-centered coordinates relative to the position of the animal’s sensory 

receptors such as those of the visual system (Figure 1B). Thus, it is logical that there 

should be an internal representation of the world in egocentric coordinates, which codes 

the position of objects and barriers or the center of the environment relative to an animal 

(see Figure 1B).  

 

FIGURE 1 ABOUT HERE 

Figure 1 legend. Overview of allocentric, head-centered and retinotopic 

coordinates. A. Allocentric coordinates. Most computer animations create a world in 

allocentric coordinates, defining the position of barriers, objects, and animals relative to 

the world coordinates of north-south, east-west. Arrows indicate position of animal and 

objects relative to the world. B. Head-centered coordinates. For the specific position and 

pose of an animal, the allocentric coordinates of barriers and objects can be rotated and 

translated to egocentric head-centered coordinates (front, back, left, right), based on the 

angle and distance relative to the animal (arrows). These head-centered coordinates 

determine the viewpoint of the world. C. Animals receive visual input in retinotopic 
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coordinates that can be simulated by a projection of head-centered features onto an 

image plane (left-right, top-bottom). Visual features are coded in retinotopic coordinates 

of horizontal (left-right) and vertical (top-bottom). The simulations presented here focus 

on taking neural representations in retinotopic or head-centered coordinates and 

simulating the responses of egocentric boundary cells. 

 

Recent neurophysiological data has demonstrated neurons that respond to 

environmental boundaries in egocentric coordinates. Neurons known as Egocentric 

Boundary Cells (EBCs) in retrosplenial cortex (RSC) respond when environmental 

boundaries are at a specific angle and distance in egocentric coordinates (Alexander et 

al., 2020a; van Wijngaarden et al., 2020) (Figure 2). The models presented in this paper 

will focus on understanding the responses of these neurons. Similar neurons coding 

egocentric responses to boundaries have been shown in the dorsomedial striatum 

(Hinman et al., 2019) and postrhinal cortex (Gofman et al., 2019). Studies also show 

egocentric coding of the egocentric angle (egocentric bearing) and egocentric distance to 

the center of the environment in postrhinal cortex (POR) and medial entorhinal cortex 

(MEC) (Wang et al., 2018; LaChance et al., 2019; Wang et al., 2020; LaChance and 

Taube, 2023). Examples of the neural response of egocentric boundary cells are shown 

in Figure 2. 

 

FIGURE 2 ABOUT HERE 

Figure 2 legend. Responses of an egocentric boundary cell in retrosplenial cortex. 

A1. Plot in allocentric coordinates shows foraging trajectory in gray. Each time a spike 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.03.636060doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.03.636060


occurs, animal position is plotted as a point with color indicating head direction (color 

wheel indicates directional coding). A2: Boundaries within 62.5 cm of animal (blue) are 

plotted in egocentric coordinates relative to animal head direction for a single spike. A3: 

Boundary positions for three spikes. A4: Example egocentric boundary ratemap 

constructed after repeating steps A1-A3 for all spikes and normalizing by occupation. 

Color axis indicates zero (blue) to peak firing (yellow) for this neuron (using MATLAB 

Parula colormap). B. probability distribution of preferred distance from boundary of all 

retrosplenial cortex egocentric boundary cells. C. polar histograms and probability density 

estimates of preferred boundary bearing of all retrosplenial cortex EBCs. Yellow and blue 

bars correspond to EBCs recorded in the left and right hemisphere, respectively. D. 

Another example EBC recorded in the retrosplenial cortex. D1. two-dimensional ratemap 

shows firing rate for animal position in 1.25m2 square environment (blue is no firing, yellow 

is peak firing rate). D2. plot of trajectory in gray with color of dot indicating head direction 

of animal at time of spike. D3. egocentric plot showing receptive field on the left side of 

the animal. Adapted from Alexander et al., 2020. 

 

Avoiding collisions and planning paths to goals requires selection of movements 

in egocentric coordinates that depends upon egocentric coding of environmental 

boundaries, but also on the coding of the current running velocity. Neurons have been 

shown to code current running speed in structures including entorhinal cortex (Kropff et 

al., 2015; Hinman et al., 2016; Dannenberg et al., 2020) and retrosplenial cortex 

(Carstensen et al., 2021). These codes could be important for computing whether the 

specific angle and speed of running velocity will collide with a barrier at that angle within 
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a short time or distance, in order to signal to an animal when it should turn. This process 

might work in a more generalizable manner in the allocentric coordinate system of 

entorhinal grid cells or hippocampal place cells, though these cell types are not simulated 

here. Previous models proposed that forward sweeps of trajectories coded by grid cells 

could interact with internal representation of goals and barriers to guide pathway planning 

(Erdem and Hasselmo, 2012; 2014) and recent data from entorhinal cortex supports this 

framework of forward trajectory sweeps (Vollan et al., 2024). One set of models presented 

here will focus on the coding of the distance and angle of barriers in egocentric 

coordinates, and we will also discuss simulations of forward sweeps for detecting 

potential collisions. 

Environmental features can be coded in different possible egocentric coordinate 

frames. One possible egocentric coordinate frame could be centered on the current 

position and angle of the head (head-centered coordinates). Another egocentric 

coordinate system could be centered on the position and angle of the body (body-

centered coordinates). A further egocentric coordinate frame could be centered on the 

retina (retinotopic coordinates). The activation of visual receptors in the retina occurs on 

a two-dimensional plane in retinotopic coordinates, as shown in Figure 1C. The 

retinotopic coordinates can be simulated by a projection transform from the distance and 

angle of features in head-centered coordinates.  

Thus, head-centered coordinates and retinotopic coordinates provide alternate, 

complementary egocentric coordinate systems for driving neurophysiological responses 

of egocentric boundary cells. In fact, it is probably essential that both of these coordinate 

frames are required at different stages in the generation of egocentric boundary 
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responses. Retinotopic coordinates appear in early visual areas, but it is not clear how 

much these coordinate systems are anatomically segregated or intermixed within later 

stage structures. 

Initial models have shown that neural circuit responses to images in retinotopic 

coordinates can be effective for simulating these neural responses (Lian et al., 2023). 

However, as shown here, when the position of features in the environment is changed, 

the response to features in retinotopic coordinates will generate different patterns of 

responses compared to the coding in head-centered coordinates. The models presented 

here will show how neural responses in different coordinate frames would exhibit 

differences in response based on manipulations of the properties of the walls and barriers 

of an environment, including their height, their vertical tilt, and their horizontal (azimuth) 

orientation. The focus of this paper is to generate predictions about how 

neurophysiological responses at different stages of process would differ based on 

whether they are coding features in head centered coordinates or retinotopic coordinates, 

and how this coding of features would respond to environmental changes. 

 

 

METHODS 

The models presented here generate predictions about neurophysiological 

responses to environmental manipulations that have not yet been published. As an initial 

step in developing the models, the models start with baseline simulation of the previous 

neurophysiological responses of neurons in the retrosplenial cortex that were recorded 

from rodents (rats and mice) as they foraged for distributed food reward (crushed up Froot 
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Loops) in an open field environment (Alexander et al., 2020a) and with insertion of objects 

(Carstensen et al., 2021). The simulations then move beyond the manipulations in 

previously published data to address predictions about the proposed response to new 

manipulations of parameters such as height, vertical tilt, or horizontal orientation of walls 

and how the response depends upon the coordinate frame of internal representations.  

The simulations include several different processing components that are 

described in the following sections, but are first briefly summarized in this paragraph. The 

simulations include representations of the external environment and animal viewpoint. 

These simulations of the environment may sound complex, but they directly correspond 

to the elements used in computer animation or video game engines to produce an 

animal’s viewpoint of an environment as it moves. These very standard parts of the 

simulation include: 1.) The allocentric configuration of walls, inserted barriers and objects 

in a spatial environment in Euclidean allocentric coordinates for wall and barrier corners 

relative to east-west coordinates x, and north-south coordinates y, 2.) In some cases, the 

position of the walls and barriers of the spatial environment relative to the animal in head-

centered cylindrical coordinates (coding distance and angle from each feature to the 

animal in the horizontal x,y plane, plus height z), 3.) The position of walls and barriers in 

head-centered Euclidean coordinates: LR=left-right, FB=front-back, UD=up-down and 

finally, 4.) the retinotopic visual input to the animal using a projection transform from the 

head-centered 3D Euclidean coordinates LR, FB, and UD into 2D retinotopic coordinates 

h=horizontal and v=vertical.   In the model, the features of the world are coded both in 

retinotopic coordinates and in head-centered coordinates. (See Figures 3 and 4). Thus, 

these are complementary coordinate systems essential for the standard steps used in 
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modeling visual function in computer vision as well as generating scenes in computer 

animation.  The necessity of both of these steps in simulating the world could correspond 

to a similar necessity of both coordinate systems in the internal neural representation of 

the world. 

The model also includes simulation of the movements of the animal as it explores, 

including 4. The animal’s forward momentum, 5. The avoidance of obstacles, and 6. The 

attraction to novel inserted barriers and objects. Similar to previous simulations (Erdem 

and Hasselmo, 2012; 2014), this uses ray tracing algorithms from computer animation to 

guide possible behaviors. Ray tracing involves computing whether and where a vector 

arising from the animal will intersect with the surface plane of a barrier. These properties 

of simulated movement might ultimately be guided by the neural model as in previous 

work (Erdem and Hasselmo, 2012; 2014), but the current version is designed to replicate 

relatively realistic trajectories without using neural circuits. The use of algorithms for 

guiding movement are standard in programs for computer animation and video game 

graphics, for example in generating non-player characters that move around without 

external control in computer games.  

The primary novel components of this paper are the simulation of the mechanism 

of generation of egocentric boundary cells based on retinotopic coordinates (as 

summarized in Figure 3) or head centered coordinates (as summarized in Figure 4) and 

on the forward scanning (Erdem and Hasselmo, 2012; 2014) of trajectories in the 

environment (as shown in Figure 11). These neural responses could be generated within 

the same brain region, but are here simulated using separate but complementary 

mechanisms.  
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In these simulations, both of these coordinate systems are proposed to be based 

on modifying synaptic connections between neurons in visual cortical regions and the 

retrosplenial cortex (Figure 3A), to simulate how EBC responses could be driven by both 

of these types of coordinate systems in the retrosplenial cortex. The simulations include 

the possible role of internal retrosplenial representations as input for the EBC responses.  

The simulations involve two main phases, an encoding phase and a matching 

phase. The encoding phase is shown on the left side of Figures 3 and 4 (Figures 3B and 

3C; Figures 4A and 4B), and the matching phase during foraging is shown on the right 

side of Figures 3 and 4 (Figures 3D and 3E, Figures 4C and 4D).   

7. Encoding of synaptic memory weights (Figure 3C1 and 4A1). During this phase, 

the agent is simulated in a discrete set of encoded head directions (facing North in the 

figures). For each head direction during encoding the agent is simulated in a discrete set 

of pre-determined positions in the environment that might cover a range of locations 

including positions near different walls. The input from the environment activates sensory 

representation arrays (Figure 3B1 and C1, Figure 4A1 and B1) that are activated at an 

array of specific positions and head directions (Figure 3B2 and Figure 4B2). These input 

arrays consist of an array of feature-responsive neurons in different regions of visual 

cortex and possibly also neurons generating recurrent connections in retrosplenial cortex. 

These input arrays then provide presynaptic activity to cause Hebbian modification to 

strengthen synapses connecting with a postsynaptic array. For this example, 

strengthened synaptic weights are shown by blue lines in Figure 3C1 and Figure 4A1. 

The postsynaptic array contains activity of individual retrosplenial neurons activated at 
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specific positions and head directions (the red asterisks in Figure 3B2 and Figure 4B2 

indicate the array of positions for the north facing head direction in this example)  

8. Matching of sensory input with previous memory. After the initial encoding of 

synaptic weights based on a set of discrete positions, the responses of egocentric 

boundary cells are then tested during a long, foraging trajectory (Figure 3D2, Figure 4D2). 

In this period of the simulation, the model simulates a long complex and continuous 

trajectory through the environment (gray lines in Figures 3D2 and Figure 4D2). At each 

time step along the trajectory, the position and head direction are used to simulate the 

sensory input to the retinotopic array (Figure 3D1 and Figure 4D1). The 

matching/comparison process involves computing the dot product of the input array with 

each row of the synaptic memory weights (Figure 3E1 and Figure 4C1). This simulates 

how presynaptic sensory cortex input of perceptual features interacts with synaptic 

connectivity to activate individual retrosplenial neurons that store individual templates 

based on the synaptic weights to their dendritic trees. For each retrosplenial neuron a 

trajectory plot of spiking activity is generated. For each neuron’s trajectory plot (Figure 

3D2 and Figure 4D2), if the dot product crosses a threshold, a filled circle is plotted in 

figures of the trajectory at that position, and the color of the filled circle in the figure plot 

is determined by the current head direction of the animal.   

This overall neural simulation framework is used to test two potentially 

complementary hypotheses about the coordinate systems (head-centered or retinotopic) 

coded by individual egocentric boundary cells that could be intermixed in the retrosplenial 

cortex.  These hypotheses provide insights into both the mechanism of generation of 
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these responses, as well as their potential role in guiding behavior based on ongoing 

transformations of internal representations by current velocity and head direction. 

The first hypothesis involves retinotopic coding and the second involves head-

centered coding. To provide more detail, the first hypothesis involves: 9. Retinotopic 

coordinates for visual sensory input features arrays during both encoding (Figure 3B1) 

and foraging (Figure 3D1). As shown in Figures 3B1 and 3D1, these are 2-dimensional 

arrays that contains a set of pixels each of which represents the environmental features 

(green floor, gray walls) in a specific point of retinotopic coordinates (h=horizontal position 

and v=vertical position on retina).  Previously published simulations have been effective 

for generating models based on retinotopic coordinate input (Lian et al., 2023), but this 

did not yet address the potential intermixing of a code that is retinotopic for some 

egocentric boundary cells and head centered for other egocentric boundary cells (or 

intermixing of the coordinates within individual neurons).  

As shown in Figure 4, the second hypothesis involves: 10. Encoding of head-

centered coordinates for representing environmental features. During encoding, the head 

centered coordinates of 3D position of individual components of the environment barriers 

are computed as an occupancy map where the values in the coordinates indicate 

adjacency of a barrier segment (Figure 4B1). These head-centered are computed for an 

array of specific agent locations (Figure 4A2 and B2). Visual input during encoding at one 

location activates a head centered presynaptic array (Figure 4A1) and allows Hebbian 

modification of synaptic weights (blue lines in Figure 4A1) between the presynaptic array 

and individual postsynaptic cells (Figure 4A2) that are activate at each location (Figure 

4B2).  During matching, these head centered features are then computed based on visual 
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input at each time step of the foraging trajectory (Figure 4D1). The head centered features 

activate the presynaptic array (Figure 4C1) at each time step. The presynaptic activity 

spreads across the synaptic weights, and this activates the postsynaptic cells (Figure 

4C2) based on the match of presynaptic activity with the pattern of weights. If an individual 

postsynaptic cell is activated above its firing threshold, the simulation plots a spike for this 

cell on the gray trajectory based on the current simulated location and with a color based 

on the current simulated head direction (Figure 4D2). Note that the head centered input 

in Figure 4D1 is further extended by 11. Simulation of neural transformations (rotations 

and translations) of the head-centered coordinates of the memory of wall and barrier 

position based on the movement velocity of the animal, to allow tracking of walls and 

barriers that are behind the animal or in darkness.   

The following sections provide more detailed description of the components of the 

model. 

 

FIGURE 3 ABOUT HERE 

Figure 3 legend. Encoding and matching in retinotopic model. A. Visual cortical 

areas project to retrosplenial cortex. The model simulates an array representing visual 

features interacting with simulations of neurons in retrosplenial cortex including 

egocentric boundary cells. B1. Three example retinotopic viewpoints are shown from the 

start of the simulation based on different agent locations show by red asterisks (see gray 

arrows). C. During encoding before the foraging, the 2-dimensional array of features 

coding individual retinotopic viewpoints (C1) are associated with activity of a single 

retrosplenial neuron (red) activated for that position and head direction (red arrow). 
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Hebbian modification of synaptic weights (blue lines) creates the memory weights 

(template) coding the association of those features with a neuron. Lines between circles 

represent axons and synapses, and thickness of lines indicates strengthening of synaptic 

efficacy. D. At each time step during foraging, the current retinotopic visual input (D1) 

activates the visual feature array (E1) that then spreads across the synaptic connectivity 

weights determined by previous encoding.  The activation of each individual neuron is 

computed as the match (dot product) with each row of the visual feature array with one 

row of the weight matrix. This activation can cross threshold and activate postsynaptic 

egocentric boundary cells (red circle in E2) at specific locations and head directions 

shown by colored dots in D2).  

 

Simulation of the environment  

The next three section describe the visual components of the model that are simply 

the standard components of computer animation or video game engine graphics, 

addressing the steps shown in Figure 1. The MATLAB simulations used here define an 

environment with barriers (usually walls) defined by arrays of points in 3D allocentric 

coordinates. Each segment of the wall is defined by a set of four points in 3D allocentric 

coordinates (x=west-east, y=south-north) that later allow computation of the view of that 

wall segment by the animal.  The position and angle of an animal are defined in the 

environment and allow computation of the retinotopic visual images seen when the animal 

has a specific allocentric location (in x=east-west, y=north-south coordinates of the 

environment) and a specific allocentric head direction (compass direction defined in 

azimuth – elevation angle is assumed to be zero).  In the simulation, these points are 
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combined in an array that includes an additional row of ones for homogeneous 

coordinates. The use of homogeneous coordinates allows transformation of the 

allocentric wall coordinates into egocentric coordinates relative to current location and 

head direction using affine transformation matrices for rotation and translation.  

 

Rodent movement 

The thin gray lines in each simulation represent the movement trajectories of the 

animal. This includes the location of the rodent in x,y,z coordinates (the variable called 

place, with agent height held constant) and a separate representation of head direction 

of the rodent (the variable called angle) at each time point. The simulation starts with an 

initial position and direction and then updates the position at each time point.  The 

movement of the rodent is simulated to replicate the distributed trajectories followed when 

foraging for food (Figure 3B2 and 3D2, Figures 4B2 and 4D2). This movement trajectory 

is created using velocity and acceleration vectors that are modified randomly at each time 

step, but are also guided by additional algorithms to turn away from barriers. As in 

previous work (Erdem and Hasselmo, 2012), the barrier collision avoidance algorithm 

uses forward extrapolation of the current velocity vector to determine potential collisions 

with each of the wall segments based on standard ray tracing algorithms. These 

algorithms reject vectors that collide with barriers, and allow selection of trajectories that 

do not collide with barriers within a certain distance. Most simulations use an abstract 

version of barrier collision avoidance, but future simulations will attempt to relate this 

collision avoidance to forward trajectory scanning by neuronal activity (Erdem and 

Hasselmo, 2012; 2014). 
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Simulation of current egocentric input based on viewpoint 

Once the foraging trajectory has been generated that avoids the environmental 

barriers, this trajectory is used to generate the egocentric visual input to the animal based 

on its viewpoint of the coordinates defining each wall segment from the position of the 

animal. At each time point, the current animal position is subtracted from wall points to 

generate the allocentric coordinate difference dx,dy,dz. Then for each feature (often a 

corner connecting wall segments or a position along a wall), the egocentric head centered 

distance is computed as sqrt(dx^2+dy^2). Similarly, the angle of each feature (wall corner) 

is computed as arctan(dy/dx).  This generates egocentric head centered coordinates in 

cylindrical coordinates (distance and angle in the horizontal plane, plus height z). 

Subsequently, the egocentric head centered cylindrical coordinates are transformed into 

egocentric head centered Euclidean coordinates (left-right, front-back, up-down). 

 

Simulation of retinotopic coordinates 

Once these egocentric input coordinates have been generated, they can be used 

to generate the retinotopic coordinates of wall corners using the perspective transform, 

as shown schematically in Figure 1C and in specific examples in Figure 3B1 and 3D1. 

The standard computer animation or game engine graphics would take the homogeneous 

egocentric Euclidean coordinates of the corners of walls and apply the perspective 

transform from their 3D egocentric position toward the animal’s eye position, projecting 

this onto a two-dimensional plane of a certain size in front of the animal (called a camera 

projection). Graphics will simply plot patches of color within the projected region on the 
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two-dimensional plane. The patches match the color of the environment used in 

experimental work. This appears as a green ground plane, gray walls and black 

background in the retinotopic images computed during encoding in Figure 3B1 and during 

the matching process during foraging in Figure 4D1. All of the above sections of the 

simulations simply replicate what is standard in computer animation and video game 

engine graphics. The novel simulations of neural responses are in the next sections. 

 

Simulation of internal representations for memory matching 

Everything presented above is standard in computer animation or game engines. 

However, the novel feature of the current simulations concerns how the input array 

neurons represent features in either or both retinotopic and/or head-centered coordinates 

for matching with a synaptic memory template. The need for matching with a synaptic 

memory template is suggested by the fact that the EBC neuronal response appears to be 

consistent for similar features (walls) across different environments and different parts of 

an environment. Computer animation and game engines do not commonly require 

matching of a stimulus with a stored template, and if they do they perform this matching, 

they usually compute Euclidean distances based on Euclidean coordinates of component 

features. It would be interesting to form a neural model that codes coordinates in a 

continuous manner (for example by phase of spiking), but it is not clear how to do this in 

single neurons for multiple dimensions. So, we will use a more standard neural code in 

which firing rate represents the presence of a specific feature at a specific coordinate 

point in either retinotopic or head-centered coordinates. 
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Thus, the input arrays code environmental features using two different types of 

coordinate systems: 1.) retinotopic arrays, or 2.) head-centered arrays. The retinotopic 

array is essentially the pixel version of an image (Figure 3B1 and 3D1), in which ray 

tracing from the 3D position of features in the environment to an image plane is used to 

define the retinotopic image based on where the vector for a specific pixel will collide with 

the image plane (or visual receptor). Using this approach, retinotopic images are created 

in which the environment colors match colors used in mouse experiments, with wall 

barriers in light gray, and ground plane in light green (Figure 3B1 and 3D1). The open 

space above the environment walls (which would involve viewing of distant shadowy walls 

in the environment) is coded as black on the image plane.  

The head-centered array maintains a value for whether a barrier or object overlaps 

with the 3-dimensional location coded by an individual element of the head centered array 

(Figure 4B1 and 4D1). Thus, its dimensions can be mapped to head-centered polar 

coordinates of distance and angle, or to the head-centered Euclidean dimensions of front-

back, left-right.   

 

Mixture of head-centered and retinotopic coding. 

Note that we are specifically not stating that these head-centered or retinotopic 

representations are the representation across the entire brain or across even one region. 

Instead, we are investigating whether individual neurons are using a retinotopic or head-

centered representation even within a single region, which would suggest that these 

stages of processing may be intermixed for generating the transformation between 
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retinotopic and head-centered coordinates. In fact, it is possible that even individual 

neurons have mixed selectivity of head-centered or retinotopic coordinate systems. 

 

Encoding of memory templates based on prior viewpoint 

As noted above, the repeated firing properties of neurons to similar egocentric 

cues in different locations suggests that current sensory input is being matched to an 

internal memory template. As shown in Figure 3A, we propose that this involves an 

interaction of the feature arrays from visual cortical areas with neuronal activity in the 

retrosplenial cortex.  During an encoding phase, the model receives sensory input (Figure 

3B1) that generates presynaptic activity patterns (Figure 3C1) to form memory templates 

based on the sensory input in different coordinate systems at a set of specific locations 

(and head directions) visited by the agent before the start of the foraging trajectory (red 

asterisks in Figure 3B2, Figure 4B2 and Figure 5Av). The model creates memories by 

Hebbian synaptic modification. The sensory feature arrays from the environment (Figure 

3B1 and Figure 4B1) sequentially activate arrays of presynaptic neuronal activity (Figures 

3C1 and 4A1) when the animal is at this series of individual locations and head directions 

(red asterisks in Figure 3B2 and 4B2). The presynaptic activity is associated with the 

sequential activation of different single retrosplenial neurons (Figure 3C2 and 4A2) at 

these locations. For each position and head direction, Hebbian modification of synaptic 

weights associates the feature array with the individual neuron (blue lines in Figure 3C 

and Figure 4A represent synapses strengthened by Hebbian modification). 

For the retinotopic hypothesis, the model generates the projection transform on 

the image plane (Figure 3B1) at each of the grid of starting points (red asterisks in 3B2) 
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before computing the foraging trajectory (gray line). The model then stores the retinotopic 

memory weights associating the initial retinotopic array of pixels (Figure 3B1) computed 

at the individual locations and head directions with an individual retrosplenial neuron.  

The head-centered hypothesis involves a different simulation that forms the 

associations with the same number of retrosplenial neurons. During encoding before the 

start of the foraging trajectory, the simulation will form memories of initial head-centered 

arrays (Figure 4B1) of points at each of the grid of locations and head directions (red 

asterisks in 4B2). For each location and head direction, the sensory input array computes 

a 2-dimensional array of points along the environmental barriers (in head-centered 

coordinates front-back, and left-right) and generates a 2-dimensional gaussian for each 

of these points, so that the wall is represented by a smoothed array of points. Figure 4B1 

shows the array generated during encoding when the animal is facing North near the 

North wall of the environment (Figure 4B2). Additional examples of encoded head 

centered arrays are shown in Figure 6Ai-iv. Note that these represent walls at different 

angles relative to the animal, corresponding to facing north but being close to the wall in 

the south (6Ai, behind animal), west (6Aii, left side of animal), east (6Aiii, right side of 

animal), or north wall (6Aiv, in front of animal). For each of these locations, the 

computation process is repeated for representation of 3-dimensional representations of 

features at different elevations in the world (see Figure 8A), with gaussians generated 

based on interpolation of that elevation relative to the top and bottom of the wall. During 

encoding, this head-centered input array shown in Figures 4B1 and 5Ai-iv is associated 

with the active postsynaptic retrosplenial neurons (Figure 4B2) by Hebbian modification 

of the memory weight matrix (blue lines in Figure 4B).  
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Note that we are testing the retinotopic and head-centered arrays separately, but 

these properties could be intermixed within the real network. Individual neurons might 

show signs of mixed selectivity with responses that suggest coding in both coordinate 

systems. Or alternately, different neurons within a single region might show coding in one 

or the other coordinate system. 

 

FIGURE 4 ABOUT HERE 

Figure 4 legend. Encoding and matching in head centered model. A1. During 

encoding, the head centered model activates elements of a presynaptic vector (A1) based 

on the elements of an array (B1) coding sensory features of barriers based on their 3D 

head-centered coordinates. B1 shows array code for local barrier features in a location 

(B2) where barrier is right in front of the animal (black line to red asterisk). A2. For each 

location (red asterisks), the postsynaptic activity involves activation of one EBC (red) for 

the location in B2. For each location, the Hebb rule modifies presynaptic to postsynaptic 

weights (blue). C1. During foraging, each time step evokes a presynaptic array 

corresponding to the head centered features for all barriers viewed from the current 

location at that time step (D1). Note that the peak bumps in the center of each D1 plot 

represent the memory weights for an initially viewed wall segment, and the surrounding 

walls represent the current environment. The head centered array activity spreads across 

synaptic weights to activate postsynaptic neurons (C2). When the features of all barriers 

match weights (blue) for a specific segment (from B1), this activates a specific 

postsynaptic cell (red) above threshold, resulting in plotting of a spike (violet) on the 
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trajectory plot (D2). The spike is plotted with color based on head direction. The 

retinotopic model uses similar input arrays and matching. 

 

Matching of current sensory input with memory weights  

After the encoding process described above and in Figures 3B,C and 4A,B and 

5A, there is a retrieval process during the foraging trajectory. For the retinotopic model 

shown in Figure 3, once the foraging trajectory starts, the retinotopic sensory inputs are 

computed at each time point on the simulated trajectory (multiple steps of sensory input 

are shown in Figure 3D1). Based on the location and head direction at that time point, the 

current sensory input is used to generate sensory input arrays (Figure 3D1). These 

sensory input arrays activate an presynaptic neural array with a specific pattern of activity 

depending on the sensory input. Multiple time steps of presynaptic activity are illustrated 

in Figure 3E1. This presynaptic activity then spreads across the synaptic weight matrix. 

As shown in Figure 3E, this is simulated as the matrix multiplication that involves 

computing the dot product of the feature array with the synaptic weights in each row 

providing input to individual postsynaptic neurons (Figure 3E2). The computation of the 

dot product simulates the pattern of synaptic input matching to the pattern of synaptic 

strengths into the dendrites of a neuron, in which case a larger number indicates a better 

match to that neuron’s memory of features. If the dot product is large enough to cross a 

threshold the postsynaptic retrosplenial neuron will generate a spike at that specific time 

point (Figure 3E2).  This is then plotted as a filled circle at that location along the simulated 

trajectory (Figure 3D2), with the color of the filled circle indicating the animals current 

head direction at that time point of the trajectory (Figure 3D2 color wheel). For the head 
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centered modeled during the matching process, the head centered sensory input array is 

computed (Figure 4D1) for individual locations along a trajectory (locations indicated by 

gray arrows in Figure 4D2). These sensory input arrays at different positions along the 

trajectory sequentially activate the presynaptic array with different patterns of neural 

activity (Figure 4C1).  These presynaptic activity patterns spread across the previously 

modified synaptic weight matrix to activate individual postsynaptic retrosplenial neurons 

(Figure 4C2). This spread of activity across the weight matrix is computed by matrix 

multiplication, which involves computation of a dot project between the current head 

centered presynaptic array (Figure 4C1) and each row of the weight matrix to see which 

postsynaptic neuron is activated (Figure 4C2). When the dot product for an individual 

postsynaptic neuron crosses its firing threshold, then a filled circle is plotted at that time 

point along the foraging trajectory (gray lines in Figure 4D2) with a color corresponding 

to the current head direction at that point on the trajectory (Color wheel indicates coding 

of head direction with green for North and purple for South).  

 

RESULTS 

 The model can generate simulations of egocentric boundary cell responses using 

the simple one step neural network. These neural networks effectively implement a 

matching/comparison process of input activity with the synaptic weights in each row of 

the matrix representing visual cortex and other cortical input to individual retrosplenial 

neurons. The simulations can generate egocentric boundary cells using either the 

retinotopic code of the horizontal and vertical position of features on the image plane, or 

the simulations can use the head-centered code of distance and angle to boundary 
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features (or front-back, left-right, up-down coordinates). These hypotheses will be 

presented separately, but they could be intermixed in the real biological data. In our 

results below, the initial simulations of previous neural recordings in open field 

environments will be presented first. Then predictions that have not yet been tested will 

be described about the effect of variations in height, vertical tilt and horizontal orientation 

of barriers will be analyzed. 

  

Simulations of EBC firing in an open field 

 The initial publications about egocentric boundary cells and egocentric bearing 

cells cited above primarily presented data on recordings in rectangular open field 

environments without any inserted objects or barriers and only a few manipulations of 

surrounding boundaries.  The initial simulations presented here show that both the head-

centered features and retinotopic feature responses can be used to generate realistic 

egocentric boundary cell responses in the open field environment. Thus, these previous 

recordings do not indicate whether the responses of the neurons are driven by retinotopic 

or head-centered input. 

 

 Simulation using retinotopic features in open field.   

Figure 5 shows examples of EBC responses generated with memory features 

based on synaptic weights modified in response to features in retinotopic coordinates 

from the starting images shown at the top of the figure. The images reflect the fact that 

the current experimental environment has a green floor, gray walls and is in a dark room 

surrounding by black curtains. Figure 5Ai shows an example of a retinotopic image of the 
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wall being close to the animal on the left. Figure 5Bi shows the firing pattern of the model 

based on the dot product of current input features with the memory array of synaptic 

weights. This shows the location of the simulated agent each time the dot product value 

crosses a threshold to cause a spike. The different colors indicate the head direction of 

the simulated agent, showing that it fires near the west wall when facing north (green), 

fires near the north wall when facing east (red), fires near the east wall when facing south 

(purple) and fires near the south wall when facing West (cerulean).  Figure 5Ci shows the 

egocentric plot relative to the simulated animal at the center of the circle, for the average 

boundary position over all the spikes generated by the simulated neuron. This shows that 

the neuron responds when a wall is close on the left side of the animal at the center. 

Figure 5Aii shows an image of a more distant wall on the left that was stored in the 

retinotopic memory template of synaptic weights. Figure 5Bii shows that the computation 

of a dot product generates values that cross a threshold and generate spiking at a larger 

distance from the wall. Figure 5Cii shows that the average wall position computed over 

all the spikes is at a greater distance on the left side of the animal. Figures 5A,B,Ciii show 

the same examples for a stored memory template using an image of a retinotopic view of 

a wall nearby on the right side of the animal, and figures 5A,B,Civ show this for an image 

of a wall at a greater distance on the right. 

 

FIGURE 5 ABOUT HERE 

Figure 5 legend. Properties of EBCs with retinotopic memory weights. A. 

Retinotopic images generated for four different positions at the start of the simulation to 

generate synaptic memory templates corresponding to the wall nearby on the left (i), 
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further away on the left (ii), nearby on the right (iii) and further away on the right (iv). The 

synaptic memory weight templates then code visual features in retinotopic coordinates, 

and a dot product then compares these memory weight templates with the incoming 

sensory input array created from retinotopic coordinates at each time step along the 

trajectory.  B. Trajectory plots showing the overall trajectory of the simulated animal in 

light gray, with colored dots indicating the location of the simulated animal when the dot 

product value for an array representing sensory responses to the synaptic memory 

template crosses a threshold. C. Egocentric plots averaging the egocentric polar positions 

containing a boundary over every example of a spike being generated. These plots show 

the average position of the boundary that generates a neural response of the neuron in 

row B of the same column, indicating responses to a wall nearby on the left (i) a wall 

further on the left (ii), a wall nearby on the right (iii) or a wall at a further distance on the 

right (iv). 

 

Simulation using head-centered response in the open field.  

Figure 6 shows examples of the simulation of open field responses using feature 

responses based on the position of boundary cues in head-centered coordinates. The 

simulations shown in this section use head centered responses to the distance and angle 

of each feature in the azimuth plane (i.e. analogous to the floor of the environment). That 

is, this is an array of sensory neurons that respond to the presence or absence of single 

barrier component at a specific distance and angle in head-centered coordinates (as used 

in previous work by Bicanski and Burgess, 2018). At each time step, the full array of 
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neurons responding to sensory features in different head-centered positions is updated 

with the current locations of boundary elements. 

Figure 6A shows the arrays used to create memory templates of the head-centered 

array at four different starting locations. For the feature response arrays shown in Figure 

6A, the position of the boundary is sampled for a small set of positions around the animal, 

and the head-centered distance and angle of each feature is transformed into two-

dimensional Euclidean coordinates, giving a small square array centered on the animal.  

In all examples in Figure 6A, the animal is facing to the north, and the boundary segment 

is in a different position relative to the animal. In Figure 6Ai, the animal is facing to the 

north, but located near the south wall, so the boundary segment is directly behind the 

animal. In Figure 6Aii, the animal is facing north in a location by the west wall, so the 

boundary segment is to the left of the animal. In Figure 6Aiii, the animal is facing north in 

a location by the East wall, so the boundary segment is to the right of the animal, and in 

Figure 6Aiv, the animal is facing North near the North wall boundary segment is directly 

in front of the animal.  The encoded head-centered arrays are smaller than the actual full 

head-centered array of all possible positions of the boundary in the environment that is 

used for matching in Figure 6C.  Note that the templates can be stored for a range of 

starting head directions, but due to the symmetry of the environment, many of the 

responses would be similar (i.e. near South wall facing West is similar to being near West 

wall facing North). 

Once these head-centered memory templates are formed on the synaptic weights 

to the EBC neurons, then the full head-centered array is computed at each time step 

(Figure 6C), and the portion of this array in the smaller number of pixels around the animal 
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spreads across the weights of the network. This results in the computation of a dot product 

between the current sensory input of boundary feature locations in head-centered 

coordinates (Figure 6C) with the memory template (Figure 6A). When this crosses a 

threshold, the network generates a spike shown as a colored dot on the gray trajectory in 

Figure 6B. The dot is colored by the head direction code shown with the color wheel in 

Figure 6B. Note that Figure 6Bi shows an example that would be difficult to generate with 

retinotopic coordinates as it uses a head-centered template behind the animal. This was 

encoded at a position near the south wall when the animal was facing north (Figure 6Ai). 

This generates neuronal responses when the animal is running away from the barrier, for 

example when going South (purple) from the north wall, or going East (red) from the West 

wall. This corresponds to data found in calcium imaging of EBCs (Malmberg et al., 2023; 

Malmberg et al., 2024).  The other examples in Figure 6B shows the spikes generated 

along the trajectory for a template encoding a barrier array at different positions, showing 

the response to a left side wall (Figure 6Bii), a right side wall (Figure 6Biii) and a wall 

directly in front of the animal (Figure 6Biv).  Figure 6C shows the computation process for 

just four time steps of the trajectory in Figure 6Bi, showing a template that consists of a 

wall segment behind the animal, overlapped with the input of the current egocentric array 

of the full barrier. This shows that the head-centered barriers match best at one time point 

(t=24) compared to other time points. That would yield the highest dot product and 

crosses threshold to generate a spike. 

 

FIGURE 6 ABOUT HERE 
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Figure 6 legend.  Properties of neurons with head-centered memory weights. A. 

Local head-centered arrays of nearby features (within 3 units of the front-back coordinate 

and 5 units of the left-right coordinate). These local arrays are generated for four different 

positions at the start of the simulation to generate synaptic memory weights 

corresponding to the wall behind the animal (i), on the left side (ii), on the right side (iii) 

and in front of the animal (iv). The memory weights code features in head-centered 

coordinates of distance and angle that are then coded in front-back, left-right positions. 

The memory weights from these arrays are compared with sensory input in head-

centered coordinates at each time step along the trajectory.  B. Trajectory plots showing 

the overall trajectory of the simulated animal in light gray, with colored dots indicating the 

location of the simulated animal when the dot product value for an array representing 

sensory responses to the synaptic memory weights crosses a threshold.  C. For Figure 

6Bi, an example shows four time steps of the matching/comparison process in which the 

local head-centered array behind the animal appears as a short horizontal line in the 

center of the head-centered array. The current egocentric sensory input of the barrier at 

each step is shown as the larger array of light colored pixels at different distances and 

angles. The sensory input best matches the local array at time t=24, so would generate 

the largest dot product at that time point (and therefore the most spiking). 

 

Simulations of boundary height differences during sensory input 

This section describes the effect of varying the height of walls during the sensory 

experience of the environment, but NOT varying the height of the memory templates for 
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each cell. The prediction of these different coordinates for the firing of EBCs will first be 

described for the retinotopic model and then for the head-centered model. 

Retinotopic model response to height 

 Figure 7 shows examples of EBC responses generated with memory features 

based on synaptic weights modified in response to features in retinotopic coordinates 

from the starting images shown in in the left column (60 cm) of Figure 7A, B and C.  Note 

that the same 60 cm memory feature templates are used for all three outputs shown in 

the rows in Figure 7D, E and F.  Thus, Figure 7A shows that the memory template for 60 

cm is used for matching with sensory input at each time step of foraging, even when the 

actual visual sensory input at time step has shorter walls as in the 30 cm and 15 cm 

examples in Figure 7A.  The 30 cm and 15 cm examples in Figure 7A show how the 

sensory input at that same given location (12 cm from a left wall) will differ from the view 

used previously to create a memory at that location.  

Figure 7D shows the spiking response generated by the matching of the 60 cm 

sensory template for a left side wall with the sensory template for all visual input for 60 

cm walls, 30 cm walls or 15 cm walls.  This change in sensory input without a change in 

memory weights is why the spiking shifts in the different examples in different columns 

shown in Figure 7D. 

 This description shows changes in spiking response observed when the height is 

decreased from Normal to Lower during the sensory input during foraging. For example, 

in Figure 7D, column 30 cm, the spikes continue to respond to a wall on the left side of 

the animal (based on the view during memory being of a wall on the left).  However, the 

response shifts to occur at a closer distance from the wall in front of the animal, because 
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the matching of a lower wall with a normal wall memory will occur at a closer distance.  (A 

closer low wall looks similar in height to a more distant high wall).  Because the spiking 

depends on both the wall to the side and the wall in front of the animal, the spiking fields 

show a clockwise rotation, because the matching to the memory occurs closer to the wall 

in front of the animal when the wall is on the left. For example, the red spikes (for Eastward 

movement) by the north wall shift to the right, and the purple spikes by the East wall shift 

downward.  

 The same shift affects spiking in response to a memory template for a wall directly 

in front of the animal (Figure 7B). In this case, the current sensory input at 12 cm from the 

wall in front of the animal shows a shorter wall (Figure 7 column 30 cm and 15 cm).  In 

Figure 7E, as the animal forages in the environment, the shorter sensory input (Figure 

7E, 30 cm and 15 cm) matches at a closer distance to the wall. This causes spiking to 

shift to being closer to the wall. For example, the red spikes for moving Eastward toward 

the East wall occur at a shorter distance from the East wall. 

Similarly, the spiking plots in Figure 7F for an EBC responding to a wall on the right 

side also occur at a closer distance from the wall compared to the normal wall sensory 

input in Figure 7C.  However, in contrast to the left side EBC, the spiking fields for the 

right side EBC show a counterclockwise rotation, because the matching to the memory 

of a wall in front of the animal occurs at a closer distance when near the right side wall in 

Figure 7F. The shift is counterclockwise instead of clockwise because the red spikes 

against the south wall shift to the right in Figure 7F, in contrast to red spikes against the 

north wall in Figure 7D. The counterclockwise shift also occurs because purple spikes 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.03.636060doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.03.636060


that shift downward do this against the West wall instead of against the East wall. Thus, 

the retinotopic memory weights predict a rotation in different directions for different walls. 

  

FIGURE 7 ABOUT HERE 

Figure 7 legend.  Firing properties of neurons change when boundary walls are 

higher during sensory input (without changing the memory weights). A. Retinotopic inputs 

for position at 12cm from left wall at three heights 60cm, 30cm and 15cm. (There is no 

response at lower wall heights such as 4 cm or 0 cm). B. Retinotopic inputs for 12 cm 

from wall in front at three heights. C. Retinotopic inputs for 12 cm from right wall at three 

heights. D. Spiking response for model EBC with left wall memory shows shift in clockwise 

direction for lower walls (30cm, 15cm). E. Spiking of model EBC with memory for wall in 

front shows response at greater distance for tall wall (60cm), and closer distance for 

shorter walls (30cm, 15cm). F. Spiking model EBC with right wall memory showing spiking 

response that shifts counterclockwise for lower walls (30cm, 15cm). See text for more 

description of these shifts. G. Schematic showing the three different wall heights tested 

in these simulations. 

 

Head-centered model response to height 

Figure 8 shows examples of EBC responses generated with memory features at 

the center of each plot based on synaptic weights modified in response to features of a 

left-side barrier in head-centered coordinates shown in Figure 8A.  Note that these 

memory features in Figure 8A are used for all the simulation outputs in different rows in 

Figure 8B.  Figure 8A also shows the head centered array from the full sensory input of 
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the surrounding wall of the environment at a specific time step for the 60 cm wall 

(activating all levels of vertical representation), as well as for 30 cm (surrounding wall 

appears in half as many levels) and 15 cm (showing only one level of activation of the 

internal array).  Note that the memory template at the center of each array in Figure 8A 

maintains the same height, coding the wall segment on the left at all vertical heights. 

 The first row of EBC spiking (Figure 8B) demonstrates the spiking response for 

the left side template shown in Figure 8A. This template generates a strong matching 

signal for sensory input of walls on the left side of the animal in Figure 8B. The template 

matching with sensory input generates a weaker response for the smaller vertical extent 

of sensory input in the 30 cm column of Figure 8B. The template matching with sensory 

input generates a very weak matching response for the smallest vertical extent of 15 cm 

in Figure 8B. This falls below threshold and results in no spiking response in Figure 8B, 

15 cm. 

A similar pattern appears in Figure 8C for head centered templates coding a wall 

segment in front of the animal (template not shown), and in Figure 8D for head centered 

templates coding a wall segment to the right of the animal (template not shown). In both 

of these cases, there is a strong match for the sensory input at full height (60 cm), and 

there is a weaker response when the sensory input contains a shorter wall (30 cm). In 

both of these cases, the weakest response occurs when the sensory input contains the 

shortest wall (15 cm), in which case the matching process falls below threshold and there 

is no spiking response to the walls. Thus, the head centered simulations predict a change 

in magnitude of firing rate for decreases in height of the wall, but these simulations do not 

predict the clockwise or counterclockwise shift of firing because the three dimensional 
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internal representation is not subject to the shift in location of matching that occurs when 

matching a retinotopic memory template of a 60 cm wall with sensory input of a shorter 

wall. 

 

FIGURE 8 ABOUT HERE 

Figure 8 legend. Modeled spiking response during change in boundary wall 

heights for head centered neural arrays. A. Head centered neural arrays representing 

input during matching for different boundary heights in columns 60cm, 30cm, 15cm. The 

bump that appears at all levels in center represents synaptic weights encoding memory 

of a 60 cm wall segment nearby on the left.  B. Spiking of model EBC with 60 cm left wall 

memory for sensory input during matching at 60cm, 30cm and 15cm wall heights. C. 

Spiking of EBC with front wall memory. D. Spiking of EBC with right wall memory. E. 

Schematic illustrating the three different wall heights (60 cm, 30cm, 15 cm) simulated 

during matching in this figure. 

 

 

Simulations of EBC firing to changes in barrier tilt 

The head centered and retinotopic models were also tested for their response to 

different vertical tilts of a barrier that was positioned to have its base stretching across the 

entire center of the environment in the north-south orientation. In simulations of 

subsequent foraging periods, this additional barrier was changed to different degrees of 

vertical tilt so that it blocked movement into one half of the environment as the vertical tilt 

increased from zero. The simulations started with a 0 degree tilt allowing foraging 
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throughout a 1 meter square environment. The next foraging period was with a 30 degree 

tilt of the central barrier that blocked movement into one half of the environment, but would 

have different x,y coordinates for the base, middle and top of the wall.  Simulated foraging 

was also tested with a 60 degree tilt of the central barrier and a 90 degree tilt equivalent 

to the surround boundaries.  

This environmental manipulation was tested in simulations using the head 

centered representation in which the neural array would code the difference in x,y position 

for different vertical coordinates long the barrier (z dimension).  For example, for the 30 

degree tilt, this would have the neural code of the base with a barrier at the center of the 

environment, but for higher levels the neural code would represent the barrier at greater 

distances from the animal along the tilt of the wall. This resulted in a lower match than the 

vertical wall, and resulted in lower firing rates along the tilted wall for 30 degrees and 60 

degrees, as visible in Figure 9Aii and 9Aiii, which have fewer purple spikes along the tilted 

wall as the animal is running south with the tilted wall on its left.  Similarly, in Figures 9Bii 

and 9Biii, there are also fewer green spikes along the tilted wall as the animal is running 

north with the tilted wall on its right. The vertical inserted wall in Figure 9Biv resulted in a 

match of sensory input and head centered template with firing comparable to the vertical 

walls in other parts of the environment. 

The retinotopic simulation of the same paradigm had some differences in 

response. In this case, the retinotopic view of the inserted wall seems to better match the 

stored retinotopic image of a 90 degree wall, so there is still some residual firing to the 30 

degree and 60 degree tilted wall. This is visible as some residual purple dots in Figures 

9Dii and 9Diii showing spiking along the center tilted wall as the animal runs south with 
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the tilted wall on the left, and in Figures 9Eii and 9Eiii there are some green spikes along 

the tilted wall as the simulated animal runs north with the tilted wall on its right. In addition, 

the 90 degree inserted wall shows fewer purple dots (spikes) in Figure 9Div compared to 

the purple dot spikes for the 90 degree East boundary wall in Figure Di. This is because 

the retinotopic image has a lower match by the 90 degree inserted wall because the 

current sensory retinotopic image includes only half as much of the view of the south wall 

compared to the template learned with a wall on the left. Similarly, Figure 9Eiv shows 

fewer green spikes to the 90 degree inserted wall compared to the spiking to the East 

boundary wall in Figure 9Ei. Thus, there are differences in the nature of the spiking activity 

induced by the matching to memory template when the template is head centered 

(Figures 9A and 9B) versus retinotopic (Figures 9D and 9E). 

 

FIGURE 9 ABOUT HERE 

Figure 9 legend. Modeling barrier tilt effects on EBC responses. Ai-Aiv. Head 

centered model of spiking responses for left side EBC template in open field (i), with 30 

degree tilted barrier (horizontal blue lines), (ii), 60 degree tilted barrier (iii) and 90 degree 

vertical barrier (iv). Note lack of spiking response to 30 and 60 degree tilted barriers (ii, 

iii). Bi-Biv. Head centered model spiking response for right side EBC. Ci-Civ. Schematic 

showing the different levels of tilt of the central barrier in the environment.  Di-Div. 

Retinotopic model of spiking for left side EBC in open field (i), 30 degree (ii), 60 degree 

(iii) and 90 degree vertical (iv). Spiking occurs near tilted barrier (blue spikes) and shows 

extra spiking (violet) for 90 degree barrier (iv). Ei-Eiv. Spiking of retinotopic right side EBC 

shows simulated spiking near the tilted barriers (green). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.03.636060doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.03.636060


 

Simulations of EBC firing to changes in barrier orientation 

 Testing different models can also benefit from analyzing the response to inserted 

barriers at different horizontal orientations. The simulations presented in this section show 

how memory weights for both the head-centered features and retinotopic feature 

responses can be used to predict EBC responses for different orientations of barrier walls 

inserted into the environment. 

 Retinotopic simulations of barrier orientation 

Figure 10A and 10B shows examples of EBC responses to inserted barrier walls 

at different horizontal orientations, using memory weights coding visual features in 

retinotopic coordinates from the starting images shown in Figure 10Ai and 10Bi.  The 

subsequent panels in each figure row show the spiking response based on the dot product 

of current retinotopic sensory input features with the memory weights of the retinotopic 

features based on the view in column i.  The response in an open field is shown in Figure 

10Aii and 10Bii.  The response to a barrier inserted with the long axis along the East-west 

dimension is shown in Figures 10Aiii and 10Biii.  The response to a barrier inserted with 

the long axis in the North-south dimension is shown in Figure 10Aiv and 10Biv. The 

response to a barrier inserted diagonally into the environment is shown in Figure 10Av 

and 10Bv, and then another open field example is shown in Figure 10Avi and 10Bvi.   

 Note that the simulation can effectively account for responses to boundaries and 

barriers in front of the animal as shown in the row in Figure 10B. This works because the 

retinotopic input primarily contains a segment of the floor and a segment of the wall, and 

this particular configuration of features (the color elements and the boundary) only match 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.03.636060doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.03.636060


in locations when the animal is directly facing the boundary in the plots. In addition, the 

view is relatively similar when the animal faces the inserted barrier in Figures 10Biii, 10Biv 

and 10Bv, and because it codes a view close to the barrier it is not affected by the 

relationship of the barrier to the surrounding environment (though this barrier/surround 

relationship will alter firing for examples when the viewpoint is at a greater distance from 

the wall). 

 In contrast, the spiking response of an EBC using retinotopic input to generate a 

response going away from the wall is not very localized to the wall (Figures 10Aii-10Avi). 

This is partly because the retinotopic view (Figure 10Ai) when going away from the wall 

is dominated by a very large ground plane (green) and the distant view beyond the walls 

(black), with only a small set of wall features appearing in gray across the center of the 

retinotopic view. This results in difficulties in discrimination of dot product values for 

different parts of the environment. If the dot product threshold is set too high, there will be 

no response anywhere. If the threshold is set lower, the dot product crosses it in a broad 

variety of locations as shown for the open field foraging trajectory Figure 10Aii. Note also 

that the insertion of the barrier in the center of the environment strongly changes the 

image when looking away from the surrounding walls. This results in a reduction of the 

spiking activity near the north and south boundary wall for an East-west inserted barrier 

as shown in Figure 10Aiii, when compared to the more extensive spiking in the open field 

in Figures 10Aii and 10Avi. This also results in a reduction in spiking activity for the East 

and West boundary walls when a North-south barrier is inserted (Figure 10Aiv), and 

reductions of spiking near all walls when a diagonal barrier is inserted (Figure 10Av). 

Thus, the retinotopic framework predicts that boundary responses in an open field will 
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show changes when a barrier is inserted, and these changes will depend on the relative 

orientation of a boundary wall relative to the inserted barrier. 

 

FIGURE 10 ABOUT HERE. 

Figure 10 legend. Models of EBC responses for barrier horizontal orientation. Left 

column shows stored templates. Subsequent columns show gray trajectory show similar 

EBC spiking response in an open field (column ii) and to 3 inserted barrier orientations 

(columns iii-v), then another open field (column vi).  A. Simulated encoding of a retinotopic 

memory array for distant barriers when the barrier is behind animal (10Ai). The 

subsequent matching with retinotopic sensory input generates an EBC spiking response 

(10Aii-vi) that is not restricted to the boundary and is altered by the inserted barrier. B. 

Simulated encoding of a retinotopic memory for a wall close in front (10Bi) shows better 

match of EBC responses (10Bii-vi) for a barrier in front of the animal. C. Simulated 

encoding of the head centered memory array for barrier behind animal (10Ci) and five 

subsequent simulations testing matching of head centered egocentric input in different 

sessions (10Cii-vi). This shows more consistent and localized spiking responses to a 

barrier behind the animal. D. Head centered memory for barrier in front of animal (10Di) 

shows clear EBC spiking response to walls in front of animal (10Dii-vi). 

 

 Head-centered simulations of barrier orientation 

 Figure 10C and Figure 10D show examples of EBC responses generated with 

memory features based on synaptic weights modified in response to features in head-

centered coordinates shown in Figures 10Ci and 9Di. As in Figures 10A and 10B, the 
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subsequent panels in these rows show the spiking response based on the dot product of 

current head centered sensory input features with the memory weights of the head 

centered features based on the view in the column in Figure 10Ci and 9Di. The response 

in an open field is shown in Figure 10Cii and 10Dii. The response to different orientations 

of inserted barrier are shown in the subsequent panels in Figs. 10Ciii-v and 10Diii-v.  

In contrast to the retinotopic image, the head-centered representation shows more 

consistent spiking responses to barriers that are both behind (Figure 10C) and in front 

(Figure 10D) of the animal.  In Figure 10C, the local head-centered array used to train the 

synaptic memory weights is centered behind the animal. (Note that extent of the array 

shown in Figure 10C is +/- two units in the front-back dimension and +/- 3 units in the left-

right dimension relative to the coordinate origin centered on the animal in egocentric 

space). When the full head-centered sensory input array interacts with the memory 

synaptic weights, the neuron receiving this input (computing the dot product) crosses 

threshold when the boundaries are behind the animal in the open field as shown in Figure 

10Cii. This spatially restricted response to a barrier behind the animal is a benefit of a 

head centered representation versus a retinotopic representation. 

You might ask how does the sensory input represent a barrier behind the animal?  

This is because the head-centered representation in the model is simulated to undergo 

updating of the feature array based not only on visual input but on current velocity on 

each step (including both translation and rotation). Thus, if the animal turns, its internal 

representation of the sensory input array is updated to include features in head-centered 

coordinates behind the animal that are no longer visible in the visual field. You might also 

ask why this isn’t done for the retinotopic representation. This is because the 
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transformation of a retinotopic image cannot be done with a simple linear matrix 

multiplication which can be done using a linear affine matrix for the head centered array. 

The standard way to update a retinotopic image is to transform it back to an egocentric 

head-centered representation, then perform the affine rotation or translation with a matrix 

multiplication, and then recompute the projection transform. The bottom line is that head-

centered representations allow for more efficient updating of the array. 

 As seen in the figure, the neuron crosses threshold also when the inserted East-

West barrier is directly behind the animal in Figure 10Ciii. Note that the firing continues 

to be more uniform for the North boundary of the environment in Figure 10Ciii. This 

appears as blue and violet dots indicating Southward head direction just below the North 

boundary, and to the south of the inserted barrier. This similar firing to boundaries is 

because the local head-centered array only detects the North boundary behind the animal 

and is not influenced by the inserted barrier until that barrier is behind the animal (i.e. 

when the animal is heading south from the barrier (blue dots below inserted barrier).  The 

same thing can be seen for the inserted North-South barrier (e.g. red dots indicating 

Eastward movement away from barrier) and for the inserted diagonal barrier (with violet 

dots indicating South-Eastward movement away from the barrier. Thus, the synaptic 

weights created by an array of head centered features is more effective for simulating 

responses to a boundary or barrier behind the animal. The example in Figure 10D shows 

similar behavior for an array created based on a local feature array with the boundary wall 

in front of the animal (Figure 10Di) and generates spiking when the animal is headed 

toward the boundary or barrier (i.e. blue dots North of the South wall in Figure 10Dii and 

North of the barrier in Figure 10Diii). Thus, there appear to be advantages of the head 
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centered representation over the retinotopic representation when simulating responses 

to barriers inserted into the environment at different horizontal orientations. 

 

Head-centered responses dependent on current velocity 

The neural representation of barriers might be important for computing trajectories 

that avoid barriers, as was used in previous simulations of the computation of goal-

directed trajectories (Erdem and Hasselmo, 2012; 2014). If barrier codes are being used 

for obstacle avoidance, then the salience of a barrier might depend upon the current 

velocity of an animal. For example, the neural response to a barrier in front of an animal 

might be much more behaviorally important if the animal is moving toward the barrier at 

90 cm/sec versus 2 cm/sec. Thus, we were interested to simulate how the egocentric 

neural response to a barrier might depend upon the current velocity of the animal. 

(Similarly, a barrier might be more important in front of the animal than behind the animal, 

though detection of a barrier behind the animal could be important as a potential source 

of protection from predators). 

To perform these simulations of the effect of running speed on egocentric coding 

of barriers, we used the ray tracing algorithm that we used to create the foraging trajectory 

of the animals. This forward scanning is inspired by previous models using forward 

scanning for navigation (Erdem and Hasselmo, 2012; 2014), and by experimental data 

indicating that forward scans may be generated by grid cell activity in medial entorhinal 

cortex (Vollan et al., 2024). Normally, this ray tracing algorithm projects a vector forward 

from the animal and detects whether the animal will run into a barrier within a thresholded 

distance (Figure 11A2). This thresholded response to the intersection of a ray and a 
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barrier wall already provides a simple way to represent a possible mechanism for the 

egocentric response to walls. We modified this obstacle avoidance algorithm further by 

testing different direction of ray tracing forward from the animal (e.g. to model a response 

to a barrier on the left side of the animal, this would involve ray tracing at a 90 degree 

angle from the current head direction of the animal).  In addition, to test the effect of 

running speed, we made the length of the projected ray dependent on running speed, 

and then computed the intersection based on time of intersection (collision) rather than 

based on the distance of intersection. The effects of this manipulation on simulations of 

egocentric boundary coding are shown for egocentric coding of wall distance relative to 

the animal in Figure 11.  The figure shows that at low running speeds with short forward 

trajectory scanning, the network shows a mean egocentric response to barriers close to 

the animal (Figure 11A1). This corresponds to trajectory plots in which the scans are 

shorter and the spiking occurs closer to the walls (Figure 11A2).  For faster running 

speeds with longer forward scans, the egocentric response to barriers occurs at greater 

distances in front of the animal (Figure 11B1 and Figure 11C1). These simulations 

correspond to trajectory plots with longer scans (blue lines) and with spiking that can 

occur at greater distances from the walls (Figures 11B2 and 11C2). 

The process of forward scanning is further illustrated in Figure 11D-G. Rather than 

showing a summary after an extended period of time, Figures 11D and E show just a few 

forward scans when the animal is near the central barrier in the environment. In these 

examples, the simulation is generating forward scans at 30 degree angles alternating to 

the left and right of the animal, consistent with recent data from the Moser lab (Vollan et 

al., 2024). Forward scans can be used to generate the position of egocentric boundary 
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cell spiking as shown in Figure 11A,B which could allow obstacle avoidance at a short 

distances. These forward scans can also be used by the animal to detect novel barrier 

features and to be attracted to these novel features, as shown in Figure 11D and E. This 

attraction to a novel barrier was used in Figure 10 to accurately reflect the fact that 

animals sample the central barrier more than would be expected by random movement. 

The attraction to an inserted circular novel object is shown in Figure 11F and G, where 

the trajectory visits the central object more frequently than expected by chance.   

 

 

FIGURE 11 ABOUT HERE 

Figure 11 legend. Models showing egocentric coding with forward planning scaled 

to different running speeds. Egocentric plots of barrier location during simulated spiking 

are shown in top row, and simulated forward planning scans are shown in bottom row 

(blue lines are forward scans from spiking locations at colored dots).  A1. At lower running 

speeds, the mean egocentric barrier location for spikes is closer to the center (agent 

location) because forward planning (A2) predicts collision with head centered code of 

barrier at shorter distances. B1, C1. At higher running speeds, the egocentric plot of 

barrier location during spiking is more distant. This is because the longer forward planning 

trajectories (B2, C2) with higher running speeds results in firing of EBCs at a greater 

distance from the barrier. D. Example showing a foraging trajectory (gray) and focusing 

on only one brief period of forward scanning (blue lines) at 30 degree angles to left and 

right of animal to detect the central barrier. E. Another example of detection of the central 

barrier by forward scanning during a short period of time. F. Forward scanning to detect 
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a circular inserted novel object. G. Trajectory guided by forward scanning that guides 

attraction to novel object showing movements converging on object which corresponds 

to attraction to novel objects in animals well habituated to the environment. 

 

Egocentric responses in darkness 

We also simulated the egocentric response to barriers in darkness. This 

immediately raises important issues for the response of animals using retinotopic or head 

centered coordinates of visual features, as the sensory input would be absent when the 

animal navigates in complete darkness. In this case, it is necessary to update the head 

centered coordinates or ray tracing mechanism based on sensory input about barrier 

position such as a previous collision with a barrier.  

We used a framework in which the animals current estimate of its position in the 

environment would be reset each time it touched a barrier, and then the update would 

depend upon the path integration of running velocity (speed and direction) as the ongoing 

integral of running velocity will estimate current position. This allowed simulations of 

egocentric responses to barriers in darkness based on the path integration of current 

location, which was also used for updating head-centered representations of the barriers. 

This was combined with the ray tracing extrapolation of current trajectory to determine 

whether there was an impending collision with a barrier, and this would drive the spiking 

of egocentric boundary cells. 

As shown in Figure 12, the combination of path integration with ray tracing allowed 

simulation of egocentric boundary response to barrier position in darkness. As shown in 

Figure 12Ai, Bi, Ci and Di, the direction of ray tracing could determine the egocentric 
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coding direction. Figure 12 Ai shows how ray tracing at a 90 degree angle to the left of 

current head direction could simulate an EBC responding to the left side of the animal 

(left EBC). Figure 12Bi shows that ray tracing at a 90 degree angle to the right could 

simulate a right EBC. Figure 12Ci shows that a ray going directly behind the animal (180 

degree angle) can simulate an EBC responding to a wall behind the animal. Finally, the 

standard forward ray tracing used for obstacle avoidance (0 degree angle) can simulate 

the response to a boundary directly in front of the animal. 

This internal representation of barriers would be very dependent on accurate path 

integration. Anything that seriously distorts the coding of speed should alter the accuracy 

of egocentric boundary cell firing in darkness. In particular, it has been shown that 

inactivation of GABAergic neurons appears to decrease the slope of the tuning curve of 

neuronal firing rate relative to running speed (Robinson et al., 2024). This change would 

be expected to alter the updating of position estimates by path integration, and could 

result in a distortion of egocentric boundary cell firing due to inaccurate estimates of 

distance since the previous encounter with a boundary. This would stretch out responses 

in many cases due to the animal thinking that it is still within the range of a barrier even 

though it has actually moved out of range of the barrier. Simulation of a 60% decrease in 

slope of firing rate to running speed causes the distortion of egocentric boundary cell firing 

shown in Figure 12Aii, Bii, Cii and Dii. In each case the position estimate becomes less 

accurate and the firing in response to estimated position of boundaries becomes larger 

because the simulated circuit has underestimated the amount of movement away from 

the boundaries. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.03.636060doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.03.636060


FIGURE 12 ABOUT HERE 

Figure 12 legend. Simulations performed in darkness so that the head centered 

array must be updated based on the estimate of current location. Forward planning model 

using forward sequences based on current velocity that generate spiking if neural activity 

interacts with barrier memory within a neural time interval. The left column shows 

simulations that represent EBC spiking responses with effective path integration based 

on current location and forward trajectory sampling in different directions: Ai sampling to 

the left side (Ai) detects a barrier to the left, Bi sampling to the right side detects a barrier 

on the right, Ci scanning behind the animal, as also shown in some cases by (Vollan et 

al., 2024) detects wall behind animal, Di scanning to the front of the animal detects wall 

in front of animal. The right hand column shows distortions of EBC spiking activity 

predicted for impaired speed coding (reduction in the slope of firing relative to running 

speed) due to inactivation of basal forebrain GABAergic input. The effect of reducing the 

slope of speed coding impairs path integration and results in spreading of spiking 

responses for all cells including the left side EBC (Aii), right side EBC (Bii), back EBC 

(Cii) and front EBC (Dii).   

 

 

DISCUSSION 

The models presented here show that egocentric boundary cell responses during 

open field foraging (Alexander et al., 2020a; Alexander et al., 2020b; van Wijngaarden et 

al., 2020; Alexander et al., 2023; LaChance and Hasselmo, 2024) can be simulated using 

sensory input arrays in either retinotopic coordinates or head-centered coordinates. 
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However, the simulations of these different coordinate systems make different predictions 

about the response of egocentric boundary cells to manipulations of the environment such 

as changes in the height of environmental boundaries, or changes in the vertical tilt or the 

horizontal orientation of inserted barriers in the environment.  

The framework presented here used a standard approach to neural modeling in 

which memory weight matrices are formed by Hebbian modification of associations 

(Kohonen, 1984; McNaughton and Morris, 1987). The framework presented here formed 

associations during an encoding process prior to foraging during which Hebbian 

modification strengthens synapses between presynaptic sensory input neuron arrays in 

visual cortices activated by visual input and individual postsynaptic retrosplenial neurons 

activated at an array of locations and head directions. After encoding, during subsequent 

foraging, the sensory input causes retrieval that spreads across the weight matrix, as 

simulated by the dot product of the input array with each row of the weight matrix. This 

determines which postsynaptic retrosplenial neuron has a sufficient match (dot product) 

to cross threshold and generate a spike at that time point of the trajectory corresponding 

to a specific location and head direction. These differences in dynamics between 

encoding and retrieval could be regulated by cholinergic modulation during encoding 

(Hasselmo, 1993; Hasselmo, 2006), or by different phases of theta rhythm oscillations 

(Hasselmo et al., 2002; Hasselmo and Stern, 2014).  

For open field simulations, realistic neuronal responses can be generated for 

egocentric boundary cells coding walls to the left or right of the animal or in front of the 

animal. In the open field, this works for sensory input arrays using either retinotopic or 

head-centered coordinates. Retinotopic coordinates use the horizontal and vertical 
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position of features projected onto the image plane, whereas head-centered coordinates 

code the distance and angle of environmental features in 3-dimensional head-centered 

coordinates (changed to front-back, left-right and up-down coordinates). Further 

simulations show that manipulations of barrier properties such as height, vertical tilt and 

horizontal orientation will alter the neural response of the simulated cells in different 

manners dependent on the use of head-centered or retinotopic coordinates. Previous 

simulations have shown how sparse encoding and matching of retinotopic images can 

generate egocentric boundary cells (Lian et al., 2023), but did not yet explore the effect 

of manipulations of barrier parameters. 

As shown in Figure 7, for a retinotopic model, the changes in boundary height 

predict a clockwise or counterclockwise rotation of the neural firing pattern of neurons 

tuned to left or right side walls, and predict a change in the width of firing fields with height 

of walls. In contrast, Figure 8 shows that the change in height for the head-centered model 

only causes a change in firing rate of egocentric boundary cells and not location of firing. 

As shown in Figure 10A and B, for retinotopic models, the response of neurons coding 

walls behind the animal should change in response to the angle of inserted barriers, with 

east-west wall boundary wall responses affected by north-south inserted barriers, 

whereas north-south boundary wall responses would be affected by east-west inserted 

barriers. In contrast, the head-centered model shown in Figure 10C and D shows more 

consistent responses to barriers in front and behind the animal despite the insertion of 

barriers at different orientations. 

Ultimately these egocentric representations must influence the formation of 

allocentric representations, though allocentric coding by grid cells and place cells were 
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not simulated here. Allocentric coding represents the location of an animal relative to 

objects and barriers in the environment, and should be useful for generalization of 

behavior based on memory coding of goal locations relative to other landmarks when the 

egocentric positions are changing dramatically from moment to moment. Extensive 

neurophysiological data has demonstrated the coding of location by grid cells in entorhinal 

cortex (Hafting et al., 2005) and place cells in hippocampus (O'Keefe and Dostrovsky, 

1971) which shift their firing with barrier insertion (Muller and Kubie, 1987). Allocentric 

coding is also used by head direction (HD) cells in RSC and POR (Alexander et al., 2020a; 

LaChance et al., 2022). Egocentric coding may also contribute to the generation of cells 

that respond to the allocentric direction and angle of boundaries (Barry et al., 2006; 

Solstad et al., 2008; Lever et al., 2009) and objects (Deshmukh and Knierim, 2011; 2013; 

Høydal et al., 2019; GoodSmith et al., 2022). Future work could combine egocentric 

coding of barriers and running speed to generate allocentric representations of the 

environment important for goal-directed behavior. 

Extensive previous modeling work has focused on the formation of allocentric 

spatial representations of allocentric boundary cells (Byrne et al., 2007; Raudies and 

Hasselmo, 2012; 2015; Bicanski and Burgess, 2018) and place cells from egocentric 

boundary cells (Byrne et al., 2007; Bicanski and Burgess, 2018) usually focusing on two 

dimensional coding in the azimuth plane. Note that our model focuses on the formation 

of egocentric boundary cell responses from sensory input during behavior. The 

simulations presented here do not focus on the later stages of the process modeled in 

those studies such as the combination of egocentric boundary cells with head direction 

input to generate allocentric boundary cells (Byrne et al., 2007; Bicanski and Burgess, 
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2018). There have also been many previous simulations of grid cell responses based on 

path integration of movement velocity (McNaughton et al., 2006; Burgess, 2008; Burak 

and Fiete, 2009; Zilli and Hasselmo, 2010; Bush and Burgess, 2014). Some models of 

grid cells address the influences of boundary features on path integration to enhance 

accuracy of grid cell firing by having sensory features reset grid cell phase (Bush and 

Burgess, 2014; Alexander et al., 2023). However, most previous models of grid cells do 

not simulate explicit visual sensory input in retinotopic coordinates, though head-centered 

coordinates have been used to model grid cells as affine transformation matrices 

(Alexander et al., 2023).  

Our simulations presented here do not focus on the potential influence of 

egocentric boundary cells on the allocentric coding by grid cells, but other work in our lab 

has focused on how phase coding models of grid cells could be extended to represent 

the location of animals, barriers and objects in the environment (Hasselmo, 2009; 

Hasselmo et al., 2010; Alexander et al., 2023). Scanning of forward trajectories to detect 

boundary collisions as simulated in Figure 11 could involve grid cell population codes of 

location. Forward scanning by grid cells was simulated in early models that used the 

scanning for both obstacle avoidance and goal directed navigation (Erdem and 

Hasselmo, 2012; 2014). This model of forward scanning is supported by recent data on 

decoding of forward scans from grid cell poulations (Vollan et al., 2024).  In related work, 

the spatiotemporal trajectories coded by grid cells and time cells have been encoded as 

episodic memories (Hasselmo, 2009; Hasselmo, 2012). This allows forward retrieval of 

an extended complex spatiotemporal trajectory as an episodic memory (Hasselmo, 2009; 
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Hasselmo, 2012). A similar model for trajectory retrieval was shown to have a high 

memory capacity (Chandra et al., 2025).  

The retinotopic coding used here is very similar to the retinotopic coding used for 

pixels in the first layer of a convolutional deep neural network (CNN). Rather than training 

a CNN or other deep neural network, here we maintained neural interpretability by using 

a single layer for coding the coordinate system transformation into the activity patterns of 

retrosplenial neurons. Thus, the internal representations used in the simulations 

presented here are not generated by gradient descent. Many decades of neural network 

models trained by gradient descent have addressed pattern recognition. For example, 

deep convolutional neural networks (CNNs) trained by gradient descent have been used 

extensively for pattern matching in the form of object identification. The first layers of these 

CNNs match well to simple cells of primary visual cortex discovered by Hubel and Wiesel. 

However, somewhat surprisingly, there has not been a clear description of regularities of 

higher order internal representations that these models generate, partly due to the code 

being so broadly distributed across multiple large layers, and partly due to the fact that 

mapping to neural data have usually used transformation matrices that obscure the nature 

of the representation in the model. We know the nature of neural data in visual cortices 

that code some object features and individual objects, and we know that the internal 

representation of the CNNs can be transformed into neural data, but there is no constraint 

or description of the magnitude or range of CNN representations, and the focus on mean 

firing rates has ignored the possible role of spike timing or phase coding. 

Previous studies have used deep reinforcement learning networks to simulate 

spatial behavior based on simulated visual inputs and have been shown to generate some 
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neural responses similar to grid cells and place cells (Banino et al., 2018; Schaeffer et al., 

2023; Sorscher et al., 2023). A recent model using a more biologically motivated gradient 

descent model generated spatial representations including head direction cells and 

egocentric boundary cells (Chapman et al., 2024). Further analysis of these models might 

give insight into the nature of how these spatial neural responses could be generated, but 

they do not provide an immediate comparison of retinotopic versus head centered internal 

representations for the formation of egocentric boundary cell responses. 

As described in the methods section, the sensory input is simulated using standard 

techniques of computer animation or game engines, in which features are first defined in 

3D allocentric coordinates, and the agent movement is simulated. Then features at each 

point along the movement trajectory are transformed into egocentric coordinates, and 

then the projection transform generates retinotopic coordinates. It would be interesting if 

neurons could work with the definition of features by their coordinates. However, it is not 

clear how neurons could perform a matching function with only the standard coordinate 

points of computer vision as this would require at least three things: 1.) a neural 

representation of feature coordinates (i.e. neurons that flexibly code a variety of 

locations), as opposed to the standard neural network approach of using neurons that 

code retinotopic location and are activated only if the feature corresponds to that location 

(as in typical simple cell Gabor filtering); 2.) some measure of the relevant density of 

points, as the coordinates of wall corners are quite sparse; and 3.) Solving the problem 

of knowing which input feature matches with which stored feature. Perhaps neurons could 

code these coordinates by the phase of spiking relative to network oscillations, or by the 

intrinsic phase of membrane potential. However, this has not yet been simulated, and 
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therefore the framework presented here utilizes the more standard approach in which 

individual input feature neurons code the presence of a specific feature at a specific 

location in the array (the horizontal or vertical position in retinotopic coordinates, or the 

front-back, left-right or up-down coordinates for feature position in head-centered 

coordinates). 

In summary, the simulations presented here demonstrate how egocentric 

boundary cells can be generated according to different hypotheses concerning the role 

of sensory visual input in either retinotopic or head-centered coordinates, or via forward 

scanning to detect collision with barriers. These different hypotheses make different 

predictions for future experimental tests of the effect of manipulations of environmental 

features. 
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Figure 8

A 60 cm 30 cm
B 60cm 30cm 15cm

Height - Head centered coding EBC spiking
15 cm

C 60cm 30cm 15cm

D 60cm 30cm 15cm

15 cmE 60 cm walls 30 cm
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Tilt - Head centered coding
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