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Abstract

Temporal relationships between neuronal firing and plasticity have received significant attention in recent decades. Neurophysiological studies

have shown the phenomenon of spike-timing-dependent plasticity (STDP). Various models were suggested to implement an STDP-like learning

rule in artificial networks based on spiking neuronal representations. The rule presented here was developed under three constraints. First, it only

depends on the information that is available at the synapse at the time of synaptic modification. Second, it naturally follows from

neurophysiological and psychological research startingwithHebb’s postulate [D.Hebb. (1949).The organization of behavior.Wiley,NewYork].

Third, it is simple, computationally cheap and its parameters are straightforward to determine. This rule is further extended by addition of four

different types of gating derived from conventionally used types of gated decay in learning rules for continuous firing rate neural networks. The

results show that the advantages of using these gatings are transferred to the new rule without sacrificing its dependency on spike-timing.

q 2005 Published by Elsevier Ltd.
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Most neural models have focused on the Hebb rule for

synaptic plasticity, which can be written as:

dw

dt
Z lXpreXpost (1)

where l is the learning rate and X are pre- and postsynaptic

signals. This formula is based on correlation and does not

include precise information about firing times of neurons,

unless Xpre and Xpost are specifically designed to include this

information. Hebb (1949), on the other hand, emphasized

causality and, therefore, a temporal order of neuronal firing.

Moreover, neurophysiological studies have focused on

temporal relationships of neuronal firing and plasticity and

explored the phenomenon of spike-timing-dependent plas-

ticity (STDP) (Bi & Poo, 2001; Levy & Steward, 1983;

Markram, Lubk, Frotscher, & Sakmann, 1997). STDP
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manifests itself in potentiation of the synapse if the

presynaptic spike precedes the postsynaptic spike, and in

depression if the presynaptic spike follows the postsynaptic

spike. STDP more closely reflects the idea of the Hebbian

postulate than Eq. (1). Various implementations of learning

rules that can model this type of plasticity were proposed in

recent years (Gerstner, Kempter, van Hemmen, & Wagner,

1999, Chapter 14; Kepecsvan, Rossum, Song, & Tegner,

2002; Porr, Saudargiene, & Wörgötter, 2004; Song, Miller,

& Abbott, 2000).

Themodel presented here also assumes that the adaptation

is based on temporally asymmetric adjustment of projection

weights, and develops themechanism to implement STDP on

the basis of information available in the synapse at the

moment of learning. The brief version of this research was

presented at the International Joint Conference on Neural

Networks (Gorchetchnikov, Versace, & Hasselmo, 2005).

Here we extend the reasoning behind the mathematics and

design decisions that were made to construct our model of

spike-timing-dependent plasticity. This model uses Eq. (1)

and designs Xpre and Xpost so that the resulting rule shows the

features of experimentally recorded STDP. This rule can be

integrated over time to achieve results similar to those

produced by a well studied rule suggested by Gerstner et al.

(1999), which is discussed in the next section.
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1. Previous analysis and notation

Gerstner et al. (1999) analyzed the following STDP rule:

Dwij Z

ðT
0

ðT
0
WðtK t 0ÞSiðtÞSjðt 0Þdtdt 0 (2)

where wij is the synaptic weight of a connection from j to i, T

is the duration of a learning experiment, Si(t) is the

postsynaptic spike train, Sj(t) is the presynaptic spike

train, and W(t-t 0) is the learning window that depends on

the time difference between the postsynaptic t and

presynaptic t 0 spikes and is described as

WðsÞZ
½ACKAK�e

ðKðsKs�Þ=tÞ for sOs�

ACe
ðKðsKs�Þ=tCÞ KAKe

ðKðsKs�Þ=tKÞ for s!s�

(

(3)

where AC, AK, tC, tK are parameters defining the shape of

the window, t is the synaptic time constant, and s*

determines the time difference corresponding to the peak

of potentiation. Note, that Gerstner et al. (1999) used sZt 0-t,

so the respective signs are flipped in the above equations.

Eq. (2) contains the information about timing of the

presynaptic spike arrival, timing of the postsynaptic spike

generation, and efficiency of learning for a specific time

difference between the two. These are the three critical

components that have to be present in any STDP rule. The

rule (2) has several advantages. First, it is spatially local in

the sense that it does not require any information that is not

available at the synapse the rule is applied to. Second, the

number of parameters in the learning window provides

enough flexibility to fit any experimental data. Finally, it

reduces to Hebbian learning for the continuous firing rate

coding (Gerstner et al., 1999).

The downside of this rule is its requirement for the timing

information over the interval [0,T], so it is temporally global.

Efficient simulation software will prefer a temporally local

rule based only on the information available here and now

over the one that requires keeping track of recent events.
2. Components of a temporally and spatially local

STDP rule

To create a temporally and spatially local STDP rule one

should identify three components of the plasticity, namely

presynaptic timing, postsynaptic timing, and the efficiency

of learning for a certain time difference, so that all of them

are available at the synapse at every moment of time.

Levy and Steward (1983) suggested that the accumu-

lation of calcium ions in the spine can indicate recent

presynaptic spiking. A related indicator of presynaptic spike

timing at the site of the synapse is the synaptic conductance.

It has a temporal profile, which is triggered by a presynaptic

spike and approximated here by a dual-exponential

equation.
Retrograde electrical invasion was suggested by Levy

and Steward (1983) to subserve the indication of postsyn-

aptic spike timing. The model presented here uses the

membrane potential directly. Moreover, since the model

assumes that 0 is the resting potential, and the time of the

spike is the moment when potential crosses 0 between the

depolarization part of the spike and the afterhyperpolariza-

tion (AHP), membrane potential is positive before the spike

and negative after the spike. This can be used to determine

the efficiency of learning.

The efficiency of learning at every moment of time is the

slice of the learning window W in Eq. (3). Gerstner et al.

(1999) description of the formation of such a window is

based on two factors. The first (a) is triggered by the

presynaptic spike. The second (b) is triggered by the

postsynaptic spike and can have potentiation and depression

components (bC and bK, respectively). This discussion

applies here if one considers synaptic conductance as an a

factor (which is always positive), and membrane potential

as a sum of positive (depolarization) bC and and negative

(AHP) bK components.

Biophysically, all three components of STDP might

follow from a single mechanism, for example Holmes and

Levy (1990) conducted a detailed quantitative study of

CaCC accumulation in the dendritic spine and its relation to

the long-term potentiation (LTP). Their results suggest that

CaCC dynamics in the spine can monitor both pre- and

postsynaptic signals, and the time course of these dynamics

affects the learning window. The model presented here is

more abstract and monitors pre- and postsynaptic signals

separately.

Substituting synaptic conductance as a presynaptic signal

(XpreZgs) and membrane potential as a postsynaptic signal

(XpostZVsoma) in Eq. (1) can produce STDP due to the

mechanism discussed by Gorchetchnikov and Hasselmo (in

press). A similar idea was used by Porr et al. (2004), but the

authors use the derivative of the back-propagating action

potential asXpost. Numerical simulations (Gorchetchnikov&

Hasselmo, in press) generally confirmed the approach to the

STDP rule presented here, but the formal analysis of a

simplified version can provide additional insights on the

dynamics of this rule.
3. Analysis of the simplified rule

The following simplifications were made for the

analysis:

Simplification 1: Approximate the effect of presynaptic

transmitter release on synaptic conductance by an alpha

function:

gs Z �gs
t

t
eð1Kðt=tÞÞ (4)

where �gs is the maximal channel conductance, t is the time

since the presynaptic action potential, and t is the time



Fig. 2. Cases with no learning after simplifications.
Fig. 1. Approximation of the action potential with a piecewise linear

function.
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constant of the channel. Additionally, assume that it starts at

tZ0 (and therefore sZtpost) and completely decays at tZ10t.

Simplification 2: Approximate the postsynaptic action

potential with a piecewise linear function

Xpost Z

AðtKsÞCB if sK
B

A
! t%s

CðtKsÞCD if s! t!sK
D

C
0 otherwise

8>>><
>>>:

(5)

as shown in Fig. 1: XpostZAðtKsÞCB models the

depolarization part, where AO0 is the slope of a spike

and BO0 is a peak amplitude, and XpostZCðtKsÞCD

models the hyperpolarization part, where CO0 is the slope

and D!0 is the trough amplitude.

Then the rule (1) becomes

dw

dt
Z

ðAðtKsÞCBÞ
t

t
eð1Kðt=tÞÞ if sK

B

A
! t%s

ðCðtKsÞCDÞ
t

t
eð1Kðt=tÞÞ if s! t!sK

D

C

8><
>: (6)

With the above simplifications learning only happens if

(D/C)!s!10tC(B/A) as illustrated in Fig. 2.

To estimate the total weight change during one learning

window, Eq. (6) has to be integrated over the length of the

learning window. This integral has an analytic solution

Keð1Kðt=tÞÞððnKmsÞðtCtÞCmðtCtÞ2 Cmt
2ÞCX (7)

where mZA, nZB for sK(B/A)!t%s, and mZC, nZD for

s!t!sK(D/C). Separating these two cases, one can denote

part of this solution for potentiation while sK(B/A)!t%s as

FP, and for depression while s!t!sK(D/C) as FD. The

total weight change is

DwZFP
t2
t1
CFD

t3
t2

���� (8)

The limits of integration are determined as follows.

Case 1: if (D/C)!s!0, then FPZ0, FD starts at tZ0

and lasts till either tZsK(D/C) or tZ10t, whichever

comes first.
Case 2: if 0!s!10t, thenFP starts at either tZsK(B/A)

or tZ0, whichever comes last, and lasts till tZs. FD

starts at tZs and lasts till either tZsK(D/C) or tZ10t,

whichever comes first.
Case 3: if 10t!s!10tC(B/A), then FDZ0, FP starts at

either tZsK(B/A) or tZ0, whichever comes last and

lasts till tZ10t.
Combining all cases yields:

DwZFP

����maxð0;minðs;10tÞÞ

maxð0;sKðB=AÞÞ

CFD

����maxðs;minð10t;sKðD=CÞÞÞ

maxðs;0Þ

(9)

Fig. 3 plots Eq. (9) and shows the contribution of

potentiation and depression components.

Determining the precise timing differences s of peak

potentiation and trough depression is nontrivial, because in
Fig. 3. Example plot of STDP curve for a simplified rule with normalized

parameters. FP is shown by dot-dashed line, FD is represented by long-

dashed line, and their sum Eq. (9) is shown as bold black line. AZ0.2,

BZ0.8, CZ0.008, DZK0.2, and tZ2 ms.



Table 1

Gated decay for continuous firing rate representations

Common name f(Xpre, Xpost) limt/Nw

Grossberg outstar (Grossberg,

1974; 1976a,b) or postsyn-

aptically gated decay

Xpost Xpre

Grossberg instar (Grossberg,

1974; 1976a,b) or presynapti-

cally gated decay

Xpre Xpost

Oja rule (Oja, 1982) X2
post Xpre/Xpost
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some cases taking the derivative of the Eq. (9) leads to

transcendent equations, which are analytically unsolvable.

The parameter manipulations suggest that the increase of

either slope A or C shifts the respective peaks towards t.

Decrease of the slope C for hyperpolarization shifts the

depression trough towards sZ0. Decrease of the slope A for

depolarization shifts the peak potentiation towards

sze ln(B/A).

The parameter choice for the plot in Fig. 3 leads to

overall depression greater than the overall potentiation.

Analysis has shown that this is the necessary condition to

assure that uncorrelated inputs lead to depression (Song

et al., 2000) and to make the learning process stable (Kepecs

et al., 2002).
4. Limiting the weights

Eq. (9) was derived directly from the Hebbian rule,

therefore it inherits the major drawback of Eq. (1), namely

the resulting synaptic weights can grow infinitely large.

There are several approaches to prevent such an unbounded

weight growth in the Hebbian rule:

† Renormalizing the weights to keep the total weight

constant;

† Imposing a limit on the weight value;

† Adding to Eq. (1) the decay term proportional to the

current weight value.

Renormalizing the weights is not considered here,

because it requires information from all synapses for the

calculation, and, therefore, violates the spatial locality

requirement for the rule.

Limits on the weight value can be hard or soft. With

hard bounds on each step of calculation the weight is

checked against the interval of allowed values. In case the

weight is outside of this interval, it is set to the value of the

nearest end of the interval. Soft limits use the difference

between the current weight and the bound as a factor in

the rule

dw

dt
Z lXpreXpostðwKwMINÞðwMAX KwÞ (10)

In this case where the weight approaches one of the

bounds, the change becomes smaller, since the respective

difference goes to zero. With t/N, the weight will

approach either wMAX or wMIN. Such a bimodal distribution

means strong competition and rate stabilization (Kepecs

et al., 2002), but it does not preserve the relative

importance of input cells for the firing of the output cell,

and therefore disregards the causality emphasized by Hebb

(1949). In other words the postsynaptic cell cannot learn

the spatio-temporal pattern of inputs (Grossberg, 1974).

If only depression or only potentiation depends on the

difference between the respective bound and the current
weight, the distribution of resulting weights is unimodal. A

unimodal distribution leads to principal component extrac-

tion and preserves the total weight (Kepecs et al., 2002).

These are desirable goals, but in the case of Eq. (10),

removal of either bound would mean an unlimited weight

change in the respective direction.

Another way to achieve pattern sampling that extracts the

relative importance of the inputs for the firing of the

postsynaptic cell is to introduce a decay term proportional to

the current weight. Grossberg introduced the postsynaptic

and presynaptic gated decay laws and called them the Instar

and Outstar learning rules (Grossberg, 1974, 1976a,b). Such

a decay leads to the rule

dw

dt
Z lXpreXpost K f ðXpre;XpostÞw (11)

where f(Xpre, Xpost) is a scaling function. Some scaling

functions that are widely used with continuous firing rate

neuronal representations are listed in Table 1. According to

Abbott and Nelson (2000), the experimental data suggests

that f must be positive or negative depending on the

postsynaptic rate. Mathematically this suggestion is

perfectly sound, but biophysically the case of negative f

means a non-Hebbian weight increase in addition to STDP.

All functions listed in Table 1 only make sense when one

considers pre- and postsynaptic signals as firing rates. In this

case the firing patterns of cells have only a spatial component.

A temporal component is hinted at by the firing rate of the cell,

which is coded as the level of activity. Therefore, when the

limt/Nw converges to the level of activity of the presynaptic

or postsynaptic cell, it provides a good representation of the

spatial pattern. In the case of spiking neurons, the temporal

component of the pattern is fully represented by a specific time

difference between the presynaptic and the postsynaptic spike.

Hence, the limt/Nw should somehow represent this time

difference. Section 5 starts the design of a scaling function f

applicable for spiking networks.
5. Combining gated decay and the STDP rule

Rule (6) provides the measure of the time difference

between the presynaptic and postsynaptic spike based on the

product of Xpre and Xpost. The successful learning rule for

spiking neurons can sample some function q of this product



Fig. 4. Xpost as piecewise linear function Eq. (14). The action potential

represented by this Xpost is outlined in gray in the background.
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in order to encode both spatial and temporal components of

the pattern. To achieve this, the rule should lead to

lim
t/N

wZ qðXpreXpostÞ (12)

From a biophysical point of view, the synaptic weight

can not be negative if it is defined as a density of the

ion channels in the synapse. To satisfy this constraint

q(Xpre, Xpost) should be non-negative in Eq. (12). While

XpreZgs2[0,1], XpostZVsoma can be both positive and

negative. Moreover, the bounds of Xpost can be only

approximated from the data on membrane potential.

To overcome the problem of loosely defined bounds,Xpost

canbe replacedbyavariable triggeredbymembranepotential

but bounded within a certain interval. This is done by setting

the parameters A, B, C, and D of Eq. (5) to normalize the

values of Xpost over the interval [D, B] of the length 1.

The piecewise linear Xpost used in Fig. 3 changes between

D!0 and BO0. Hence, the product XpreXpost2[D, B], and

since BKDZ1

qðXpreXpostÞZXpreXpost KD2½0; 1� (13)

This function q leads to following:

† limt/NwZ1 when XpreXpostZB (positive correlation)

† limt/NwZ0 when XpreXpostZD (negative correlation)

and

† limt/NwZ-D when XpreXpostZ0 (no correlated activity

between pre- and postsynaptic cells).

There are three issues with the Eq. (5) and the resulting

STDP curve in Fig. 3. First, in general case the shape of the

action potential during simulation will not follow the linear

approximation used here. To keep the learning rule simple yet

applicable with any spike shape the approximated Xpost still

can be used, but instead of precisely following the shape of the

spike it should be triggered by action potential generation.

Second, for the case of spike-generating mechanisms that

have internal dynamics (e.g. the classic Hodgkin & Huxley,

1952 model), the length of the spike is not constant. To

accommodate this, the positive part of Xpost should be

triggered by an instantaneous event that signals the

generation of an action potential in the near future, and

should last for the duration of the spike. The simplest

function that satisfies these requirements and does not

depend on the length of the spike is XpostZconstant starting

when Vsoma crosses the spiking threshold and ending when

Vsoma drops below the resting potential after the spike.

The third problem is the shift of zero-crossing towards

positive s in Fig. 3. It is due to the instantaneous effect of the

emitted postsynaptic spike on synaptic modification in the

model. In real cells there is a delay before the chemical and

electrical influence of the action potential can back-

propagate to the dendrites and reach the synapse. A delay

in the transition from a positive to a negative component of

Xpost can correct the shift in zero-crossing. Moreover, from
a biophysical standpoint this transition should be gradual

and not instantaneous as was used in Eq. (5). Linear decay is

sufficient as the first approximation. The resulting Xpost is

Xpost Z

B if VsomaOVq

AðtKsÞCB if s! t!sK
1

A

C tKsC
1

A

� �
CD if sK

1

A
! t!sK

D

C
K

1

A
0 otherwise

8>>>>>>><
>>>>>>>:

(14)

where A!0 (note the change of the sign from Eq. (5)) is the

slope of a transition from a positive to a negative

component, BO0 is the peak amplitude of a positive

component, CO0 is the slope of recovery and DZBK1!0

is the trough amplitude of a negative component. Fig. 4

shows the resulting Xpost.

Biophysically, this shape of Xpost can be justified as

follows. Crossing a certain voltage level (e.g. spiking

threshold) opens CaCC channels and causes some CaCC-

dependent metabolic process that underlies synaptic

facilitation in the cell. After the action potential is

emitted, the residual CaCC concentration gradually

wears off. At lower levels of CaCC another metabolic

process that underlies synaptic depression takes over.

Finally, after CaCC concentration returns to rest, the

synaptic change stops. This reasoning is supported by the

data showing that brief and high CaCC concentrations

lead to synaptic potentiation and longer and lower CaCC

concentrations lead to depression (Yang Tang, & Zucker,

1999). Note, that with proper choice of parameters in

Eq. (14), the balance between potentiation and depression

can be set so that the learning will produce depression or

no change in the case of a single postsynaptic spike and

potentiation in the case of a postsynaptic burst. This effect

was reported in several preparations and reviewed by Dan

and Poo (2004). In the model it is produced by

lengthening the first component of the Eq. (14) by

bursting activity relative to a single spike.

Mathematically, the newXpost adds an extra term toEq. (8)

DwZFP

��t2
t1
CFT

��t3
t2
CFD

��t4
t3

(15)

where FD is a depression component similar to the one

discussed for Eq. (8) and calculated using Eq. (7), FT is



Fig. 5. Example plot of STDP curve for an extended rule. FP is shown as

dot-dashed line, FD as long-dashed line, FT as short-dashed line, and their

sum (Eq. 15) as bold black line. AZK0.175, BZ0.6, CZ0.016, DZBK

1ZK0.4, t*ZsK3 ms, and tZ2 ms.
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a transition component also calculated using Eq. (7), and FP

is a potentiation component calculated as

FPj
t2
t1
Z

ðt2
t1

B
t

t
eð1Kðt=tÞÞdt

ZKeð1Kðt=tÞÞBðtCtÞ

����maxðt�;minðs;10tÞÞ

minðmaxð0;t�Þ;sÞ

(16)

where t* is the time when Vsoma crosses the threshold. The

result of Eq. (15) is presented in Fig. 5.

As a result of these adjustments, the target of the learning

rule becomes

lim
t/N

wZ qðXpreXpostÞZXpreXpost C1KB (17)

with three free parameters: A!0, 0!B!1, and CO0.

Eq. (17) keeps the resulting weights in the interval [0,1].
Fig. 6. The network used for testing gating functions.
6. Extending the interval for synaptic weights

The regular procedure to extend the range of q(XpreXpost)

over [ �w, ŵ] is to multiply it by the length of the interval and

add �w

qðXpreXpostÞZ ðXpreXpost C1KBÞðŵK �wÞC �w (18)

Similar to Eq. (13) it can be shown that limt/NwZ ŵwhen

XpreXpostZB, and limt/NwZ �w when XpreXpostZ1KB.

In the case where XpreXpostZ0

lim
t/N

wZ ŵKBðŵK �wÞZw0 (19)

wherew0 stands for the baseline weight achieved when there

is no correlation between presynaptic and postsynaptic

firing. Rewriting the parameter B in terms of maximal,

minimal and baseline weights and substituting it in

the Eq. (18) yields
lim
t/N

wZ qðXpreXpostÞZXpreXpostðŵK �wÞCw0 (20)

To achieve this limit, the differential equation for the

weight should be

dw

dt
Z lðXpreXpostðŵK �wÞCw0 KwÞ (21)

which suggests in comparison with Eq. (11) that for spiking

neurons a reasonable scaling function is f(XpreXpost)Zl.

Unfortunately, this scaling function was shown to force the

weights towards the baseline since the events of pre- and

postsynaptic coactivity are quite rare and the drive towards

the baseline is constant (Grossberg, 1974).

The solution for continuous firing rate neurons was to gate

the decay by either pre- or postsynaptic activity. But gating

the decay term alone would change the limit in Eq. (12) and,

therefore, invalidate the reasoning of the previous two

sections. The solution suggested here is to gate not the decay

term but the whole learning process of Eq. (21) by either

presynaptic, or postsynaptic, or both activities (for an

example of such a dual gating during visual perceptual

learning see Grossberg, Hwang, & Mingolla, 2002). The

resulting rule becomes

dw

dt
Z lðXpreXpostðŵK �wÞCw0 KwÞfGðXpreXpostÞ (22)

where fG is a gating function. The only requirement that this

gating function has to satisfy is non-negativity (fGR0), so

that it does not affect the sign of the weight change

determined by the interaction of the presynaptic and

postsynaptic signal. The next section discusses the results

for five different gating functions.
7. Comparison of five gating functions

The simulations presented in this section used the

network of three fully interconnected cells named A, B,

and C as shown in Fig. 6. Cells A and B were spiking so that

cell B was lagging behind cell A by 10 ms, and cell C was

always silent. The pair of spikes in cells A and B constitutes

a learning trial. These trials were repeated every 200 ms,

and over the total length of the simulation (1 s) there were

five trials. This was sufficient for the weights to get within

1% of their asymptotes under all but the last gating function

described below. For the last gating function the total length

of the simulation was 5 s and included 25 learning trials.

Parameters in these simulation were: �wZ0, ŵZ5, w0Z0.5,



Table 2

Initial weights in the study of gating functions

Postsynaptic

cell

Presynaptic cell

A B C

A 1.278943 3.706319 1.975214

B 3.632909 4.055134 3.862882

C 0.659782 4.121144 3.365119

Table 4

Resulting weights with dual OR gating

Postsynaptic

cell

Presynaptic cell

A B C

A 0.424987 0.455724 0.5

B 0.750113 0.423737 0.5

C 0.5 0.5 3.365119

Table 5

Resulting weights with presynaptic gating

Postsynaptic

cell

Presynaptic cell

A B C

A 0.419419 0.455241 1.975214

B 1.201898 0.418226 3.862882

C 0.5 0.5 3.365119
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and lZ1. All simulations started with random weights

between cells presented in Table 2 that were drawn from a

uniform distribution between �w and ŵ.

In the simplest case there is no gating

fGðXpre;XpostÞZ const (23)

and the weight decays exponentially all the time. Since

spikes are relatively rare events, XpreXpostZ0 most of the

time, and the weight decays to w0 so fast, that the timing of

pre- and postsynaptic spikes has a very small effect on the

resulting weights as shown in Table 3. The constant in

Eq. (23) was set as constZ0.04.

While the magnitude of the deviation of resulting

weights from w0 is too small to be usable, the sign of

this deviation is correct. For the cases when the

presynaptic spike follows the postsynaptic spike (A–A,

B–B, and B–A) the weights settle to the value below w0,

while for the case A–B when the presynaptic spike

precedes the postsynaptic spike, the weight settles to a

value greater than w0.

Assuming that in an attempt to learn the correlation of

activities of two cells one can safely ignore intervals when

both of the activities are zero, the first gating function

studied here is

fGðXpre;XpostÞZ aXpre CbX2
post (24)

where a and b are positive coefficients, and the square is

used to make the second term nonnegative. In this case the

decay only happens during the nonzero signal in either the

presynaptic or postsynaptic cell. This type of gating is

termed dual OR gating henceforth. The results for this

function with aZbZ2 are presented in Table 4. Since cell C

is silent, there is no change in the strength of its projection to

itself (fGZ0 throughout the simulation; weights italicized in

the table). A comparison of these results with the results for

no gating shows that the deviations of the resulting weights

were amplified by more than an order of magnitude, while

the pattern of these weights was preserved for active cells.
Table 3

Resulting weights with no gating

Postsynaptic

cell

Presynaptic cell

A B C

A 0.499858 0.499484 0.5

B 0.505287 0.499787 0.5

C 0.5 0.5 0.5
Presynaptic gating is defined as

fGðXpre;XpostÞZ aXpre (25)

where a is a positive coefficient. The results for this function

with aZ2 are presented in Table 5. Presynaptic gating leads

to even better separation of learned weights than dual OR

gating. In addition to this, it leaves all projections from a

silent cell intact (italicized).

Postsynaptic gating is defined as

fGðXpre;XpostÞZ bX2
post (26)

where b is a positive coefficient, and the square is used to

make the gating nonnegative. The results for this function

with bZ2 are presented in Table 6.

While presynaptic gating prevents modification of the

outgoing projections from a silent cell, postsynaptic gating

leaves incoming projections to a silent cell intact (italicized).

The increase of the A to B weight is less prominent than with

presynaptic gating, but better than with dual OR gating.

Unlike the previous three cases, A to A and B to B projection

weights do not decrease below w0 with the postsynaptic

gating, and the B to A weight decreases only slightly below

w0. The reason for these results is investigated in the next

section.

Finally, one can restrict the decay even further, and

require that it only happens during the learning window,

when XpreXposts0. This leads to dual AND gating:

fGðXpre;XpostÞZ cXpreX
2
post (27)
Table 6

Resulting weights with postsynaptic gating

Postsynaptic

cell

Presynaptic cell

A B C

A 0.568417 0.489494 0.5

B 1.026381 0.569432 0.5

C 0.659782 4.121144 3.365119



Table 7

Resulting weights with dual AND gating

Postsynaptic

cell

Presynaptic cell

A B C

A 0.763313** 0.301894 1.975214

B 1.191229* 0.761404** 3.862882

C 0.659782 4.121144 3.365119

* Reached asymptote after 1 s of stimulation.

** Reached asymptote at 5 s.
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where c is a positive coefficient, and the square is used to

make the gating nonnegative. The results for this function

with cZ10 are presented in Table 7.

This approach is the least intrusive, it only reshapes

the pattern of weights when cells on both ends of

projection are active. Projections to and from a silent cell

do not change (italicized). The only role of decay here is

to enforce Eq. (20). Since the learning is so restricted, it

takes longer for the weights to reach their asymptotes

than in the previous four cases. One value of the weight

(marked with asterisk) reached the asymptote after 1 s of

the simulation. Values marked with a double asterisk

reached the asymptote at 5 s. Dual AND gating showed

the best separation between A to B and B to A weights,

but it also inherited from postsynaptic gating and

amplified the problem with A to A and B to B

projections. Since this problem can stem from the

different shapes of STDP curves for these gating

functions, the next section compares these curves for

all five functions.
Fig. 7. STDP curves for five gating functions. A: No gating. Note the small amp

increase in the depression amplitude. C: Presynaptic gating. D: Postsynaptic gating

presynaptic spike arrives at the axonal terminal.
8. STDP curves for five gating functions

Addition of gatings to the learning rule and transition

from Eqs. (21) and (22) makes the resulting equation

impossible to integrate analytically. Instead of calculating

the shape of STDP curve as was done in previous

subsections, here these curves were built using simulations.

In these simulations the time interval between the

presynaptic and the postsynaptic spike varied on the interval

[K30,30] ms. Trial setup was the same as in the previous

section. Parameters for the Xpost approximation were:

AZK0.175 and CZ0.02. BZ0.5 and DZK0.5 were

calculated through �wZ0, ŵZ2, and w0Z1. Learning rate

was set to lZ1; all coefficients in Eqs. (24)–(27) were set to

1. All simulations started with initial weights equal to

w0Z1. Cells in these simulations had axons with 3 ms

delay, and the timing of the presynaptic spike was recorded

at the soma. Since the effects of these spikes only

manifested themselves 3 ms later, all plots appear shifted

to the right. The actual arrival of the presynaptic spike to the

axonal terminal is marked in Fig. 7 with a vertical

dashed line.

The results are plotted in Fig. 7. All STDP curves follow

a general trend for the amplitude of weight change shown

in the previous section. Additionally, these plots show that

postsynaptic gating introduces asymmetry in the learning,

where the depression is favored over the potentiation. This

asymmetry is also present with dual OR gating, but not

with dual AND gating, which suggests that it is caused by

the enhanced depression during the time when the

postsynaptic signal is present, while the presynaptic signal
litude of the resulting curve. B: Dual OR gating. Note the nonproportional

. E: Dual AND gating. Vertical dashed line shows the actual time when the
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is absent. Note that relative magnitudes of potentiation and

depression can be manipulated through the parameter

settings. In the simulations presented here

w0K �wZ ŵKw0. Setting 7 ðw0K �wÞZ ŵKw0 will lead

to equal magnitudes of potentiation and depression for

postsynaptic and dual OR gating, but will favor poten-

tiation over depression for other types of gating.

Precise comparison of the relative shapes of these curves

(seeGorchetchnikov,Versace,&Hasselmol, 2005) shows that

on the depression part of the curve the dual OR gating is the

closest in shape to the non-gated learning. The postsynaptic,

dual AND, and presynaptic gatings are, respectively, shifting

the peak depression further and further towards 0.

On the potentiation part of the curve, postsynaptic gating

is the closest resembling the non-gated learning. Dual OR,

postsynaptic, and dual AND gatings progressively shift the

peak potentiation towards 0 (Gorchetchnikov et al., 2005).

Postsynaptic and dual AND gatings have the two leftmost

zero-crossings, which can account for the weights from a

cell to itself settling to the values above w0 as was shown in

the previous section.
9. Discussion

The rule (22) suggested here follows the general

requirements for STDP and easily accommodates gating

functions used in learning rules for continuous firing rate

neuronal representations. Aside from setting the learning rate

l, the weight interval [ �w, ŵ], and a baseline weight w0, this

rule only has two free parameters: a slope of transition from

potentiation to depression A and a slope of depression C.

Both of these slopes can be calculated through durations of

the respective processes, which can be measured experimen-

tally. Hence, we claim that parameters that the rule (22) uses

are more intuitive and more appealing to experimental

neuroscientists.

From the computational perspective, the rule presented here

is simple and reliable. The analysis showed that by integration

over a learning period this rule reduces to the equivalent of

the well-described Gerstner et al. (1999) rule. Since the

instantaneous weight change computed by Eq. (22) only

depends on the locally available information at the specific

moment of time, this change can be easily computed on-line

during each integration step of the simulation. Moreover, this

computation requires neither significant computational

resources nor additional memory to store the information

through time. We suggest it as a mechanism for instantaneous

synaptic weight change in spiking neural networks.
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