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Abstract

& Many behavioral tasks require goal-directed actions to
obtain delayed reward. The prefrontal cortex appears to
mediate many aspects of goal-directed function. This article
presents a model of the prefrontal cortex function emphasizing
the influence of goal-related activity on the choice of the next
motor output. The model can be interpreted in terms of key
elements of the Reinforcement Learning Theory. Different
neocortical minicolumns represent distinct sensory input
states and distinct motor output actions. The dynamics of
each minicolumn include separate phases of encoding and
retrieval. During encoding, strengthening of excitatory con-

nections forms forward and reverse associations between each
state, the following action, and a subsequent state, which may
include reward. During retrieval, activity spreads from reward
states throughout the network. The interaction of this
spreading activity with a specific input state directs selection
of the next appropriate action. Simulations demonstrate how
these mechanisms can guide performance in a range of goal-
directed tasks, and provide a functional framework for some of
the neuronal responses previously observed in the medial
prefrontal cortex during performance of spatial memory tasks
in rats. &

INTRODUCTION

Numerous behavioral tasks involve goal-directed behav-
ior based upon a delayed reward. For example, a rat in
an instrumental task must generate lever presses to
obtain food reward (Wyble, Hyman, Rossi, & Hasselmo,
2004; Corbit & Balleine, 2003; Killcross & Coutureau,
2003), and a rat in a T-maze must run down the stem of
the maze to obtain food reward in one arm of the maze
(Baeg et al., 2003; Ferbinteanu & Shapiro, 2003; Wood,
Dudchenko, Robitsek, & Eichenbaum, 2000; Jung, Qin,
McNaughtonm, & Barnesm, 1998). Lesions of the pre-
frontal cortex cause impairments in goal-directed behav-
ior (Corbit & Balleine, 2003; Killcross & Coutureau,
2003; Miller & Cohen, 2001; Fuster, 1995), and prefron-
tal units show firing dependent upon the association of
cues and future responses (Miller, 2000). The model
presented here addresses how goal-directed behavior
can be mediated by populations of neurons.

An extensive theoretical framework termed Reinforce-
ment Learning (RL; Sutton & Barto, 1998; Sutton, 1988)
describes how an agent can generate behaviors for
delayed rewards in its environment. Current sensory
input to the agent is represented by a ‘‘state’’ vector,
and the output of the agent is represented by ‘‘actions’’
which alter the state vector (i.e., moving the agent to a
different location). The selection of actions is guided by
value functions (associating states with future reward)

and state–action value functions (associating actions in
specific states with future reward). These functions are
often learned using variants of temporal difference (TD)
learning (Sutton & Barto, 1998; Sutton, 1988).

Research has focused on the similarity between the
error term in TD learning and the activity of dopaminer-
gic neurons (Schultz, Dayanm, & Montague, 1997; Mon-
tague, Dayan, & Sejnowski, 1996). The basal ganglia have
been proposed to provide circuitry for computation of
TD learning (Houk, Adams, & Barto, 1995). Alternatives
to TD learning have also been developed in models of
the basal ganglia (Brown, Bullock, & Grossberg, 1999).
Despite these links to biology, the mechanisms for many
other aspects of RL have not been analyzed. Most RL
models use simple look-up tables for the action-value
function, without mapping these functions to the phys-
iological properties of neurons. The state–action value
mapping has been modeled with neural networks (Zhu &
Hammerstrom, 2003; Barto & Sutton, 1981), but these
hybrid models retain many algorithmic steps which are
not implemented biologically.

In contrast, this article focuses on obtaining goal-
directed behavior using a neurobiological circuit model
with all functions implemented by threshold units and
modifiable synaptic connections. This model demon-
strates how action selection could be computed by
activity in prefrontal cortical circuits. The model does
not focus on dopaminergic activity and does not explic-
itly use the TD learning rule. Instead, this model obtains
effective action selection using interacting neurons, andBoston University

D 2005 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 17:7, pp. 1–14



demonstrates how specific circuit dynamics with local
Hebbian rules for synaptic modification can provide
functions similar to TD learning. The activity of individ-
ual neurons in the simulation is described in relationship
to experimental data on the prefrontal cortex unit firing
in two different tasks: an open-field task and a spatial
alternation task in a T-maze (Baeg et al., 2003; Wood
et al., 2000; Jung et al., 1998). This model demonstrates
how the activity of prefrontal cortical units can be
interpreted as elements of a functional circuit which
guide the actions of an agent on the basis of delayed
reward.

RESULTS

Overview of Network Function

The model presented here contains a repeated subcir-
cuit (Figure 1) intended to represent a repeating func-
tional unit of neocortical architecture, such as the
minicolumn (Rao, Williams, & Goldman-Rakic, 1999).
Each local minicolumn includes a population of n input
units, designated with the letter a, which receives input
about the current state or the most recent action.
Across the full model these units provide input to n
minicolumns, forming a larger vector a (with size n *
n). The vector a represents units in layer IV of cortical
structures, which receive input from thalamic nuclei
conveying information about sensory stimuli or propri-
oceptive feedback about an action, and also receive
feedforward connections from cortical areas lower in
the sensory hierarchy (Scannell, Blakemore, & Young,
1995; Felleman & Van Essen, 1991; Barbas & Pandya,
1989). The representations in this model are consistent
with data showing that the prefrontal cortex neurons
respond to a range of behaviorally relevant sensory
stimuli, motor outputs, and reward (Koene & Hassel-
mo, in press; Mulder, Nordquist, Orgut, & Pennartz,
2003; Wallis, Anderson, & Miller, 2001; Schultz, Trem-
blay, & Hollerman, 2000; Jung et al., 1998; Schoenbaum,
Chiba, & Gallagher, 1998; Schoenbaum & Eichenbaum,
1995).

Each minicolumn contains four populations of units
that mediate associations with other minicolumns acti-
vated at different time points (see Figure 1). The reverse
spread of activity from the goal (reward) minicolumn is
mediated by connections Wg, and forward associations
from current input are mediated by Wc and Wo. Pop-
ulations gi and go in each minicolumn are analogous to
neurons in layers II and III (supragranular layers) in the
neocortex, which have long-range excitatory connec-
tions (Lewis, Melchitzky, & Burgos, 2002). Population
gi receives input spreading from the goal via connections
Wg. Population go receives input from gi via internal
connections Wig and sends output to other minicolumns
via Wg. These connections link each action with preced-
ing states, and each state with preceding actions.

Populations co and ci in each minicolumn are analo-
gous to neurons in layers V and VI (infragranular layer)
in the neocortex. These neurons have more localized
connections and influence the cortical output to sub-
cortical structures and lower levels of the neocortex,
consistent with the role of population co in regulating
the output of the circuits in this model. Population ci

receives input about the current state or action from
other minicolumns, whereas population co receives
input from population a in the same minicolumn, and
sends output to other minicolumns and to the output
vector o via connections Wo.

Each minicolumn receives inputs consisting of either
sensory information from the environment (described
with the term ‘‘state’’ in RL) or proprioceptive feedback
about specific motor actions performed (described with
the term ‘‘action’’ in RL). As shown in Figure 2, the
network generates outputs which guide behavior of a
virtual rat. During retrieval, the spread of activity within
the network guides the selection of the next action of
the virtual rat. Each output action causes input to
specific minicolumns representing actions. The encod-
ing of associations between actions and the preceding
and following states occurs during an encoding phase
which is distinct from the retrieval phase which guides
action selection. These separate phases could corre-
spond to phases of oscillatory dynamics within cortical
structures (Manns, Alonso, & Jones, 2000).

Example: Movement on a Linear Track

As an example, Figure 2 shows a model guiding move-
ments of a rat on a linear track with reward provided

Figure 1. Components of each model minicolumn. Each minicolumn

has multiple units in vector a receiving input from the thalamus about

current sensory state or proprioceptive feedback about motor output

(actions). The population gi receives input spreading back from the
goal via connections Wg from other minicolumns. The population go

receives activity spreading from the goal via internal connections Wig

and sends output to other minicolumns. The population ci receives

forward spread from the current state or action. Population co is
activated by current input from population a in the same minicolumn,

which converges with input from population gi. Population co projects

via connections Wo to output (action) units o to generate the next
action on the basis of activity in population co.
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consistently at one location (the ‘‘East’’ location). This
resembles the RL example of an agent in a gridworld
environment (Sutton & Barto, 1998), and resembles
tasks used for studying neuronal responses in the
hippocampus (Wyble et al., 2004; Gothard, Skaggs, &
McNaughton, 1996). Here we use an allocentric repre-
sentation of the state, but this framework can also be
applied to egocentric representations.

This simple model consists of six minicolumns: three
representing states (locations), two representing ac-
tions, and one representing reward. The ‘‘states’’ are
labeled West, Center, and East in Figure 2, and provide
input to three separate minicolumns. Each current
‘‘state’’ is represented by active elements in a. Here,
the virtual rat has the option of two ‘‘actions’’ defined
allocentrically, the actions ‘‘go West’’ and ‘‘go East.’’
Actions are generated by an output population, a two-
element vector o which guides the movements of the rat
(see Figure 2). Proprioceptive feedback about the active
output in vector o activates elements of vector a in the
corresponding action minicolumn representing ‘‘go
West’’ or ‘‘go East.’’ The network also has a ‘‘reward’’
(goal) representation of the sensory input about food
that becomes associated with physiological drive states
such as hunger. The reward minicolumn is activated
during encoding when food reward is first obtained, and
provides the goal for selecting actions during retrieval.
This example focuses on the retrieval process after
encoding of the environment has been performed.
The Methods section provides detailed equations for
both the encoding and retrieval phases.

Retrieval Provides Action Selection

The following mechanism provides action selection
when the rat is at the location in the center of the

environment. The goal state is activated by subcortical
drive mechanisms, represented in the model by diffuse
activation of the population goR in the reward mini-
column (filled circles in Figure 2). In Figure 2, activity
spreads over connections Wg from the goR population
in the ‘‘Reward’’ minicolumn to the input population gi

in the ‘‘East’’ state minicolumn. These connections
were strengthened during previous exploration of the
environment (as described in the Methods section
below), allowing units in go to activate a unit in gi.
The activity spreads over internal connections Wig from
population gi to population go in the ‘‘East’’ state
minicolumn. The spread continues over Wg from go

in the ‘‘East’’ minicolumn to gi in the ‘‘go East’’ action
minicolumn, then over Wig to go in the ‘‘go East’’
action minicolumn and from there over Wg to gi in
the ‘‘Center’’ state minicolumn. This continuous
spread of activity traces possible reverse pathways from
the goal back through sequences of states and actions
leading to that goal.

The selection of an action depends upon the interac-
tion of the spread from goal/reward with the input
representing current state. The reverse spread from
reward converges with input to the ‘‘Center’’ state
minicolumn. Sensory input from the environment about
the current state activates the units of a in the mini-
column representing the ‘‘Center’’ state, which send
diffuse subthreshold activity to population co in that
minicolumn. Activity in population co depends upon
the convergence of this subthreshold input with sub-
threshold input from the unit in gi which was activated
by the reverse spread from reward. In Figure 2, this
convergent input causes activity in unit 3 of population
co in the ‘‘Center’’ state minicolumn, corresponding to
the appropriate output ‘‘go East.’’ Previously strength-
ened connections Wo between this element of the

Figure 2. Retrieval activity

in an example linear track

task. Separate minicolumns

represent the two actions
‘‘go West’’ and ‘‘go East,’’

and the three states ‘‘West,’’

‘‘Center,’’ and ‘‘East.’’ One
minicolumn represents goal

(reward) in ‘‘East.’’ The

selection of output action

depends on convergence of
reverse spread from goal

with sensory input to the

minicolumn representing

the current state (Center).
The desire for goal is represented by subcortical activation of the population goR in the reward minicolumn, which causes activity to spread back

through the network (active units are black). Activity spreads to population gi and then go in the East state minicolumn, then spreads through gi and

go in the ‘‘go East’’ action minicolumn before reaching the gi population of the ‘‘Center’’ state minicolumn. In the center minicolumn, the
subthreshold input from population gi converges in population co with subthreshold input from population a. The activation of one unit in

population co spreads over weights Wo to generate the appropriate action via the output vector o (which has two elements representing ‘‘go East’’

and ‘‘go West’’ actions.) Here, the activity of the output vector guides the rat to go East, and also returns as proprioceptive feedback to activate

components of the a vector in the minicolumn for ‘‘go East.’’
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population co and the output population causes activity
in the ‘‘go East’’ output unit, as shown in Figure 2. The
activity of the output unit causes the virtual rat to move
to the goal in the ‘‘East’’ location. Thus, the retrieval
process performs the correct action selection for ap-
proaching the goal.

Separate input and output populations for reverse
spread are required due to repeated use of actions in
multiple contexts. The same action could result in
different outcomes dependent upon the starting state.
For example, a ‘‘go East’’ action could shift the state
from West to Center, but also from Center to East. If
there were only one population for both input and
output, the network would map all inputs to every
output. But with distinct populations of input and
output populations, it is possible to make these map-
pings distinct. Minicolumn structure was chosen to be
the same for both states and actions, just as the
structure of the neocortex appears similar throughout
the prefrontal cortex, where units respond to both
sensory input and motor output (Mulder et al., 2003;
Fuster, 1995).

Encoding Creates Necessary Synaptic Connectivity

The retrieval function described above depends upon
prior modification of the appropriate pattern of connec-
tivity in the synapses of the network. The process of
encoding is summarized in Figures 8 and 9 and de-
scribed in detail in the Methods section. The buffering of
sensory input and timing of activity spread within the
network allows encoding to occur with the time course
of spike-timing-dependent synaptic plasticity (Markram,
Lubke, Frotscher, & Sakmann, 1997; Levy & Steward,
1983), which requires postsynaptic spikes to occur
immediately after presynaptic spikes. Encoding and
retrieval phases alternate continuously in the model
during all stages of behavior. Retrieval activity does not
occur during encoding because there is no subcortical
input to population go in the model and therefore no
reverse spread. Modification of synapses occurs selec-
tively on the encoding phase, based on data on phasic
changes in LTP induction during theta rhythm (Hyman,
Wyble, Goyal, Rossi, & Hasselmo, 2003). The effective
learning of behavior results from an interaction of
synaptic modification and the backward spread from
goal, resulting in a function similar to that of TD
learning.

The network starts with weak connectivity which does
not generate learned actions. Outputs are initially gen-
erated randomly to move the animal from its prior
location to a new location (state). Therefore, the initial
encoding of the environment occurs as the virtual rat
explores randomly, generating random sequences with a
state followed by an action, which leads to another state.
As the encoding process strengthens synaptic connec-
tions, the network begins to perform effective goal-

directed behavior, as summarized in simulation results
below using MATLAB.

Simulation Results

Goal Finding on a Linear Track

The guidance of goal-directed behavior by the prefrontal
cortex circuit model was tested in a range of different
behavioral tasks. The first task utilized a linear track,
with reward located at one end. The virtual rat starts at
the West end of the track, searches until it finds the
reward at the East end, and is immediately reset to the
West end. Figure 3 shows the movements of the virtual
rat as it learns optimal performance in the linear track.
The states (locations) of the rat over time are plotted as
black rectangles in the top four rows of the plot. During
the initial time steps of the simulation, the virtual rat
explores back and forth randomly along the linear track
(both West and East movements), and obtains infre-
quent rewards. As connections are modified within the
network, the virtual rat gradually learns to run directly
from the starting position to the goal location on each
trial, thereby obtaining frequent rewards as shown on
the right side of Figure 3. This gradual increase in goal-
directed behavior results from the increase in reverse
spread from the goal location as the rat learns the task
and excitatory reverse connections are strengthened.
The spread of activity across these reverse connections
allows consistent selection of the correct response
which guides the virtual rat to the goal location.

The simulations demonstrate that the encoding equa-
tions described in the Methods section allow formation
of the necessary pattern of connectivity to encode
potential pathways through the environment. The con-

Figure 3. Movements of the virtual rat during learning and
performance of the simple linear track task. Black vertical bars in the

top four rows show the states (locations West, Center 1, Center 2, East)

of the virtual rat during different simulation time steps plotted
horizontally. Black rectangles in rows 7 and 8 show the actions go West

(W) and go East (E). Black rectangles in the bottom row (row 9)

show delivery of reward. Initially, the virtual rat moves randomly

(Exploration), but as connections Wg, Wig, and Wo are progressively
strengthened, the activity becomes guided by the goal location

(Optimal path). This results in generation of only ‘‘go East’’

movements (row 8) and greater regularity of reward delivery

(shown by black rectangles in row 9).
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vergence of sensory state input with the reverse spread
of activity allows selection of actions which result in
movement along optimal pathways within the environ-
ment in most cases (although in some cases the network
settles into nonoptimal pathways). The effective goal-
directed behavior can be seen in Figure 3, where the
virtual rat learns to make Eastward movements only,
thereby rapidly moving from the start location to the
goal location and obtaining reward. The encoding pro-
cess occurs during random exploration of the envi-
ronment, so that the network does not have to be
selectively structured for each environment, but can
learn goal-directed behavior in a range of different
environments.

Goal Finding in an Open Field

The model can guide movement of the virtual rat in
environments of arbitrary shape and size, with different
goal locations and barriers similar to the gridworld
examples used in RL (Foster et al., 2000; Sutton & Barto,
1998). Exploration and effective performance in a two-
dimensional environment can be seen in Figure 4. Here,
the virtual rat starts in the middle left (location 4),
searches until it finds the goal location in the middle
right (location 6), and is reset to the start position when
it finds the goal. The greater range of possible move-
ments results in longer pathways during initial explora-
tion (left side of Figure 4A and B1), but ultimately, the
virtual agent discovers the reward location and on
subsequent trials eventually starts taking the shortest
path between start location and reward (as seen on the
right side of Figure 4B1). Across 15 simulated rats, this
results in an increase in the mean number of rewards
received per unit time, as shown in Figure 4B2.

Note that these simulations use Equation E1b in the
Methods section. In this equation, the activity of the go

population during encoding depends on both the new
state input and the reverse spread from the goal on
the previous retrieval cycle. Although this slows down
learning, it actually results in much better overall per-
formance, because strengthening of connectivity prog-
resses backward from the goal location, so that the
virtual rat is much more likely to find an optimal
pathway. In contrast, use of the alternate Equation E1
results in faster convergence to a single pathway to the
goal location, but this pathway is more likely to be
nonoptimal, because strengthening progresses forward
from the start location without any dependence upon
proximity to the goal location. The performance of the
network with Equation E1 is shown in Figure 4C. With
Equation E1, the network rapidly learns a single pathway
to the goal (Figure 4C1), but this is usually a nonoptimal
pathway, and can just be a local loop. Across 15 rats,
these effects result in a much poorer final average per-
formance well below the optimal level (Figure 4C2).
In contrast, Equation E1b results in the network finding

Figure 4. Performance of the network over time in an open-field task.

(A) The network starts out with random exploration, resulting in
pathways with many steps between the start point and goal

(nonoptimal path). After effective encoding, retrieval guides movement

along the shortest path directly across the environment (optimal path).

(B1) Learning with Equation E1b. Black rectangles in top nine rows
(States) show the location of the virtual rat in the environment. Middle

four rows show actions (N, S, W, E). After learning of the optimal

pathway, the virtual rat repeatedly moves along the shortest path from

start to goal (three steps to East). (B2) Average number of rewards
received in 15 different simulations versus optimal number per unit

time (1 reward for every 3 steps). Initially, pathways are long resulting

in a low-average rate of reward. As learning continues, the circuit
consistently finds the optimal pathway, resulting in an optimal reward

rate (value of 1.0). (C1) Learning with Equation E1. The network

rapidly selects a pathway because each transition from state to action

to state results in learning, so the first pathway to reward will be
repeated. However, the model stays with this pathway which is usually

nonoptimal, such as the longer five-step path shown here. (C2) The

use of nonoptimal pathways results in a lower-average reward rate over

the 15 different simulations. The network also falls into local loops,
which contribute to the lower final average rate of reward (around 0.6).
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the optimal pathway to reward in all cases (Figure 4B2).
The encoding of the environment depends upon the
relative amount of random exploration versus exploita-
tion of previous encoding. Greater randomness of ex-
ploration in early stages results in a better learning of
the environment, resulting in more optimal final behav-
ior. However, this greater randomness results in slower
learning and less initial reward. In a sense, greater speed
of learning results in less complete understanding of the
contingencies of the environment.

The speed of simulations slows down for larger
numbers of states, but in real cortical circuits, the
neuronal activity and synaptic weights would be com-
puted in parallel, avoiding the sequential computation of
large matrices. The sequential learning of states and
actions may help to reduce the dimensionality of the
matrices being learned. For transitions between n states,
the network must modify n * n matrices, but transitions
between n states and n0 actions requires 2 * n * n0

connections, which could take advantage of the smaller
dimensionality of actions. Learning of the task takes
longer in a larger environment due to the time required
to randomly encounter the goal and the intervening
states. Future models should move beyond the location
states used here. For example, in an open field a rat can
see the goal location and approach it without needing to
learn values for each intervening part of the open space.
This may require multiple interacting representations of
the environment which can simultaneously guide behav-
ior, as in multiple models based RL (Doya et al., 2002).

Comparison of Model with Temporal
Difference Learning

The speed of learning of the prefrontal cortex model
was compared with the speed of learning of a traditional
actor critic model using TD learning, as shown in
Figure 5. This comparison was not performed with the
expectation that the prefrontal cortex model would be
faster. Instead, it was focused on determining whether
the more biologically detailed implementation could
attain learning at a behaviorally realistic rate. Real rats
require multiple trials (and effective shaping by experi-
menters) to learn specific goal-directed behaviors in an
environment, consistent with the requirement in the
simulation for multiple learning trials before optimal
performance is obtained. As shown in Figure 5, the
prefrontal cortex model could obtain effective function
at about one half the rate of TD learning. This was due
to the incorporation of both state and action minicol-
umns into the network, requiring two steps of learning
for each action selection, as opposed to the actor critic
model where only one step of learning is necessary for
each modification of action values at each state. The
prefrontal model creates the connectivity necessary for
action selection at each state with learning of associa-
tions between that state and each action, as well as

connections from that action to the resulting subse-
quent state.

Comparison of Simulation with
Neurophysiological Data

The structure of this simulation allows comparison with
physiological data on the activity of neurons in the
medial prefrontal cortex of rats performing spatial mem-

Figure 5. Comparison of neocortex circuit model with pure temporal
difference learning. (A) With both mechanisms, the virtual rat starts out

taking long pathways to the goal and eventually learns the optimal

pathway directly from start point to goal. (B1) Example of rat

movements guided by neocortex simulation in open field. (B2) Across
15 simulations, the neocortex model approaches optimal performance

about twice as slowly as TD learning. This results from the necessity

for two stages of encoding (state to action, and action to state) for

connections which mediate the equivalent of an action-value function.
(C) Temporal difference learning results in a rapid approach to optimal

performance over 30 time steps (average of 15 simulations). Only one

step is required for each update of the action-value function look-up
table when using the more abstract temporal difference learning rule.
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ory tasks, including movement in an open-field task
(Jung et al., 1998) and a spatial alternation task in a
figure-of-8 maze (Baeg et al., 2003; Jung et al., 1998).
Note that movement in the open field was done with
one reward location, corresponding to exploration be-
fore finding of one food pellet during foraging. The
activity of simulated neurons was plotted in the same
manner as experimental data, with shading in a specific
location, indicating that the plotted neuron was active
when the virtual rat was in that location. In Figure 6, the
firing in the open field looks superficially as if it is place
dependent, but most neurons do not respond on the
basis of spatial location alone. This is similar to experi-
mental data where few true place cells are found, and
responses in specific locations are highly variable (Jung
et al., 1998). Instead, the go neurons initially are active
dependent on the prior movement into a particular
state. For example, in Figure 6A, the unit codes a
Northward movement into the Northwest (upper left)
corner, but only fires after subsequent movements
including Eastward or Southward movement. These
simulations generate the specific experimental predic-

tion that variability of neuronal responses in a specific
spatial location should depend upon previous move-
ments. Figure 6 shows that the activity of modeled
neurons within the open field are initially relatively
localized, but as backward connections from the goal
are strengthened, the same neurons should be active
when the rat is in a much larger range of spatial
locations. The change in neuronal response over time
has not been studied, but the distributed firing seen
after learning is consistent with experimental data show-
ing firing of medial prefrontal units in a wide range of
locations in a familiar environment (Hyman & Hasselmo,
unpublished data). Figure 6 also shows a cell from
population gi, which shows no activity before learning
has occurred (Late), and a cell from population co,
which shows activity only for goal-directed actions in
specific locations.

The same model was utilized to simulate behavior in a
spatial alternation task, requiring the addition of a circuit
representing hippocampal recall of the previously gen-
erated action at each state. This simulation was able to
learn the spatial alternation task, as illustrated in
Figure 7A, based on activity corresponding to action
values for external states and memory states shown in
Figure 7B. The firing of simulated units is shown for
different locations of the virtual rat in Figure 7C. These
simulations show some more consistent responses de-
pendent on spatial location, primarily due to the more
constrained nature of prior action at each location.
These plots replicate the dependence of many experi-
mentally recorded neurons on the goal location. The
response in Figure 7C, Cell 3 resembles goal approach
neurons (Jung et al., 1998), whereas the response in
Figure 7C, Cell 1 resembles units which respond after
visiting the goal location (alternating between bottom
right and left). The prominence of goal-related firing
arises directly from the dependence of synaptic modifi-
cation on the backward spread from the goal, which
causes units close to the goal to respond earlier and
more prominently during learning of the task. The
simulations again generate the prediction that the spa-
tial distribution of firing should expand as the task is
learned, consistent with the expansion of responses
seen in some data (Baeg et al., 2003).

DISCUSSION

The model presented here demonstrates how local
circuits of the prefrontal cortex could perform selection
of action, and provides a functional framework for
interpreting the activity of prefrontal units observed
during performance of spatial memory tasks (Baeg
et al., 2003; Jung et al., 1998). This circuit model
contains populations of threshold units which interact
via modifiable excitatory synaptic connections. The
retrieval process described here shows how spreading
activity in the prefrontal cortex could interact with

Figure 6. Activity of units plotted according to the location of the

virtual rat in the open-field task. White indicates an absence of activity

when the virtual rat is in that location, and darker shading indicates
greater average activity of a neuron when the rat is in a specific

location. Examples on the left show the localized distribution of activity

during early stages of training (Early). Examples on the right show the

more widely distributed activity after extensive training on the task
(Late). Examples A–C show activity of cells in population go. D shows

typical activity of a gi cell. E shows activity of a co cell.
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current sensory input to regulate the selection of the
next action necessary for goal-directed behavior. The
encoding process described here shows how strength-
ening of synapses by spike-timing-dependent synaptic
plasticity could provide the connectivity patterns nec-
essary for goal-directed behavior. As shown in Figures 6
and 7, the activity of individual units in this model are
consistent with some of the properties of neuronal
firing activity determined by electrophysiological re-

cordings from the prefrontal cortex (Baeg et al., 2003;
Jung et al., 1998). Most simulated neurons show com-
plex relationships to prior actions, rather than simple
responses to state, consistent with the rarity of simple
place cells in the prefrontal cortex. In addition, neurons
in the simulation tend to fire more in regions close to
the reward, consistent with evidence for neurons firing
during the approach to reward (Baeg et al., 2003; Jung
et al., 1998). Research with more detailed integrate-and-
fire simulations (Koene & Hasselmo, in press) has
replicated some properties of unit firing during per-
formance of a cued response task in monkeys (Schultz
et al., 2000). However, the slow speed of simulations
with integrate-and-fire neurons does not yet allow learn-
ing with random exploration of the environment as
utilized here, and that model is difficult to describe
using simple equations as presented here. The different
types of units used in this model are consistent with
other neurophysiological data. Research shows that
some units in the prefrontal cortex fire in response to
specific sensory stimuli (Wallis et al., 2001; Schoenbaum
& Eichenbaum, 1995), consistent with the state repre-
sentations in a units used here. Research also shows
units in the prefrontal cortex which fire during partic-
ular motor actions (Wallis et al., 2001; Schoenbaum &
Eichenbaum, 1995), consistent with the o and co units.
Some neurons in the prefrontal cortex change their
response to specific stimuli based on changes in the
association between stimuli and reward (Mulder et al.,
2003; Schoenbaum, Chiba, & Gallagher, 2000; Thorpe,
Rolls, & Maddison, 1983). These changes are consistent
with the spread of activity from the reward representa-
tion across strengthened connections in this model. A
change in reward location will cause a change in the
pattern of reverse spread during retrieval in this model,
resulting in a change in the firing properties of multiple
neurons in the network.

Comparison with Functional Components of
Reinforcement Learning

The model presented here can perform the same func-
tions as elements of RL. The prefrontal model learns the
environment and goal location during exploration, then
guides the virtual rat as it follows the shortest pathway
from the start location to the goal location. The ele-
ments performing this function were developed based
on previous simulations of hippocampal function (Has-
selmo, Cannon, & Konea, 2002; Hasselmo, Hay, Ilyn, &
Gorchetchnikov, 2002), rather than on the elements of
RL (Sutton & Barto, 1998). However, these components
are clearly related to one another as follows.

In RL, the selection of the next action depends upon
the action-value function, a look-up table that has values
for all possible actions (4 in this case) in each state (9 in
the open field used here). A similar function is obtained
here by computing the strength of activity spreading

Figure 7. (A) The network guides correct behavior of the virtual rat in

the spatial alternation task as shown for two trials on the figure-of-eight

maze. (B) Action values plotted for individual locations (states) on the
basis of the strength of connections from the co units of the state

minicolumn with each of the four possible actions at that state. Note

that output is ambiguous at the choice point (black rectangles indicate
strong connections with both ‘‘go East’’ and ‘‘go West’’ actions). But

separate action values from a memory vector of retrieved actions at the

state show that the unit representing retrieval of ‘‘go East’’ (E) is

associated with ‘‘go West’’ output, and the retrieval of ‘‘go West’’ (W)
is associated with ‘‘go East’’ output. (C) Activity of units plotted

according to location of the virtual rat in the spatial alternation task.

Units show localized responses early in training which predominate in

regions of the maze close to reward locations. Cell 3 resembles goal
approach cells, whereas Cell 1 resembles cells responding after a visit

to the goal location. Responses expand in Late training, but still show

specific firing relative to goal.
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over output synapses Wo from population co. This
provides action values for each state, as plotted in
Figure 7B. The modification of Wo during encoding,
and the strength of co during retrieval both depend on
propagation of activity back from the goal across multi-
ple connections Wg and Wig, including the strength of
connections Wg to a given state from multiple different
action minicolumns.

In RL, the selection of a specific action at a specific
state is determined by an algorithm which searches only
the action values for the current state. This function has
been obtained in the circuit model presented here by
using an interaction of the sensory input for the current
state with the backward spread. Thus, elements in
population co only spike when they receive both the
input from go (corresponding to action values) and the
inputs from a (corresponding to current state). This
allows a circuit model to select the action appropriate
for the current state. Here, the unit with largest output
activity is selected to guide output. However, rather than
choosing the maximum of output activity, the selection
of output could use mechanisms which select the first
output which crosses the firing threshold. For example,
the activity in forward output population co could be
restricted if we ensure that the first unit which spikes
inhibits the activity of other units (Koene & Hasselmo,
in press).

In RL, action values are usually trained with TD
learning (Sutton, 1988; Sutton & Barto, 1998), or related
algorithms such as SARSA (Sutton & Barto, 1998), which
propagate value back from the reward state, through
adjacent states. A similar function is provided by Equa-
tion E1b in this article. During encoding with this
equation, the activity of population go depends on the
spread from the goal/reward. Therefore, reverse con-
nections Wg are only strengthened for transitions to a
minicolumn already receiving spread from reward. Be-
cause the action value corresponds to Wg, this means
that the action value for one minicolumn only increases
when a transition is made to another minicolumn with a
larger action value or with direct reward input. This
resembles the spread of action values through adjacent
states caused by TD learning (Sutton, 1988; Sutton &
Barto, 1998).

Previously, elements of RL theory have been linked to
physiological mechanisms. The activity of dopamine
neurons has been related to the error term in TD
learning (Schultz et al., 1997). Mechanisms for compu-
tation of TD error have been attributed to the basal
ganglia (Houk et al., 1995). Changes in parameters of
exploration, learning rate, and discounting have been
related to neuromodulators such as norepinephrine,
acetylcholine, and serotonin (Doya, 2002). The explicit
cortical circuit model presented here could allow the
literature on RL theory to be extended to other specific
physiological properties of neurons within cortical
structures.

METHODS

Network Dynamics: Separation of
Encoding and Retrieval

This section describes the detailed equations used in
these simulations. During each step of a behavioral task,
the network dynamics alternate between separate en-
coding and retrieval phases. This resembles the proposal
for separate phases of encoding and retrieval within
each cycle of the theta rhythm in the hippocampus
(Hasselmo, Bodelon, et al., 2002), and could correspond
to phases of theta rhythm observed in the medial
prefrontal cortex (Hyman et al., 2002; Manns et al.,
2000). The input a is maintained during a full cycle of
processing (both encoding and retrieval). During the
encoding phase of each cycle, the network sets up
sequential forward associations between the previous
sensory input (state) and the current motor output
(action), as well as associations between the motor
output (action) and the subsequent resulting state of
sensory input. During each encoding period, thalamic
input represents either the current action or the cur-
rent state. During a period of action input, encoding
strengthens reverse associations on synapses Wg be-
tween the current motor action and the previous sen-
sory state. In addition, during this period, encoding
strengthens output connections Wo, between the selec-
tively activated units in the forward output population co

and the active elements of the output population o.
During a period of state input, encoding forms connec-
tions between prior motor actions and the ensuing
sensory states, and forms reverse associations Wg be-
tween the current sensory state and the previous motor
action resulting in that sensory state.

During retrieval, activation of the goal representation
causes activity which propagates along reverse connec-
tions. The reverse spread of activity from the goal
converges with the current state input to activate ele-
ments of population co that activate a specific appropri-
ate action in the output vector o. In the absence of
specific retrieval guiding output, the network reverts to
random activation of the output vector to explore states
of the environment associated with different actions.

Equations of the Model

‘‘Retrieval’’: Reverse Spread from Goal

During retrieval, goal-directed activity is initiated by
input goR to the go units in the goal minicolumn as
shown in Figure 2. This represents a motivational drive
state due to subcortical activation of prefrontal cortical
representations. This retrieval input goR in the goal
minicolumn is distinct from activation of the unit a in
the goal minicolumn during encoding when the goal/
reward is actually encountered in the environment.

The activity caused by goR then spreads back through
a range of other minicolumns representing sequences
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of states and actions that could lead to the goal. The
reverse f low of activity from the goal involves two
populations gi and go in each minicolumn, entering a
minicolumn through the input population gi and ex-
iting from the output population go. These populations
contain one unit for interaction with each other mini-
column, so each minicolumn has n units in gi and n
units in go. Because there are n minicolumns in the
network, this results in n2 units in each population:
gi, go.

The reverse spread from one minicolumn to a differ-
ent minicolumn takes place via a matrix Wg providing
reverse connections from go to gi. Reverse connections
within a minicolumn take place via a matrix Wig provid-
ing connections from population gi to population go.
The full set of connections across all minicolumns con-
sists of individual matrices defined within individual
minicolumns (so Wig is a matrix of matrices) and indi-
vidual connections between minicolumns (Wg). The
reverse flow spreads transiently through units gi and
go, but does not persist in these units. The spread of
activity from output vector at the previous time step
go(tr � 1) across reverse synapses Wg to input vector gi

takes the form:

giðtrÞ ¼ ½Wgðgoðtr � 1Þ þ goR�þ ðR1Þ

Where tr represents steps of retrieval during one
retrieval phase. goR represents input to elements of go

in the goal minicolumn during the full period of re-
trieval. [ ]+ represents a step function with value zero
below the threshold and 1 above threshold. The
threshold is set to 0.7 in the simulations presented
here. Because this is a binary threshold function and
activity spreads at discrete time steps through the
network, this network can be replicated relatively easily
with integrate-and-fire neurons, but runs much more
slowly and cannot be described with simple equations
(Koene & Hasselmo, in press).

Reverse spread from the input gi to the output go

within a minicolumn involves the matrix Wig, which has
modifiable all-to-all connections between gi and go in
each minicolumn. To prevent excessive spread of re-
verse activity, each minicolumn has inhibitory interneu-
rons responding to the sum of excitatory activity in the
input gi, which acts on the output go. Both effects are
combined in the equation:

goðtrÞ ¼ ½ðWig � WHÞgiðtrÞ þ goR�þ ðR2Þ

Where Wig is the matrix of modified excitatory feed-
back synapses between the input gi and the output go

within each minicolumn, and the matrix WH consists
of elements of strength H (set here to 0.4) for all n by
n connections within a minicolumn, but has strength
zero between minicolumns.

On each retrieval cycle, retrieval is repeated for R
steps. In real cortical structures, the total retrieval steps
R would probably be determined by the speed of
excitatory synaptic transmission at feedback synapses
relative to feedback inhibition and by externally imposed
oscillations of activity, such as the theta rhythm (Manns
et al., 2000).

Convergence of Forward and Reverse Activity

The network performs a comparison of the reverse flow
from goal with activity at the current state, in the form of
a summation of two inputs followed by thresholding.
The forward output population co receives a subthresh-
old input from the backward input population gi(tr)
within a minicolumn (via an identity matrix). The for-
ward population co also receives subthreshold activity
from the units of vector a(tr) in that minicolumn repre-
senting current sensory input. To make them subthresh-
old, both inputs are scaled by a constant A weaker than
threshold (A = 0.6).

coðtrÞ ¼ ½AaðtrÞ þ AgiðtrÞ�þ ðR3Þ

Thus, an individual unit in the vector co will spike only
if it receives input from both a and gi sufficient to bring
co over threshold. The retrieval dynamics are similar to
those used previously (Gorchetchnikov & Hasselmo,
in press; Hasselmo, Hay, et al., 2002), in which reverse
flow of activity from the goal converges with forward
flow from current location. But here the function uses
two populations for input and output, allowing multiple
pathways through one minicolumn representing a state
or an action.

Selection of Output

The choice of one output during retrieval is mediated by
the spread of activity from units that were activated in
population co at the final step of the retrieval period
(tr = R). This activity spreads across a set of output
connections Wo, which link the populations co with the
output units o. For the simple example presented in
Figure 2, the output vector o consists of two units
representing movements of the agent: ‘‘go East’’ or
‘‘go West.’’ For other simulations, the output popula-
tion consists of units representing movements of an
agent in four directions within a grid: North, South,
West, and East.

oðtrÞ ¼ max½WocoðtrÞ� ðR4Þ

The output (next action) of the network is deter-
mined by the selection of the output unit on the basis
of the maximum activity spreading across Wo from the
population co. This equation was also used to com-
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pute the action values for each state shown in
Figure 7B. The connectivity matrix Wo involves con-
vergence of a relatively large number of units in co

onto a small number of output units. After effective
encoding, each state minicolumn ends up with appro-
priate connections from units co to output units o,
similar to action values (Sutton & Barto, 1998). The
competitive selection process used here could reflect
the function of the basal ganglia, which receive con-
vergent input from the cortex, and contain GABAergic
projection cells with inhibitory interactions. If retrieval
based on prior experience is strong, then the next
action of the virtual rat will primarily depend upon
retrieval (i.e., the largest output activity), but the
network also has some small probability of generating
a random output, in order to allow exploration of all
possible actions in the environment. Early in encoding,
this random output dominates behavior, allowing ex-
ploration, but even after encoding, the output is
occasionally chosen as the maximum from a separate
random vector. This mechanism represents the effect
of stochastic firing properties of neurons within corti-
cal structures (Troyer & Miller, 1997). Random output
activity allows the network to explore a range of
different possible actions in order to find the best
actions for obtaining reward within a given environ-
ment (Doya, 2002; Sutton & Barto, 1998).

‘‘Encoding’’: Formation of Connectivity

Encoding occurs in each state during a separate phase
from retrieval. The activity pattern or synaptic connec-
tivity modified by each of the following equations is
labeled in Figure 8. The encoding phase consists of a
single time step te, during which the multiple encoding
equations shown below are implemented. Thus, te � 1
refers to activity retained from the previous encoding
phase. This contrasts with the retrieval phases, each of
which involves multiple steps tr up to the maximum R
(thus, tr � 1 refers to a previous time step in the same
retrieval phase). Encoding modifies the matrices Wg, Wig,
and Wc. These matrices start with specific patterns of
connectivity representing sparse connections from the
output population in minicolumn number o (units 1 to
n) to the input population in minicolumn number i
(units 1 to n), as follows: Wg ¼ gði�1ÞnþogT

ðo�1Þnþi ¼ 0:5.
(The same connectivity was used for Wc). The internal
connections Wig start with more extensive connectivity
representing intracolumn excitatory connections, as fol-
lows: Wig ¼ gðo�1Þnþð1...nÞg

T
ði�1Þnþð1...nÞ ¼ 0:5.

Activity in go and gi

For the equations of encoding, first imagine the associ-
ation between a state (location) which arrives as input
on step te � 1 and a new action generated in this state
(which arrives at time step te). The state minicolumn has

a buffer which holds the prior state input a(te � 1),
labeled with Ei in Figure 8. Subsequently, the random
output o(te) is generated, labeled with Eii in Figure 8.
This causes proprioceptive input about the action a(te),
labeled with Eiii in Figure 8. These inputs are then
encoded.

Two different forms of encoding were tested, as
shown in Figure 4. In one model, the new input vector
a causes suprathreshold activation of the go population
in a specific action minicolumn (Figure 4C).

goðteÞ ¼ aðteÞ ðE1)

A different version (Equation E1b) works better and is
used in most simulations (Figure 4B). This is:

goðteÞ ¼ ½AaðteÞ þ AgoðtrÞ�þ (E1b)

A is a constant (A = 0.6) which must be smaller than
the threshold (of 0.7), but large enough for combined
input (2A) to be suprathreshold. In this version, the
effect of the input vector a on the reverse output
population go is made subthreshold, and activity in the
population go at time te (note different time index) only
crosses threshold if it converges with backward spread

Figure 8. (E1b) Encoding of necessary connections between a state

and the action randomly generated at this state. Each step of encoding
is listed numerically. (Ei) A buffer in the state minicolumn holds activity

from previous input a(te � 1). (Eii) A randomly generated output o

generates a movement. (Eiii) The proprioceptive feedback of this
output causes activity a(te) in the action minicolumn. (E1) This

activates the go population (Equation E1). (E2) Activity spreads to the

gi population in the state minicolumn. (E3) Connections Wg are

modified between go and gi. (E4) Buffering of previous activity
ci(te � 1) activates go in the state minicolumn. (E5) Connections

Wig are modified. (E6) The buffer of previous input a(te � 1) causes

activity in co. (E7) Activity in co causes activity in ci. (E8) Connections

Wc between co and ci are modified. (E9) Activity in gi causes activity in
co. (E10) Connections between co and output vector o are modified.
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from the goal as computed by the activity during the
final retrieval step on that cycle (tr = R) in the popula-
tion go(tr). This version of encoding gives the neocortex
model properties similar to the TD learning algorithm
proposed by Sutton and Barto (1998) and Sutton (1988).
This learning rule is not equivalent to TD learning, but
does cause modification of connections dependent on
an interaction of current state and action with the
backward spread from goal (which plays a role similar
to the value function in TD learning).

Modification of Wg

Once activity has been induced in the go population of
the newly activated minicolumn, this activity spreads in
the reverse direction back to the minicolumn activated
by the previous state, which is activated by a separate
buffer holding a(te � 1). Spiking network simulations
suggest that intrinsic afterdepolarization properties can
provide this buffer function in a variety of regions
including the prefrontal cortex (Koene & Hasselmo,
in press; Koene, Gorchetchnikov, Cannon, & Hasselmo,
2003; Fransén, Alonso, & Hasselmo, 2002; Haj-Dahmane
& Andrade, 1998; Klink & Alonso, 1997; Lisman & Idiart,
1995). The population gi in the previous state minicol-
umn receives subthreshold input from the buffered
representation of a(te � 1), and receives subthreshold
input from go across reverse connections Wg, which start
out with weak initial strength. These two subthreshold
inputs cause activity in a single unit in gi which receives
both inputs.

giðteÞ ¼ ½Aaðte � 1Þ þ AWg goðteÞ�þ (E2)

In a network with higher time resolution (Koene &
Hasselmo, in press), spiking in gi would follow spiking in
go by a short delay, allowing spike-timing-dependent
Hebbian synaptic plasticity to modify the connections
Wg according to:

�Wg ¼ gi g
T
o (E3)

In these simulations, the strength of existing con-
nections started at 0.5 and was limited to a maximum of
1.0, which was reached in a single step when both
presynaptic and postsynaptic activities were present.
The connectivity of Wg has a specific form meant to
represent sparse connectivity between cortical columns.
There is only one connection Wg between each pair of
minicolumns.

Modification of Wig

In order to link the association between the previous
state and the new action with the association between
previous action and previous state, the modification of

Wg needs to be followed by modification of internal
reverse connections Wig, that are all-to-all connections
within each minicolumn. Modification of these connec-
tions occurs due to persistence of activity in the forward
input population of the previous state minicolumn
ci(te � 1). This forward input population then supple-
ments the activity of the go population, as follows:

� goðteÞ ¼ ciðte � 1Þ (E4)

This allows the activity of go to be selective for the
connection to the minicolumn which received input
a(te � 2) (due to Equation E6 below). Activity induced
in go by this buffer follows activity in gi by a short delay,
allowing spike-timing-dependent Hebbian plasticity to
modify connections Wig as follows:

�Wig ¼ go gTi (E5)

Activity in co and ci

Population co is updated by the buffer of prior input
a(te � 1):

coðteÞ ¼ aðte � 1Þ (E6)

This activity then spreads forward over the weak initial
strength of forward connections to converge with sub-
threshold input of current input a(te) to induce activity
in specific units of the population ci in the new mini-
column as follows:

ciðteÞ ¼ ½AaðteÞ þ AWccoðteÞ�þ (E7)

Modification of Wc

The modification of forward connections does not play a
strong functional role in the examples presented here,
but will be important for forward planning evaluating
possible forward pathways. The modification of the
forward connections Wc uses the new activity co and ci:

�Wc ¼ cic
T
o (E8)

Modification of Output Weights Wo

Finally, the output population co(te) is associated with
the current activity in the output population o(te). The
activity in the output population was previously gener-
ated by the action currently being encoded by the
network. Initially, these outputs are generated random-
ly. On each step, the network learns the association
between activity in a specific unit of co (which is
activated by the reverse connection input to gi) and
the element of the output vector which caused this
output. This would allow effective learning of the map-
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ping between internal representations and output pop-
ulations even without highly structured connectivity.
The activity in the output forward population is set by
the input reverse population:

coðteÞ ¼ giðteÞ (E9)

Then the output weights are modified according to
the activity at this time step:

�Wo ¼ ocTo ðE10Þ

These stages of encoding allow spike-timing-
dependent synaptic plasticity to strengthen the connec-

tions necessary for the retrieval process described in
the earlier section. As shown in Figure 9, the represen-
tation of each movement from one location to another
requires two steps of encoding. The first forms asso-
ciations between the prior location [vector a(te � 1)]
and the proprioceptive feedback of the randomly gen-
erated action [vector a(te)]. The second forms an as-
sociation between the proprioceptive representation
of the randomly generated action [the action vector
which is now a(te � 1)], and the new state [now re-
presented by the vector a(te)].
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