
Neuroscience 247 (2013) 395–411
MODELING OF GRID CELL ACTIVITY DEMONSTRATES IN VIVO
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Abstract—Recent in vivo data show ensemble activity in

medial entorhinal neurons that demonstrates ‘look-ahead’

activity, decoding spatially to reward locations ahead of a

rat deliberating at a choice point while performing a cued,

appetitive T-Maze task. To model this experiment’s look-

ahead results, we adapted previous work that produced a

model where scans along equally probable directions acti-

vated place cells, associated reward cells, grid cells, and

persistent spiking cells along those trajectories. Such

look-ahead activity may be a function of animals performing

scans to reduce ambiguity while making decisions. In our

updated model, look-ahead scans at the choice point can

activate goal-associated reward and place cells, which indi-

cate the direction the virtual rat should turn at the choice

point. Hebbian associations between stimulus and reward

cell layers are learned during training trials, and the reward

and place layers are then used during testing to retrieve

goal-associated cells based on cue presentation. This sys-

tem creates representations of location and associated

reward information based on only two inputs of heading

and speed information which activate grid cell and place cell

layers. We present spatial and temporal decoding of grid cell

ensembles as rats are tested with perfect and imperfect

stimuli. Here, the virtual rat reliably learns goal locations

through training sessions and performs both biased and

unbiased look-ahead scans at the choice point. Spatial and

temporal decoding of simulated medial entorhinal activity

indicates that ensembles are representing forward reward

locations when the animal deliberates at the choice point,

emulating in vivo results. � 2013 IBRO. Published by Else-

vier Ltd. All rights reserved.
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INTRODUCTION

The superficial medial entorhinal cortex (MEC) projects to

regions CA1 and CA3 of the hippocampus (Canto et al.,
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2008). All these areas are known for their spatially

responsive cell types including grid cells in MEC (Fyhn

et al., 2004; Hafting et al., 2005) and place cells in CA1

and CA3 (O’Keefe and Dostrovsky, 1971). As rats

randomly forage in an open arena, place cells fire action

potentials in unique locations (O’Keefe and Dostrovsky,

1971) possibly through a weighted integration of input

from grid cells or from boundary vector cells (O’Keefe

and Burgess, 1996, 2005; McNaughton et al., 2006;

Solstad et al., 2006; Blair et al., 2008; Hasselmo, 2008b).

Grid cells fire action potentials at regular locations

forming the vertices of equilateral triangles that tessellate

the environment (Hafting et al., 2005). Lesions of either

the hippocampus (Morris et al., 1982) or MEC

(Steffenach et al., 2005) disrupt performance on the

Morris Water Maze, indicating that these structures are

essential for such goal-directed behavior. Sequential

activation of both grid cells and place cells may reflect a

neural representation of an animal’s trajectory (Gupta

et al., 2010). When animals are quiescent, place cells fire

sequentially during sharp wave ripple complexes [as seen

in the local field potential (LFP)]. This sequential firing

has been characterized as ‘replay’ of previous events

experienced during epochs of awake activity (Wilson and

McNaughton, 1994; Sutherland and McNaughton, 2000;

Lee and Wilson, 2002; Karlsson and Frank, 2009).

Since the initial reports of replay activity, sequential

place cell activation has been associated with putative

forward planning phenomenon such as ‘forward sweeps’

representing future locations predicted from place cell

action potentials (Johnson and Redish, 2007). Similar

place cell sequencing has also been identified with

trajectory-dependent coding during alternation behavior

(Frank et al., 2000; Wood et al., 2000; Karlsson and

Frank, 2009) with prospective and retrospective coding

of trajectory (Ferbinteanu and Shapiro, 2003) and novel

shortcuts not previously experienced (Gupta et al., 2010).

Recently, MEC neurons were recorded from rats

performing a cued, appetitive spatial task on a T-Maze.

Spiking activity from neural ensembles were recorded

and passed through a Bayesian decoder to find the

probability of decoding to past and future maze

locations (Gupta et al., 2012). For a given cue, the

spiking at the choice point of the maze could be

decoded to indicate representation of the appropriate

cued reward location. Such ‘look-ahead’ behavior has

been seen in the hippocampus (Johnson and Redish,

2007) and the ventral striatum (van der Meer and

Redish, 2009) indicative of a network-wide reward

expectation.
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Models of goal-directed spatial navigation typically

have excluded MEC contributions in place cell trajectory

sequencing (Burgess et al., 1997; Redish and

Touretzky, 1998; Zilli and Hasselmo, 2008; Duff et al.,

2011). Kubie and Fenton (2012) have produced a

vector-based navigation strategy utilizing conjunctive

grid cells (Sargolini et al., 2006) that sequentially

activate other conjunctive grids with similar preferred

heading. In this way, they can compute linear paths to a

goal. This model does not explicitly produce grid cell

action potentials nor does it require a place cell layer.

An earlier and more explicit description of goal-

directed navigation incorporates MEC grid cells,

postsubiculum head direction (HD) cells (Taube et al.,

1990a), and place cells into a single model (Erdem and

Hasselmo, 2012). HD inputs drive persistent spiking

MEC cells at different spiking frequencies, causing them

to function as velocity-controlled oscillators (VCOs) that

then drive spatial activity in a separate set of grid cells

(Burgess, 2008; Hasselmo, 2008a). These grid cells

project to place cells. During random exploration, an

animal finds individual goal locations, and associates a

reward value to an appropriate place field. These

associations are then consolidated to higher order

cortical structures like the prefrontal cortex (PFC). After

learning goal locations, the animal can plot trajectories

to the goal location by performing look-ahead probes

using a fixed pattern of activity in HD cells that drives

the sequential activation of a look-ahead probe in MEC

grid cells. If the output of a look-ahead probe in MEC

grid cells activates an appropriate reward-associated

place cell, then the movement in the direction of that

trajectory is selected for behavior.

Because the MEC demonstrates look-ahead behavior

(Gupta et al., 2012), we intend to validate the model by

testing whether simulated grid cell activity can be

decoded to show the representation of reward locations

as a virtual rat performs a cued, appetitive spatial task on

a T-Maze. Previously, the model of Erdem and Hasselmo

(2012) performed look-ahead linear trajectory sweeps

after external designation of active place cells associated

with previously experienced goal locations. Our updated

model incorporates learned cues that trigger the retrieval

of appropriate reward cells associated with the respective

goal locations. This is an important modification that

allows training of virtual animals to make correct choices

based on cued information.
EXPERIMENTAL PROCEDURES

We simulated the previous cued appetitive T-Maze task

used in experiments (Gupta et al., 2012) with a

synthetic T-Maze and a virtual rat. The T-Maze was

constructed with a 10 cm wide track and outer

dimensions of 112 cm � 106 cm. The virtual rat begins

at the base of the maze where a cue is played signaling

either left- or right-reward directions. Following cue

presentation, the animal must travel to the choice point,

turn to the appropriate reward well, and travel from the

reward well down the return arms to the base of the

maze. Here, we describe variation of the model from
the model previously described in Erdem and Hasselmo

(2012), discussing the spatial model for the various cell

types, look-ahead scanning, and spatial and temporal

decoding.

Spatial model of HD cells, grid cells, and place cells

Major components of the previous spatial model are

detailed below for completeness (Sections ‘HD cells to

Place cell activation’).

HD cells. The major afferent to the limbic system

describing speed and heading comes from HD cells

found in the deep layers of the MEC (Sargolini et al.,

2006; Brandon et al., 2011), and also predominantly in

the postsubiculum (Taube et al., 1990a,b; Brandon

et al., 2012) and thalamus (Taube, 1995). The firing rate

of HD cells is maximal for a specific angle on the

horizontal plane the animal faces, termed its preferred

firing direction (PFD). Because HD cells rotate together

(Taube et al., 1990b; Hargreaves et al., 2007), the PFD

of the ith cell in a network of m cells can be represented

as an offset hi from a main orientation h0, giving a tuning

kernel D for the network as:

D ¼
cosðh1 þ h0Þ . . . cosðhm þ h0Þ
sin ðh1 þ h0Þ . . . sin ðhm þ h0Þ

� �
ð1Þ

If we assume that the rat’s head direction is in the same

direction as the movement direction heading, then with the

rat’s instantaneous velocity v(t) = [vx(t) vy(t)], the HD signal

d(t) is:

dðtÞ ¼ vðtÞ � D ¼ ½d1ðtÞ; . . . ;dmðtÞ� ð2Þ

where di(t) is the ith member’s HD signal at time t.

Persistent spiking model. The persistent spiking

model (Hasselmo, 2008a) falls into a class of grid cell

models termed phase or oscillatory interference models

(Burgess et al., 2007; Burgess, 2008; Zilli, 2012).

Originally, Burgess et al. (2007) proposed a model with

velocity-modulated theta rhythms driven by separate

populations of HD neurons. Each of these rhythms

shares a fundamental baseline frequency (f) in the theta

band. The continuous input from the HD cells drives the

separate rhythms which are constantly phase shifting

against one another. Whenever these oscillations are

transiently peak-locked, their sum or product leads to

constructive interference that can elicit spiking if the

integrated signal achieves spiking threshold. Though

mathematically identical to the oscillatory interference

model (Burgess, 2008) except for the use of thresholds,

the persistent spiking model uses a persistent spiking

entorhinal cell layer with cells independently driven by

VCOs (Hasselmo, 2008a). When input from the HD

layer synapses onto a persistent spiking cell, causing

the membrane potential to surpass threshold, the cell

spikes (‘‘on’’). The persistent spiking cell will cycle ‘‘on’’

and ‘‘off’’ paced by the underlying theta oscillation with

changes in cycling frequency induced by the animal’s

velocity (see Erdem and Hasselmo, 2012 for more

detail). The output of multiple persistent spiking cells

converges upon a single grid cell. Below is a brief
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description of the jth grid cell gj, the ith persistent spiking

cell s(i,j) projecting to gj, and the phase u(i,j) of s(i,j) at time t:

uði;jÞðtÞ ¼ 2p ftþ bj

Z t

0

diðsÞds
� �

ð3Þ

sði;jÞðtÞ ¼ H cosðuði;jÞðtÞ þ wði;jÞÞ � sthr

h i
ð4Þ

gjðtÞ ¼
Y
ðs2SjÞ

sðtÞ ð5Þ

where f is the baseline frequency from underlying VCOs and

bj is the phase dependency on the integrated HD signal di.

From Eq. (3), the phase of persistent spiking, u(t), is

directly correlated to the integral of the animal’s velocity and

heading, implying that phase correlates to distance traveled.

Once the persistent spiking cell activity crosses threshold

sthr, s(i,j) is produced via the Heaviside step function H [with

H(0) = 0] resulting in a rectangular wave pulse with phase

u(t) and phase offset w(i,j). The set Sj represents those

persistent spiking cells that project to grid cell gj. In our

implementation, three persistent spiking cells drive a single

grid cell (see Fig. 1).

Eq. (5) indicates that all persistent spiking cells must

be simultaneously spiking at the same time for grid cell
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Fig. 1. Persistent spiking model architecture (adapted from Erdem and Hass

120�, and 240� project to a persistent spiking cell layer, driving them to spike a

when convergent persistent spiking cells fire action potentials. Similarly, place

cells spike simultaneously.
activation. From Hasselmo (2008a), each convergent

persistent spiking cell will be active when VCOs are

momentarily in phase at different segments of an

animal’s trajectory. As an animal runs on a foraging

trajectory, and the movement heading is used to drive

the HD network driving the VCO, the persistent spiking

activity of a single neuron will shift in the phase of

spiking in equally-spaced band patterns. Overlaying the

band patterns of three convergent persistent spiking

cells shows that they spike with similar phase in

regularly spaced locations in the environment to drive

the spiking of grid cells. By translating and shifting these

bands, we can ultimately translate and shift the grid field

pattern (Hasselmo, 2008a; Erdem and Hasselmo,

2012). From Eq. (4), the phase offset w(i,j) determines

the individual band pattern translocations for persistent

spiking cell s(i,j) that projects to grid cell gj. As shown in

Erdem and Hasselmo (2012), a baseline oscillation is

not used for persistent spiking cells unlike other phase-

coding model variations (Burgess, 2008). If the

equivalent translocation in grid cell gj’s firing pattern is

[Dx, Dy] in Cartesian coordinates, then:
HIPPOCAMPUS

e Cell

ENTORHINAL CORTEX

Grid
Cells

Persistent 
Spiking
Cells
s

(i, j)

Head Direction
Cells (d)

i = 3 i = 1 i = 2 i = 3

g
j = 3

1
+θ

0
=

0

PREFRONTAL CORTEX

ard Cell

elmo, 2012). Head direction cells with preferred firing directions of 0�,
t different frequencies in proportion to velocity. Grid cells are activated

cells in the hippocampus activate when coincident projections of grid
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wði;jÞ ¼ �2p fþ bj Dx;Dy½ �
cosðhiÞ
sin ðhiÞ

� �� �
ð6Þ

The shifts in grid cell firing fields achieved by Eq. (6) allow for

an arbitrary range of grid cells that can cover any region of the

environment. Because grid cells project to place cells, place

fields can arbitrarily represent any environmental location as

well.

Place cell activation. Place cells are represented as

logical AND gates for converging pre-synaptic grid cell

inputs. The kth place cell pk receives input from grid cell

population Gk. Because three grid cells project to a

single place cell in our model, we can express place cell

activation as:

pkðtÞ ¼
Y3
i¼1

giðtÞ ð7Þ

where gi e Gk at time t (see Fig. 1). Here, three superimposed

grid firing fields form a single place field. More refined place

fields can be generated by superimposing firing from more

grid cells. Individual place cells probably receive hundreds

of entorhinal inputs. The model we present does not depend

on the number of grid inputs. Having more neuronal firing

ensembles would likely improve spatial firing of the place

cell system. The model limits inputs to three grid cells

primarily for computational efficiency.

Segregating location and reward. Place cell

recruitment also means recruitment of a new grid cell

set and their respective presynaptic persistent spiking

cells. During training trials when place cells are recruited

and during testing trials when appropriate place cells

are retrieved, the underlying precursor cells spike and

are recorded. Because place cells can be recruited at

an arbitrary location along the virtual rat’s trajectory, the

appropriate underlying grid cells and persistent spiking

cells are generated and recorded using the translocation

in Eq. (6) (see Erdem and Hasselmo, 2012).

Place cell recruitment is independent of reward

encoding. The place cell layer (P= [pk]k=1,. . .,n) in the

hippocampus is connected bijectively to a unique reward

cell in the reward cell layer (r ¼ ½rk�k¼1;...;n). Such a layer

is plausibly located in the PFC. Previous experimental

work has suggested that place cell-like activity is

confined to goal-associated regions of the behavioral

environment in recordings from the medial PFC (Hok

et al., 2005). Medial PFC neurons also demonstrate

anticipatory firing of neurons prior to goal (Burton et al.,

2009) achievement paralleling anticipatory firing in the

dorsal hippocampus (Hok et al., 2007). Bilateral

hippocampal lesions reduce the medial PFC activity

suggesting cooperation between the hippocampus and

PFC during goal-directed activity (Burton et al., 2009).

Other studies showing rat medial PFC neurons phase-

locked to hippocampal theta rhythm in the LFP (Hyman

et al., 2005; Jones and Wilson, 2005a,b) lend support to

the cooperation between PFC and hippocampal cell

layers.

In our model, the one-to-one mapping between

reward cells in the PFC and place cells in the

hippocampus provide a mechanism for segregating
reward and rewarded locations. The reward cell layer r
is initially inactive (r= 0) prior to training. When a goal

location is reached and a place cell pk is recruited or

activated, the associated reward cell rk is activated

(rk = 1) leaving other reward cells inactive. During

testing, the stimulus cues the retrieval of the appropriate

reward cell learned previously, and the index k of the

reward cell corresponds to the index of the appropriate

place cell.

Hebbian learning between stimulus and reward cells

This model differs significantly from Erdem and Hasselmo

(2012) because animals must learn cues and associate

them to reward cells. On the synthetic T-Maze, place

cells are recruited whenever an animal enters one of the

four regions: the T-Maze base, the choice point, the left

reward region, or the right reward region. When the

virtual rat sits at the base, a cue stimulus S is presented

as a binary column vector with left- and right-confidence

elements (ST = transposition of S= [CLCR]). In these

terms, a perfect ‘real-world’ left cue (ST = [10]) and

right cue (ST = [01]) demonstrate 100% confidence in

detection of the cue.

The animal, then, must traverse the stem to make a

decision at the choice point. During training trials, the

animal is forced to turn in the appropriate direction

because the incorrect turn is blocked. During testing

trials, the animal must use a look-ahead scan to see if a

reward-associated place cell is present in the scanned

direction indicating the turn choice. At the appropriate

reward location, the recruited place cell is also encoded

as a ‘goal cell’ with an update of the reward cell layer in

the PFC. This also modifies a Hebbian association

matrix WS between the stimulus and the reward cell. WS

initially has no connections set (i.e. WS = 0), but it is

modified after updating the reward cell layer at time tR
associating the stimulus (S, a column vector) with the

recruited reward cells r ¼ ½rk�k¼1;...;n (a row vector)

associated with place cells p ¼ ½pk�k¼1;...;n as shown below:

WSðtRÞ ¼WSðtR � DtÞ þ ðSÞr

WSij
ðtRÞ ¼

WSðtRÞ
Q – 0

; where Q ¼
X
i

WSij
ðtRÞ

ð8Þ

where Dt is time since the previous stimulus presentation. The

connection matrix is normalized across the rows of WS,

indicating normalization across input stimuli. The connection

matrix, therefore, indicates relative strength to retrieve a

reward cell associated with one of two stimuli. The strength

of association between left-associated stimulus and left-

reward (Fig. 2A) and right-associated and right-reward

(Fig. 2B) is shown as they develop over training trials.

During test trials the virtual animal uses the

connection matrix WS developed during training to

retrieve the activity of the reward cell layer. Eq. (9)

indicates that upon

r ¼ ðSTÞWS ð9Þ

sensing stimulus S, the animal retrieves the reward cell layer,

r. The return value, r= [rk]k = 1,. . .,n, is a row vector where

each element represents activation of the reward cell rk. The

index k of the maximum-activated reward cell rk identifies
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the retrieved reward cell and the index of the reward-

associated place cell pk. The virtual animal should then
move to the choice point and perform look-ahead scans,

which will inspect locations ahead of the animal that have
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place fields associated with pk. If a scan activates a place cell

with the retrieved goal-associated place location, the animal

will move toward that rewarded location. The connection

matrix, WS, updates on every correct trial when the animal

earns a reward and associates a reward cell (and place cell)

to the stimulus S (see Eq. (8)).

Cue-identity uncertainty

Thus far, the description presented presumes the animal

will encode reward associations with perfect stimuli, S,
and retrieve learned associations with zero error.

However, to generate error trials in this virtual task, we

have modified the stimulus effectively reducing the

virtual animal’s confidence in a cue’s representation.

Confusion, sensory aberration, and background noise

can corrupt S yielding a perceived stimulus, Sp.

Confidence loss in one element of Sp is a gain in

confidence in the other element. The level of corruption

or confidence loss can be represented by a confidence

loss parameter g that subtracts from the maximum and

adds to the minimum of S (shown below) leading to

cue-identity uncertainty:

Sp;max

Sp;min

� �
¼

Smax � g
Smin þ g

� �
ð10Þ

here, g represents confidence loss drawn from a uniform

distribution on the interval [0, gmax], where 0 6 gmax 6 1. For

0 6 gmax 6 0.5, the perceived stimulus will still accurately

represent the true stimulus because the perceived stimulus

will still have less than 50% uncertainty in cue identity.

However once 0.5 < gmax 6 1.0, uncertainty in the elements

of Sp surpasses 50% leading to incorrect stimulus-reward

encoding (S = Sp in Eq. (8)) and retrieval (S = Sp in Eq. (9)).

It is possible to distribute the cue-identity uncertainty

term into separate encoding and retrieval components.

For example, one component for encoding and one for

retrieval could have been selected from a uniform

distribution ranging from 0 to 0.5 implying that half the

learning errors originate from encoding and the other

half from retrieval. With the current implementation,

however, retrieval would bear a significant portion of

learning error through encoding (from accumulated

errors in the connection matrix), independent of any

aberration induced during delivery of retrieved

information leading to a larger than 50% contribution of

encoding learning error to the total performance.

Titrating animal performance in this manner becomes

much more complex and dependent on multiple

parameter selections. Our current approach transmits

uncertainty through the stimulus which is accumulated

in the connection matrix. This allows for titrating animal

performance based on a single term satisfying the sole

purpose of introducing cue-identity uncertainty.

Look-ahead scans

Similar to training trials, the virtual rat begins at the base

of the maze where it is either cued toward the left or right

reward. Unlike training trials where the expectation of goal

locations is non-existent initially, testing trials rely on

these learned expectations. The cue retrieves the

reward cell and reward-associated place cell via eqn. 9.
At the choice point, the virtual rat performs a ‘look-

ahead’ scan along trajectories originating from the

choice point. These scans are considered visual probes

from the animal’s vantage point as suggested from

studies on VTE (Hu and Amsel, 1995; Johnson and

Redish, 2007), and not the physical trajectories the

animal traverses. As the probe travels along different

trajectories, it activates cell types with firing fields along

that trajectory. If the probe activates the cued reward-

associated place cell, the animal will travel toward that

cell’s place field indicative of reward location. To be

clear, the look-ahead scan implemented here does not

indicate the animal will make a correct choice. The

accuracy of that choice is a function of how well the

animal associates stimulus and reward. The look-ahead

scan serves to increase the animal’s belief in a

particular direction. Each look-ahead scan has a set

range determined by probing speed and probe duration,

which in all of our testing simulations have been set to

20 cm/s and 3 s (Adams and Forrester, 1968; Lee and

Reddish, 1981; Raudies and Hasselmo, 2012; Raudies

et al., 2012; Zhang et al., 2012) giving a range of 60 cm.

These scans could occur at every time step along

every bearing the animal faces after the cue is played.

However, on select regions of the T-Maze like the stem

or return arms where there is only one direction to

probe and one movement direction (see Fig. 3), a look-

ahead scan could be redundant and inefficient.

Additionally, the behavior of animals on the stems of

cued T-Maze tasks suggests that animals move swiftly

from cue areas to choice point areas leaving little time

for probing along that dimension (Gupta et al., 2012).

We streamlined look-ahead probing by performing a

total of six scans at the choice point along two bearings

of �85� and 85� toward the right and left reward

locations respectively. Previously, 100 probes were

conducted across 2.8� bins from �140� to 140� (Erdem

and Hasselmo, 2012). The limited directional bearings

we employ represent an efficiency assumption as the

animal pauses to scan. These pauses have been noted

before during in vivo observations of animals stopping

and looking in various directions at the choice point in a

T-Maze displaying VTE behaviors (Muenzinger, 1938;

Hu and Amsel, 1995; Johnson and Redish, 2007).

These VTE events have been associated with forward

sweeps in both hippocampal region CA3 (Johnson and

Redish, 2007) and the ventral striatum (van der Meer

and Redish, 2009).

Two approaches were taken during look-ahead scan

epochs. In the first approach, both choice point

directional bearings were considered equally probable,

and therefore probing in either direction would be

unbiased. This would imply the animal looks both ways

at the choice point for the same amount of time. In the

second approach, look-ahead probes are unequally

distributed and therefore biased toward the cued

direction. The in vivo data show that animals correctly

traveling in the cued direction tended to decode more

strongly toward the cued direction compared to the

uncued direction (Gupta et al., 2012). Such asymmetry

suggests that a biased look-ahead strategy may be

employed by animals. During error trials, the asymmetry
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start box) where a place field (red ring) of a particular recruited place cell is shown. (B) Virtual rat is cued left proceeding toward choice point

(magenta box) where rightward choices are blocked. Note the virtual rat has also recruited another place cell at the cue area. (C) Third place cell

recruited at the choice point, where virtual rat is forced toward left reward (blue box). (D) Upon arrival at reward location, the virtual rat associates

reward with the fourth-recruited place cell. (E) After completing left lap, (F) the virtual rat is cued right moving up the stem (G) toward choice point

where leftward choices are blocked. (H) The virtual rat is forced toward right reward (green box) associating reward with the fifth-recruited place cell.

Testing trials: (I) place and reward cells previously recruited during training trials are situated at the cue area, choice point, right reward, and left

reward. (J) The first testing trial begins with a left cue, where the virtual rat retrieves the appropriate left reward-associated place cell (with

associated place field in thick orange line). (K) The virtual rat traverses up the stem to the choice point, where the rat begins to look-ahead probe

(dashed arrow) toward left and right reward areas (not shown). The probe successfully activates the reward-associated place cell, and (L) the virtual

rat moves toward the reward region and completes the lap (M) returning to the cue area. (N) The second testing trial begins with a right cue. Again,

the virtual rat retrieves the appropriate right reward-associated place cell. (O) The virtual rat moves to the choice point and initiates probing to the

right (dashed arrow) and left reward areas (not shown). Successful activation of goal-associated place cell indicates the correct turning direction, (P)

with virtual rat moving to right reward area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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is less pronounced suggesting an unbiased approach

may also reasonably emulate the data as well.

The biased look-ahead strategy uses a separate

connection matrix, WC similar to WS, to associate the

expected choice C (represented as a column vector) of

left (CT = [10]) or right (CT = [01]) to the appropriate

reward cells r (a row vector) as shown in Eq. (11).

Below, at time tscan, WC is updated from the previous

scanning time Dt units prior:

WCðtscanÞ ¼WCðtscan � DtÞ þ ðCÞr

WCij
ðtscanÞ ¼

WCij
ðtscanÞ

G – 0
; where G ¼

X
i

WCij
ðtscanÞ

ð11Þ

unlike the perceived stimulus, we assume the expected

choice has zero ambiguity. When the virtual rat retrieves a

reward cell after a stimulus is presented (as per Eq. (9)), the

active reward cell subsequently retrieves the expected

choice the animal should take using WC (see Eq. (12)).

C ¼ ðWCÞr ð12Þ
The expected choice sets the preferred bearing upon which to

generate a look-ahead scan at the choice point. Of the six

scans completed while the virtual animal pauses at the choice

point, five are committed in the direction of the preferred bearing

forcing asymmetry on the look-ahead bearings.

Track linearization

Each T-Maze lap was divided into a 261 cm linear track

(Gupta et al., 2012). Coordinates within the three maze-

lap segments (stem, reward arm, and return arm) were

computed as the scalar projection onto the long axis of

the segment. Left and right laps were distinguished with

negative and positive coordinates respectively (Huang

et al., 2009; Gupta et al., 2012). Each lap was defined

as the trajectory from the stem via the reward and

return arms back to the stem region.

Decoding

We applied a probabilistic one-step Bayesian decoding

method on all simulated grid cells from sessions that
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produced at least eight simultaneously simulated neurons

(Zhang et al., 1998; Brandon et al., 2012; Gupta et al.,

2012). Simulation time was discretized into sliding time

windows of 0.5 s. In each windowed bin, the posterior

probability, P(x|N), of linearized track location x was

calculated given the total number of spikes N in the time

bin. Described thoroughly by Zhang et al. (1998), briefly

this posterior probability can be calculated by applying

Bayes’ Rule as shown below.

PðxjNÞ ¼ PðNjxÞPðxÞ
PðNÞ ð13Þ

Here, P(N|x) is effectively the occupancy-normalized firing

rate (as shown in firing rate maps) of a particular cell over

linearized coordinates x. P(x) is the probability of occupying

position x over the recording session. The probability P(N)

for the number of spikes N to occur can be calculated by

normalizing P(N|x) over all positions x. A complete decoded

trajectory can be derived by taking the position associated

with the peak P(x|N) for each time window. For ensemble

analysis, the individual posterior distributions for each cell

for a given decoding epoch are multiplied together, and then

normalized.

The decoder was trained on every correct lap of a

given session, and was applied separately to decoding

temporal epochs of correct and incorrect laps for both

left-reward and right-reward-associated cues. To view

the general accuracy and reward direction of the

decoder, every linearized coordinate was made positive

to indicate distance along a lap. However, to decipher

decoding to regions along left and right laps, the original

positive and negative linearized coordinates remained

unchanged. Decoding probability for a given spatial bin

is the average decoding probability across all decoding

epochs in that particular spatial bin (van der Meer and

Redish, 2009; Gupta et al., 2012). Analysis at the

choice point was compared to spatial bins 1 s before

(‘pre’) and after (‘post’) the virtual rat enters the choice

point area (Gupta et al., 2012).

We also applied a temporal decoder to the data.

Instead of decoding to spatial linear position, we

decoded to ‘time from left feeder’ and ‘time from right

feeder.’ The one-step Bayesian decoding proceeded

similarly to spatial decoding, but this time seeking P(t|N)
where t is the time from either the left or right feeder.

Time t= 0 was considered the point of triggering a

reward zone, and a new time array was created by

taking the simulation time array and subtracting the

nearest trigger reward zone time stamp from each time

step (van der Meer and Redish, 2009). Tuning curves to

this time array, i.e. peri-event time histograms (PETHs),

were constructed from �15 to 5 s in 200 ms bins

yielding P(N|t).
Simulation environment

All simulations are coded and performed using Matlab

2012a (Mathworks, Inc., Natick, MA). Simulations were

performed in 0.02 s time steps. The HD cell layer

projects a single input to the VCO-persistent spiking cell

layer with preferred directions of 0�, 120�, and 240� with

the virtual rat traveling at a constant speed of 20 cm/s.
Three persistent spiking cells project to a single grid cell

having baseline frequency f= 8 Hz, spiking threshold

value (sthr) of 0.8, and scaling factors (bj) of 0.02, 0.005,
and 0.009. Each place cell receives three grid cell

inputs, with grid spacings of approximately 25, 50, and

100 cm. Each complete look-ahead scan consisted of

six scans over two possible bearings of �85� or 85� in

real time with each probe lasting 3 s traveling at 20 cm/s

giving a 60 cm probe distance.
RESULTS

In this section, we provide results for experiments on the

T-Maze during training and testing trials under conditions

of biased and unbiased look-ahead with both noisy and

noiseless stimuli. During training trials, place cells are

recruited by associating maze locations to potential

place cells as shown for example left- (Fig. 3A, D) and

right-cue (Fig. 3E, H) trials. After a reward-selective cue

is presented, the virtual rat moves up the stem of the

maze (Fig. 3B, F) toward the choice point while

recruiting place cells. The animal is forced to turn to the

correct reward location (Fig. 3D, H) where ultimately a

recruited place cell is associated with the appropriate

reward location.

Therefore, every trial during training permits the

connection matrix WS to update with the encoding of

left- or right-reward cell association with Sp. Fig. 2A,

B show ‘‘synaptic weights’’ or rather the strength of

this association for training laps across 6 different

values of the maximum cue-identity uncertainty

parameter, gmax. As cue-identity uncertainty increases,

the strength of association decreases and tends to vary

more trial-by-trial.

During testing, the cognitive map developed in training

is recalled. In Fig. 3I, P, we illustrate a sequence of left-

and right-cued trials during testing simulations with

gmax=0.5. When testing begins, the animal sits at the

base of the maze (Fig. 3I). Place cells are shown

overlaying the T-Maze representing their place field

locations where they were recruited during training trials.

In Fig. 3J, a left-reward-associated cue is signaled

allowing the virtual rat to retrieve the appropriate

reward-associated place cell. At the choice point, the

animal scans both the left (Fig. 3K) and the right reward

wells, and when the look-ahead probe passes the

location of the reward-associated place cell, the animal

then moves correctly toward the left reward (Fig. 3L).

When the animal returns to the cue area (Fig. 3M), a

right-reward-associated cue is signaled (Fig. 3N)

initiating the next trial of look-ahead scanning (Fig. 3O)

and choice point turn selection (Fig. 3P). Note that even

during testing simulations, place cells are still recruited

on the T-Maze as seen by the addition of another place

field from Fig. 3J, K.
Performance

Performance was calculated from testing trials with errors

present. More than one error trial was generated for all

gmax > 0.5. Fig. 2C shows that gmax varied between 0.7

and 0.9 in 0.1 increments. Simulated training includes
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one session of 45 laps. Simulated testing consisted of 50

sessions of 12 laps per session. Fig. 2C describes the

performance accuracy during biased testing trials for a

given maximum perceived stimulus confidence loss,

gmax. As gmax increases, the accuracy decreases as

expected. Performance in our simulations is comparable

between biased and unbiased (not shown) look-ahead.

Because look-ahead biasing is not dependent on cue-

identity uncertainty, a difference in performance is not

expected between unbiased and biased look-ahead

simulations.

Unbiased look-ahead scans

Unbiased training and testing trials were conducted with

perfect stimuli (g = 0) and imperfect stimuli

(gmax = 0.7). Sample grid cells and place cells from

testing trials are shown in Fig. 4. When all three grid

cells have an overlapping grid field, that location

becomes the place field location as prescribed by Eq. (7).

Perfect stimulus recognition (g = 0). The decoded

spiking behavior during perfect stimulus presentation is

shown in Fig. 5. During training trials (Fig. 5A, C), the

animal does not perform any look-ahead scans while

passing through the choice point. From Fig. 5A, the

decoded spatial probability during training accurately

reflects the position of the animal based on ensemble

grid cell spiking. Focusing on the choice point and

epochs just before and after the choice point (Fig. 5C),
GRID CELLS PLACE CELL

peak (P)0

P: 8.3 Hz m: 0.60 Hz

P: 10.4 Hz m: 0.75 Hz

P: 10.7 Hz m: 0.60 Hz

zH31.0:mzH3.8:P

Fig. 4. Example grid fields and place fields from training. Occupancy-norm

adjacent to virtual rat trajectory (gray trace) overlaid with action potential loc

different sets of three grid cells projecting to each place cell. Place cells have p

Maze. Note that place cells activate when the underlying grid cells are co-activ

the reader is referred to the web version of this article.)
decoding epochs were separated based on cued

direction (79 left- and 71 right-cued laps). For a given

left- or right-reward-associated cue, the animal decodes

(thick black lines) most strongly toward its actual

location as it moves left or right respectively (Fig. 5C).

There is no significant decoding to either the left- or

right-feeder regions [F(1,895) = 0.26, p= 0.61, three-way

analysis of variance (ANOVA) with covariates of

temporal epoch (pre, choice point, post), cue type (left-

or right-reward associated), and reward location (left or

right reward)].

In testing trials, the virtual rat is cued left and right for

106 and 108 laps, respectively. On each lap, the animal

performs look-ahead scans at the choice point with an

unbiased approach, viewing left- and right-reward

directions equally (Fig. 5B, D). As during training trials,

the decoder accurately reflects the virtual rat’s actual

position (Fig. 5B). However, a vertical band is visible

extending to a decoded position toward reward areas

when the animal’s actual position is at the choice point

(center of graph labeled with choice point). In Fig. 5D,

significant decoding to the reward regions is visible as

lighter gray bands spreading toward the feeder when

the animal sits at the choice point [F(2,1279) = 4.8,

p= 0.008, three-way ANOVA with covariates of

temporal epoch (pre, choice point, post), cue type (left-

or right-reward associated), and reward location (left or

right reward)]. But because of the unbiased nature of

the look-ahead scan, there is no significant preference
GRID CELLS PLACE CELL

P: 6.2 Hz m: 0.27 Hz

P: 6.3 Hz m: 0.14 Hz

P: 9.5 Hz m: 0.26 Hz

zH40.0:mzH3.3:P

alized rate maps with peak (P) and mean (m) firing rates are shown

ations (red dots). Grid fields of six different grid cells are shown, with

lace fields at the cue area (left) and at the choice point (right) of the T-

ated. (For interpretation of the references to color in this figure legend,
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Fig. 5. Spatial decoding of training trials and testing trials with unbiased look-ahead. (A) Decoded position from ensemble spiking during training

trials demonstrate accurate decoding to the actual position during spiking activity. (B) During testing trials, similar decoding accuracy is visible as in

(A), however, forward activation is visible with increased decoding at the choice point to the feeder (reward region) ahead of the choice point. (C) As

in (A), training trials show the same decoding accuracy zooming in on temporal epochs of 1 s before the choice point (‘pre’), at the choice point, and

1 s after the choice point (‘post’) for left- and right-reward cued trials (left and right panels, respectively). Black dashed line represents linear position

0 and tick marks on vertical axis indicate choice point locations on trajectory. (D) During unbiased look-ahead testing with gmax = 0.0, spatial

decoding probability at the choice point region shows comparable spatial decoding (gray lines marked with weighted arrows) to the left and right

reward areas given a left- or right-reward cued trial (left and right panels, respectively). (E) Similar to (D), unbiased testing with gmax = 0.7 yields

comparable decoding to the feeder regions when the animal traversed correctly (top panels) or incorrectly (bottom panel in gray) given a left- or

right-reward cued trial (left and right panels, respectively). (F) Right- and left-reward bound laps of cued behavior with actual (dashed gray line) and

decoded (black line) trajectories. The decoded trajectory tracks actual trajectory, except for jumps in decoded trajectory toward reward locations

when the animal sits at the choice point. Note the size of decoded jump does not indicate a magnitude of any kind. Rather, look-ahead probes in the

direction opposite the cued direction produce linearized coordinates with the opposite sign.
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to decode to the left or right feeder given a left (p= 0.65,

two-tailed Student’s t-test) or right (p= 0.10, two-tailed

Student’s t-test) cue.
Fig. 5B also shows a horizontal band of decoding to

the choice point region. This horizontal band indicates

that when the virtual rat is between the choice point and

the reward location, MEC neurons will contain spatial

information about the rat’s current location and the

choice point. Grid cells with firing fields between the

choice point and the reward locations spike in two

circumstances: (1) when the virtual rat or (2) a look-

ahead probe (where virtual rat pauses at choice point)

passes through the firing field. The decoder is trained

on epochs when these particular grid cells fire action

potentials. Because the virtual rat’s actual location can

either be at the grid field or the choice point when these

neurons spike, the decoder provides spatial information

for both locations.

Imperfect stimulus recognition (gmax = 0.7). Training

trials do not decode differently between perfect and

imperfect stimuli because no look-ahead scans are

present. The only notable difference across training

trials occurs within the matrix WS visible in Fig. 2A, B.

Testing trials are visible in Fig. 5E. The virtual animal

performed 200 laps, 139 correct (70 left- and 69 right-

cued) and 61 error trials (30 left- and 31 right-cued).

Like Fig. 5D, significant decoding to the reward regions

is visible spreading to the feeder when the animal sits at

the choice point [F(2,1194) = 6.95, p= 0.001, four-way

ANOVA with covariates of temporal epoch (pre, choice

point, post), cue type (left- or right-reward associated),

reward location (left or right reward), and epoch

accuracy (correct or incorrect)]. Again, because look-

ahead scans are unbiased, decoding to the left- or right

feeder does not differ whether the animal performed

correctly (left feeder given left cue: p= 0.54, right

feeder given right cue: p= 0.28, two-tailed Student’s t-
test adjusted with Holm–Bonferroni correction) or

incorrectly (left feeder given right cue: p= 0.44, right

feeder given left cue: p= 0.37, two-tailed Student’s t-
test adjusted with Holm-Bonferroni correction). Fig. 5F

shows decoded (peak spatial decoding probability

location) and actual trajectories of the virtual animal on

right- and left-reward bound laps over time. The jumps

in decoded trajectory from the choice point to the

reward locations as the animal sits at the choice point

represent forward activations during unbiased look-

ahead scans. For each lap, there are three scans to the

right- and left-reward locations. Look-ahead scans in the

direction opposite the cued direction produce linearized

coordinates with a sign opposite the trajectory

linearization, resulting in large jumps as shown.

Biased look-ahead

Spatial decoding is reported for biased test sessions with

gmax = 0.0 and gmax = 0.7. Temporal decoding is

reported below for biased test sessions with gmax = 0.7.

For gmax = 0.0, the virtual animal was cued left and

right 300 times each, performing correctly on every lap.

For gmax = 0.7, the virtual animal was cued left and
right 300 times each, performing correctly on 234 and

210 left- and right-cued laps, respectively, and

incorrectly on 66 and 90 left- and right-cued laps

respectively.

Perfect stimulus recognition (gmax = 0.0) spatial
decoding. With zero cue-identity uncertainty, the

stimulus Sp yields 100% performance (see Fig. 2). The

virtual animal correctly performed 600 laps with 300

trials each of left and right cues. Fig. 6A shows spatial

decoding probabilities when the animal’s trajectory is

pre-choice point, choice point, and post-choice point.

Like in Fig. 5D, E, significant decoding toward the

feeder regions is visible at the choice point

[F(2,3595) = 68.1, p< 0.0001, three-way ANOVA with

covariates of temporal epoch (pre, choice point, post),

cue type (left- or right-reward associated), and reward

location (left or right reward)]. However, unlike the

unbiased look-ahead simulations, significant asymmetry

is visible with stronger decoding to the left feeder

(p< 0.0001, two-tailed Student’s t-test) or right feeder

(p< 0.0001, two-tailed Student’s t-test) given a left or

right cue, respectively.

Imperfect stimulus recognition (gmax = 0.7) spatial
decoding. The presence of cue-identity uncertainty

induces errors in virtual rat performance. Decoding

epochs varied not only by cued direction (left or right),

but also by correct or incorrect choice point turn

direction. Figs. 5 and 6B demonstrate significant

decoding to reward locations at the choice point

[F(2,3594) = 166.0, p< 0.0001, four-way ANOVA with

covariates of temporal epoch (pre, choice point, post),

cue type (left- or right-reward associated), reward

location (left or right reward), and epoch accuracy

(correct or incorrect)]. The two top panels of Fig. 6B

demonstrate decoding for epochs where animals turned

in the correctly cued direction. The choice point epoch

(center column) shows strongest decoding (gray lines)

to the correct feeder location (left feeder given left

cue: p < 0.0001, right feeder given right cue:

p< 0.0001, two-tailed Student’s t-test adjusted with

Holm–Bonferroni correction), unlike in the unbiased

look-ahead scan of Fig. 5. Decoding the representation

at the choice point before the animal turns in the

incorrect direction (Fig. 6B, bottom panels) shows that

the feeder location associated with the incorrect turn

has the strongest spatial decoding as evident from the

gray lines in the center column (right feeder given left

cue: p < 0.0001, left feeder given right cue:

p< 0.0001, two-tailed Student’s t-test adjusted with

Holm–Bonferroni correction).

Comparison to in vivo data. The specific examples of

unbiased and biased look-ahead testing simulations

have qualitatively appeared similar to the in vivo data

shown in Fig. 6C. Using a 2-D Pearson’s Correlation

Coefficient between the in vivo and simulation decoding

probabilities, Table 1 describes quantitatively how well

the virtual experiments fit the unit recording decoding

analysis. For simulations where the animal turns
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Fig. 6. (A) Spatial decoding of biased look-ahead testing for gmax = 0.0. Two decoding epochs are shown varied by cue direction (left or right).

Stronger decoding is visible when the virtual animal is at the choice point to left- or right-feeder given a left- or right-reward associated cue,

respectively (gray lines marked with weighted arrows). Black dashed line represents linear position 0 and tick marks on vertical axis indicate choice

point locations on trajectory. (B) Spatial decoding of testing trials with biased look-ahead for gmax = 0.7. Four decoding epochs are shown varied by

cue direction (left or right) and correct (top panels) or incorrect (bottom panels in gray) turning direction. Correct trials decode strongly to the left (top

left panel) or right (top right panel) feeder location when the animal is cued left or right, respectively (gray lines marked with weighted arrows). Error

trials decode strongly to the left (bottom right panel) or right (bottom left panel) feeder location given a right or left cue, respectively (gray lines

marked with weighted arrows). (C) Similar spatial decoding profiles from in vivo data (from Gupta et al., 2012) with epochs varied by cued direction
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Table 1. Correlation coefficients of spatial decoding probabilities of simulated testing (with biased or unbiased look-ahead scans) to in vivo decoding

probabilities shown in Fig. 6C, given different cue-identity uncertainties. Note: simulations with gmax 6 0.5 do not generate significant numbers of error

laps, so comparisons are only made on correct behavioral epochs

Cue-identity

uncertainty (gmax)

Spatial decoding epochs

Cued left

Turned correctly left

Cued right

Turned correctly right

Cued left

Turned incorrectly right

Cued right

Turned incorrectly left

Biased

look-ahead

Unbiased

look-ahead

Biased

look-ahead

Unbiased

look-ahead

Biased

look-ahead

Unbiased

look-ahead

Biased

look-ahead

Unbiased

look-ahead

1.0 0.46 0.43 0.31 0.18 0.32 0.38 0.22 0.33

0.9 0.46 0.42 0.32 0.19 0.32 0.37 0.23 0.33

0.8 0.47 0.40 0.33 0.20 0.34 0.38 0.22 0.34

0.7 0.48 0.43 0.32 0.21 0.33 0.38 0.21 0.35

0.6 0.49 0.43 0.30 0.19 0.38 0.40 0.29 0.35

0.5 0.51 0.45 0.33 0.20

0.4 0.51 0.45 0.32 0.20

0.3 0.40 0.44 0.28 0.21

0.2 0.40 0.44 0.25 0.21

0.1 0.50 0.44 0.33 0.20

0.0 0.47 0.43 0.35 0.21
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correctly at the choice point, biased look-ahead

simulations correlate better to the in vivo data than

unbiased simulations (cued left, turned correctly left:

p= 0.009; cued right, turned correctly right:

p< 0.0001; Student’s t-test with Holm–Bonferroni

correction). When the virtual rat errors at the choice

point, unbiased look-ahead simulations correlate better

to the in vivo data than biased simulation (cued left,

turned incorrectly right: p= 0.007; cued right, turned

incorrectly left: p= 0.002; Student’s t-test with Holm–

Bonferroni correction). Part of Table 1 is empty for

simulations where gmax 6 0.5. In these table positions,

the simulations do not produce enough error trials to

make any comparisons.

Temporal decoding. Similar to Fig. 6B, where spatial

decoding epochs varied by cued direction (left or right)

and correct or incorrect choice point turn direction, the

temporal decoder varied its decoding epochs yielding

the four plots in Fig. 7. Fig. 7A, D demonstrate the

probability of decoding to ‘time from left feeder’ and

Fig. 7B, C show decoding to ‘time from right feeder.’

Temporal decoding probability significantly differs from

the choice point to pre- and post-choice point epochs

[F(2,1795) = 53.6, p< 0.0001, three-way ANOVA with

covariates of temporal epoch (pre, choice point, post),

cue type (left- or right-reward associated), and epoch

accuracy (correct or incorrect)]. During pre- and post-

choice point epochs, the virtual rat does not perform a

look-ahead scan. The only spiking seen at these times

are from grid cells whose fields the animal passes

through. Because grid fields are generated with differing

periodicities along the stem (pre-choice point) and in the

reward arms (post-choice point), the spiking they elicit

reflects the banding pattern seen in the temporal

decoding. At the choice point, however, spiking occurs

when the look-ahead probe passes over persistent

spiking cells, grid cells, and place cells. The temporal

decoding shows relatively high decoding probabilities to

all times prior the virtual rat’s entry to the reward zones.
Decoding probability drops to 0 for all times after time

t= 0 because our implementation of the look-ahead

probe does not scan place cells farther ahead in time

beyond the reward regions. If in vivo temporal decoding

probability does not drop to 0 after times ahead of the

reward region, then that is indicative of longer-lasting

look-ahead scanning.
DISCUSSION

This article presents an updated version of the model of

Erdem and Hasselmo (2012) focusing on grid cells

activity as a virtual rat runs a cued, appetitive T-Maze

task. In vivo data (see Fig. 6B) suggests that medial

entorhinal neurons are capable of performing look-

ahead functions on such tasks, where ensemble activity

indicates perception of spatial locations forward from the

animal’s current position (Gupta et al., 2012). The

model presented here trains a virtual rat to associate

reward with perfect and imperfect cue stimuli, an update

on the previous model. The cognitive map the animal

develops over training associates place cells to reward

cells that are activated given the appropriate cue. At the

choice point, the animal performs look-ahead scans in

both rewarded directions, triggering action potentials

from cells along those scanned trajectories (e.g.

persistent spiking cells, grid cells, and place cells). The

virtual animal employs both biased and unbiased look-

ahead probes, with the former strategy better modeling

epochs where animals turned correctly, and with the

latter strategy better for epochs where animals turned

incorrectly. Each look-ahead strategy produces forward

activations from the choice point to the feeder locations

as the animal pauses. Temporal decoding further

validates the model showing that look-ahead scans are

constantly activating the grid cell network when the

animal sits at the choice point deliberating which

direction to take, compared to pre- and post-choice

point epochs.
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Cue-to-reward connection matrix

The current model incorporates a learning rule for both

certain (perfect) and uncertain (imperfect) cue identities.

The Hebbian associations between reward cells and cue

stimuli develop over multiple training laps and continue

during testing sessions. This feature significantly adds

to Erdem and Hasselmo (2012) by allowing for learned

cues during training to drive future choices. Without

these learned associations, the virtual rat would not be

able to identify which recruited place cells and

associated reward cells should be encoded with a given

cue. Such cue-reward associations have been modeled

previously using reinforcement learning (Sutton and

Barto, 1998) implementing a value-state system

(Hasselmo and Eichenbaum, 2005; Zilli and Hasselmo,

2008) for the virtual rat. Our implementation relies on

Hebbian cue-reward associations that retrieve reward

cells (and reward-associated place cells). The retrieved

reward-associated place cell is activated as a look-

ahead probe passes through the cell’s place field. It is

this feature that makes look-ahead agnostic to the

actual mechanism of place cell retrieval, so long as the

correct goal-associated place cell is retrieved by the

time the virtual rat arrives at the choice point to begin

scanning.
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Fig. 7. Temporal decoding to times before triggering the left or right

feeder. Panels (A) and (D) represent decoding to ‘time from left

feeder activation’ (time t= 0) when the virtual animal turns correctly

or incorrectly toward left reward, respectively. Panels (B, C) are

similar representations for ‘time from right feeder activation’ (time

t= 0) when the virtual animal turns correctly or incorrectly toward

right reward, respectively. Band patterns are visible when the virtual

rat occupies pre- and post-choice point regions. Here, the virtual

animal is not performing look-ahead scans, but is running through

grid fields. At the choice point, the virtual rat performs multiple look-

ahead scans prior to running to the reward site visible via elevated

decoding probability up to t= 0.
Implications of spatial and temporal decoding results

Throughout our simulations, we assumed the virtual rat

performed a look-ahead scan only while pausing at the

choice point. Fig. 6B explicitly shows that the choice

point region is the prime location where non-local

representations occur similar to those seen in vivo

(Fig. 6C). Furthermore, the spatial decoding at the

choice point is limited to locations up to the reward

regions. The temporal decoding corroborates this

assumption by showing consistent probability of

decoding to a time before triggering reward while the

animal sits at the choice point (Fig. 7). Our assumptions

in the model simplify computational complexity, but it

captures only part of the in vivo data. Gupta et al.

(2012) show ensembles of medial entorhinal neurons

decoding to appropriately cued reward locations during

correct trials (Fig. 6C). However, low-level, non-local

noisy decoding to all other regions is present, similar to

spatial decoding in the hippocampus (Johnson and

Redish, 2007) and ventral striatum (van der Meer and

Redish, 2009). In addition, decoding in the ventral

striatum demonstrates ensembles decoding temporally

beyond the feeder, typically by 2 to 4s (van der Meer

and Redish, 2009).

These results suggest three considerations for our

simulations. First, animals must be performing look-

ahead scans at various times, not just when pausing at

the choice point. The look-ahead scan need not limit

itself to just the reward locations. This point is

particularly interesting because it depends on how much

of the route facing the virtual animal can be sensed. If

the animal could sense (visually or otherwise), regions

advanced from the reward trigger, then the look-ahead

probe need not be straight line probes as we have
implemented. By placing high walls to visually obscure

T-Maze reward locations, in vivo manipulations could

determine whether visual information is the predominant

sensory modality for look-ahead scans.

Second, our model assumes noiseless spatial

navigation. We do not introduce phasic noise into

persistent spiking cells or VCOs, thereby eliminating

significant noise sources for the grid and place cell

system. Additionally, we treat place fields as a

superposition of three underlying grid fields, which may

not be the case especially given evidence from
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trajectory-dependent place cell (Wood et al., 2000) and

grid cell firing (Lipton et al., 2007) and grid field

fragmentation (Derdikman et al., 2009; Gupta et al.,

2013). In these experiments, animals perform a

cognitive task in 1-D mazes, which confer different

cognitive demands than foraging behavior in 2-D

environments. Furthermore, 1-D maze geometry may

induce complex resetting of the spatial navigation

system not necessarily present in 2-D open field arenas.

Third, the reward layer we employ does not

necessarily need to be a part of the PFC. Though

considerable evidence makes the PFC a likely

candidate structure, studies from the ventral striatum

also make it a likely candidate. Forward activation in

cued choice tasks has been seen in neuronal

ensembles from the ventral striatum (van der Meer and

Redish, 2009) which may represent decision-making

expectations (van der Meer and Redish, 2010). In

addition, intrinsic firing of ventral striatal neurons show

stronger coherence to hippocampal theta rhythm, with

phase precession associated with anticipatory firing to

reward locations (van der Meer and Redish, 2011).

Unbiased and biased look-ahead strategies

The look-ahead scan offers a mechanism for animals to

verify learned choices, like during VTE (Muenzinger,

1938; Hu and Amsel, 1995; Johnson and Redish, 2007).

VTE events typically show a biased approach toward a

direction as the animal deliberates the correct decision

to take. During error trials, however, a biased approach

is less apparent as animals demonstrate equivalent

forward activations to either correct or incorrect reward

locations (Gupta et al., 2012). Animals may use a

biased approach when they are more confident of the

correctly reward location, eliminating the need to inspect

an incorrect reward location. With increased uncertainty

about which direction to take, scanning both reward

locations becomes more important. The results of

Table 1 suggest that the model presented can

adequately emulate the shift from unbiased to biased

look-ahead based on whether the animal moves to the

correct reward location.

Hippocampal replay, visible during epochs of LFP

sharp-wave ripples in quiescent states (Wilson and

McNaughton, 1994; Louie and Wilson, 2001; Karlsson

and Frank, 2009), has also shown bias toward

hippocampal events associated with learned cues that

are later played while animals sleep (Bendor and

Wilson, 2012). In our implementation of bias, we applied

a constant bias dependent on the animal’s connection

matrix between reward location and choice. This yielded

a similar bias for look-ahead regardless of the cue-

identity uncertainty of the perceived stimulus. However,

this constant bias could be modified to include a time-

dependent biasing that scales with stimulus uncertainty.

This would imply that as the uncertainty term gmax

increases, the look-ahead scans will scan left and right

rewards with increasingly equal probabilities.

We could implement the bias direction selection using

a partially observable Markov decision process (Zilli and

Hasselmo, 2008). Our current strategy using Hebbian
learning-associating cue and bias direction does not

take into account the state of the virtual rat. At each

location the rat visits, a value (derived from previous

states and reward visits) could be associated with the

location comprising the state of the animal at that time

and place. Cue presentation could retrieve the animal’s

state which would include a probability of selecting the

left- or right-reward. The time from cue presentation

would then affect the probability based on the number of

states the animal must pass through to achieve reward.

When animals become more confident about cue-

reward associations, the need for look-ahead scans

likely diminishes. In tasks such as continuous spatial

alternation, animals can complete each lap in a brief

instant with a high degree of accuracy across sessions

(Frank et al., 2000; Wood et al., 2000; Lipton et al.,

2007), even with damage to the hippocampus (Ainge

et al., 2007). In the delayed version of spatial

alternation, the hippocampus is necessary to perform

the task (Ainge et al., 2007) suggesting that the

underlying place cell circuit must be intact to

successfully navigate the increased complexity.

Furthermore, the delayed version of this task also elicits

phasic anticipatory elevations of PFC dopamine and

noradrenaline correlated to reward expectancy and

active maintenance of goal information, respectively

(Rossetti and Carboni, 2005). The intact reward cell and

place cell layers employed during delayed spatial

alternation suggest that look-ahead probes may be

useful during the delay period to disambiguate the

forward route.

Although we emphasize the prospective spatial

information encoded by MEC ensembles, the output of

the Bayesian decoder possibly suggests a retrospective

mode. The horizontal band of decoding seen in Fig. 5B,

as mentioned earlier, is a product of training the

decoder from grid cells with firing fields between the

choice point and the reward locations. Because grid

cells with firing fields between these two locations will

fire when the virtual animal is either at the choice point

or passing through the grid field, spiking must contain

spatial information about both locations. Other studies

have also noted similar symmetry across the main

diagonal similar to Fig. 5B (van der Meer and Redish,

2009). It is possible that this horizontal band could be a

mechanism for retrospective activity seen in grid cells

(De Almeida et al., 2012). Here, grid cells spiked more

frequently either inbound toward (prospective mode) or

outbound from (retrospective mode) a grid field vertex.

The memory mode was consistent across cells for

vertex crossings less than a second apart indicating that

such memory modes may be dependent on a network

of cells. If the network behaves like a Bayesian decoder,

the horizontal band observed in Fig. 5B may contribute to

the retrospective mode.

The overall architecture of the model has several

benefits for cued behavior. Because we do not

necessarily require reward diffusion to perform

behavioral tasks, we are able to maintain a sparse place

field representation of the environment, only requiring

representations of task-relevant locations like the reward
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areas and turning points. The only inputs to the system at

any time, heading and speed information, activate the grid

cell and place cell layers to transduce location and

retrieve reward-associated information. The model using

biased look-ahead is able to replicate the decoding of

neurophysiological data (Fig. 6C) showing activity for

the reward location when the animal is at the choice

point. The look-ahead probe’s ability to assist in

diminishing uncertainty makes it a vital part of any goal-

directed navigation with significant ambiguity.
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