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Abstract— Previous work described a detailed spiking model
of interactions between the hippocampus and entorhinal cortex
in guiding rat spatial navigation behavior [1]. The timing of
spiking activity in the entorhinal cortex is critical for the proper
functioning of that model. Here we investigate the influence of
several parameters of the model on the spike timing of consecu-
tive traveling pulses within the network of spiking neurons with
biologically realistic synaptic parameters. The results suggest that
the local properties of the circuit consisting of pyramidal cell and
interneuron affect the time interval between consecutive traveling
pulses, while the strength of excitatory coupling between these
circuits has little influence unless this strength is too small. These
results can be generalized to other models of similar architecture
that exhibit traveling pulses behavior, and also serve as a basis
of further development of full scale realistic implementation of
the formal model of spatial navigation [1].

I. I NTRODUCTION

In the model of spatial navigation by Hasselmo et al [1] the
navigation task is solved by interaction between the knowl-
edge about desired destination and knowledge about current
location. This interaction takes place in hippocampal area CA1
using two converging inputs. The input from the hippocampal
area CA3 represents the activity spreading forward along the
path from the current location. The input from entorhinal cor-
tex layer III (ECIII) represents the spread of activity from the
goal location in the direction reverse to movement. The plots of
neuronal activity illustrating the interaction between involved
brain areas over a single theta cycle are presented in Figure 2.
Numerical simulations showed that this mechanism allows
the model to navigate successfully toward a known reward
location, or visit several reward locations sequentially [2].

Implementation of this model with spiking neural net-
work [3] led to conclusion that successful performance re-
quires the arrival of spikes from two principal inputs, the
hippocampal area CA3 and the layer III of entorhinal cortex
within a narrow (about 15ms) time window from each other.
Such precise timing requires full understanding of the influ-
ence of various parameters of the model on two time courses:
interpulse interval between consecutive spikes of the same cell
in ECIII (shown in Figure 2 by red arrow), and propagating of
the activity through ECIII, ECII and CA3 (shown in Figure 2
by a set of blue arrows). Previously presented simulations used
a set of biologically realistic parameters, which allowed the

proper timing [3], but a detailed parametric study was not
conducted. Here we concentrate on the timing of interpulse
interval within the ECIII (red arrow in Figure 2).

Fig. 1. Sketch of the connectivity within the model. Solid lines represent
connections within a circuit for a single location; dotted lines – excitatory
interactions between locations (only nearest neighbor connections are shown);
dashed lines – inhibitory interactions between locations (weak); long-dashed
lines – input projections. Arrowheads stand for excitatory synapses, archeads
for inhibitory synapses.

To simplify the computation, in this study all populations
of the original model [3] except ECIII were removed from the
network. The resulting architecture of the ECIII is presented in
Figure 1. Both pyramidal cells and interneurons are quiescent
without input. Note, that in the case of constant external input
to all pyramidal cells this model can be classified as a network
of coupled neuronal oscillators, where each oscillator consists
of a pair made up of pyramidal cell and interneuron. The
properties of traveling pulses in this type of networks were
studied by Ermentrout and Kleinfeld [4]. The model presented
here has two significant differences, which might render the
analysis in [4] inapplicable. Firstly, the coupling between the
circuits is strong enough not to satisfy the definition of weak
coupling from [4]. Secondly, there is no constant input to
the circuits, and, therefore, they are only potential oscillators.
Therefore, one can probably disregard the oscillatory nature of
the circuit and collapse it into a single cell with long refractory
period. The period of oscillations in the network of such cells
was shown to scale linearly with the length of the refractory
period [5], but traveling solutions were not investigated there.

In our full circuit model of spatial navigation [1] the input
from prefrontal cortex to ECIII activates only the cells that
correspond to goal locations. To replicate that, here the input

0-7803-7898-9/03/$17.00 ©2003 IEEE 1637



Fig. 2. Sketch of neuronal activity within a spiking model guiding the movement of a virtual rat during one step on the linear track. The animal starts two
locations from the goal. Numbers next to arrows correspond to the following steps in the process. 1) The reverse spread of activity from the cell representing
the goal location (cell activity in pink) through the cell representing the next desired location (cell activity in green) to the cell representing the current
location (cell activity in blue). 2 and 3) Activation of the cell representing the current location in ECIII leads to consecutive activation of the cells representing
the current location in ECII and CA3. 4) The forward spread of activity from current location in CA3. 5) Convergence between the forward spread and the
second wave of the reverse spread leads to selection of the next desired location by the corresponding activity in CA1. Two time courses important for proper
convergence are represented by blue and red arrows.

was limited to a single pyramidal cell, and this cell initiates the
consecutive traveling pulses through the network. The activity
spreads along excitatory connectivity between neighboring
pyramidal cells, which follows the Gaussian profile. Therefore,
the model falls within a class of networks with spatially
decaying connectivity. Golomb and Ermentrout [6] analyzed
the traveling solutions in this class of networks, but they
studied the propagation of a single pulse and did not consider
the interpulse interval, which is critical for our model of spatial
navigation [1] and is the subject of this study.

II. M ETHODS

The model uses the KDE Integrated Neuro-Simulation
Software (KInNeSS) version 0.2.2alpha11, which allows the
creation of the virtual environment for the model, and provides
input from this environment in the form of depolarizing current
injections to the respective input cells of the model. The
environment was a horizontal linear track of length 14 and
width 1 location/cell, surrounded by walls one location/cell
thick to emulate a one-dimensional case.

Entorhinal neuronal populations in the model use two-
compartmental cell representation with an output delay line
representing the action potential traveling time through an
axon. A population of neuronal elements representing pre-
frontal cortex provides the information about the goal location
that initiates the traveling pulse in ECIII. These cells do not

1Available for download athttp://temporal.bu.edu.

receive synaptic input, and, therefore, do not use dendritic
compartment. The driving input was provided as a current
injection to the prefrontal cell connected to the ECIII cell
corresponding to the leftmost location on the track. Detailed
descriptions of the compartments and parameters of the sim-
ulations are presented in the Appendix.

The first experiment consisted of multiple simulations where
the strength of one-to-one inhibitory connections from in-
terneurons to respective pyramidal cells varied from 1 to 10
with step 1 (in units corresponding to the density of synap-
tic channels, see Appendix), and the strength of excitatory
connections between neighboring pyramidal cells varied as
follows. The base profile was a Gaussian, scaled so that the
peak value was equal to a numeric value from 1 to 10 with
step 1 (called excitatory strength henceforth), andσ = 0.6d,
where d = 1 for adjacent pyramidal cells. This profile was
applied to the model by assigning the synaptic weights to
connections between neighboring cells, with exclusion of the
cell’s projection to itself and all projections that had weight
below 10−3.

For each set of synaptic weights, the interspike intervals
were recorded during 500 simulated milliseconds (3–10 spikes
per cell depending on the parameters). The first four cells
including the driving cell were excluded from the analysis
to avoid the unstable pulses that occur close to the driving
cell under some parameter settings. From the remaining ten
cells all interspike intervals were combined in a sample (30–50
intervals per sample), and sample average, standard deviation

1638



and coefficient of variation were calculated.
In the second set of simulations the decay time constant

of inhibitory synapse was varied from 6 to 8 ms with the
step 0.2 ms, the excitatory and inhibitory connection strengths
were fixed at 6 and 8, respectively. As a reference point for
this experiment the dependency of intrinsic frequency of single
uncoupled oscillatory circuit (pyramidal cell and correspond-
ing interneuron) henceforth called local circuit frequency was
measured for the same values of time constant. Since the local
circuit frequency depends on the injected current, the current
amplitude was adjusted to provide interspike intervals similar
to these received in the network simulations.

Finally, the dependency of local circuit oscillatory frequency
on the inhibitory strength was measured in an isolated circuit
for two values of injected current, also adjusted to provide
interspike intervals similar to the ones received in previous
experiments.

III. R ESULTS

The results of the first simulation are summarized in Fig-
ure 5. The plateau of almost constant interpulse intervals
for the strong local interneuron-to-pyramidal inhibition (panel
A) together with lower standard deviation and coefficient of
variance in the same parameter ranges (panels B and C) can be
of critical importance for learning in the networks of similar
architecture.

In some cases the excitation was strong enough to allow the
spread of the activity to the cells corresponding to locations
inside the walls of the environment. These cases were disre-
garded for three reasons. Firstly, the spread within the walls
of the environment violated the emulation of one-dimensional
setting and caused a pattern of network activation that differed
from all presented in Figure 5 cases and, therefore, should
be analyzed separately. Secondly, in the model of spatial
navigation [3] the spread of activity in restricted locations
like the walls renders the model inoperable. Finally, in two-
dimensional case the domination of excitatory strengths over
inhibitory strengths leads to seizure-like oscillatory solutions
instead of traveling pulse solutions. Simulations that expressed
such behavior were terminated as soon as the excessive spread
of activity happened, and the respective data is omitted from
Figure 5.

All runs with the excitatory strength of 1 were disregarded,
since no traveling pulses were generated at this level of
excitation. For low excitation (strength 2 and 3, left back part
of the plot), the generation of next pulse often happened before
the previous one moved far enough along the network. This
led the network to skip the second pulse occasionally, and,
therefore, to longer interspike intervals and higher variability
of these intervals.

The results of the second and third simulations are plotted
in Figures 3 and 4, respectively. The local circuit frequency
in Figure 3 and the interval between consecutive traveling
pulses in Figure 4 are plotted on the same graphs, but can
only be used for the reference, since the experimental settings
were different for these measurements. In both plots the error

Fig. 3. Interval between consecutive traveling pulses as a function of the
decay time constant of inhibitory synapse is shown in blue. For the reference,
the gray line indicates the dependency of local circuit oscillatory frequency
on the decay time constant.

Fig. 4. Circuit intrinsic oscillatory frequency as a function of the strength of
inhibitory connection. Two values of input current are plotted in red, the higher
plot corresponds to the smaller value of the current. For the reference, the blue
plot indicates the dependency of interval between consecutive traveling pulses
on the strength of inhibitory connections.

of local circuit frequency measurements was negligible and
mostly due to the discretization error, therefore it is omitted
from the plots.

IV. D ISCUSSION

We investigated the influence of several parameters on
the interpulse interval of consecutive traveling spikes in the
network sketched in Figure 1 looking for the parameter ranges
where the interspike interval stays approximately constant. As
shown in Figure 5, such parameter regime exists and spans
over wide range of medium to high strength of excitatory
connections between pyramidal cells in Figure 1 as long as
the strength of inhibitory connections from interneurons to
pyramidal cells is high enough. This regime will be referred
to as “persistent” in the following discussion.

The network can also be in two other regimes. One is the
seizure-like oscillatory activity that occur when the level of
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Fig. 5. Interval between consecutive traveling pulses as a function of the strength of inhibitory and excitatory connections. Inhibitory strength is on X axis,
excitatory strength on Y axis. Missing front corners in each panel correspond to cases when the excitation is too strong compared to inhibition (see text).
Panel A – average interspike interval; note the flattening of the plot for strong inhibitory values. Panel B – standard deviation of the interspike interval; note
that it is the lowest for the flat part of panel A. Panel C – coefficient of variation; note that it is also the lowest for the flat part of panel A.

excitatory strength is too high comparing to the inhibition. In
this partameter range traveling solution does not exist, and the
results were omitted from Figure 5 to avoid confusion. The
last regime (henceforth called “volatile”) exists at low levels of
excitatory connection strengths and shows as a ridge in panel
A of Figure 5.

The difference in behavior between persistent and volatile
regimes resulted from the relation between the wave speed
and local circuit frequency. In the volatile regime, the wave
speed was slower than the local circuit frequency (or the
refractory period of the circuit), which led to the attempt to
generate a new wave before it could spread without collapsing
on the previous wave. This led to occasional skipping pulses
during the simulations as well as to strong dependency of the
interpulse interval on the strength of excitation (through its
influence on the wave speed). For high values of excitation
strength the wave speed was faster than the refractory period,
therefore the latter controlled the interpulse interval leading to
persistent regime as discussed below.

The dependency of the interspike interval on the decay
time constant of the inhibitory synapse appears to follow a
similar trend to the dependency of local circuit frequency for
the pair consisting of pyramidal cell and interneuron. This
similarity suggests that the local circuit frequency at least
in part determines the interspike interval in the model. The
local circuit frequency scales linearly with the decay time
constant both in our numeric simulations presented here and
in theoretical analysis of similar circuits [5]. The interpulse
interval in Figure 3 appears to saturate, but more data is
necessary to determine whether it is a significant trend.

The dependency of local circuit frequency on the strength
of inhibition follows the exponential decay due to the dual
exponential synaptic implementation in the model. The inter-
pulse interval follows a similar trend (see Figure 4). Together,
the results plotted in Figures 3 and 4 suggest that the local

TABLE I

LOCAL CIRCUIT OSCILLATION PERIOD AS A FUNCTION OF INHIBITORY

STRENGTH IN ISOLATED CIRCUIT.

Inhibitory 0 0.1 1 5 10
strength

Period, ms 31.2 35.7 55.6 66.1 71.4

properties of the circuit consisting of pyramidal cell and
interneuron are the major factor that determines the interpulse
interval when the model is in persistent regime2.

The increase of inhibitory connections strength within the
local circuit influences the interpulse interval through the
change of local circuit frequency described above. Note that
only the slow changing tail of this exponent falls into the
range of inhibitory strengths studied here. Lower values of
inhibitory strength showed much higher influence on local
circuit frequency, when the isolated circuit was studied (see
Table I), but they also led the network into epilepsy-like oscil-
latory behavior instead of traveling pulse solutions, when these
circuits were combined together. Therefore, in the network the
increase of inhibitory strength leads only to a minor increase
in interspike interval between consecutive traveling pulses.

A more important effect of the inhibitory strength increase
in the studied range is the stabilization of interpulse interval
for a range of excitatory strengths. The width of this range
increases with the strength of inhibition, as shown in Figure 5
and creates the persistent regime. Note that not only the
interpulse interval becomes approximately constant (light blue
flat part of the panel A towards the right back of the panel),
but also the variance became smaller in this parameter regime

2This is only true, if the driving input is either constant current or very
high frequency (much higher than the local circuit frequency) low amplitude
stimulation used in simulations presented here. Low frequency stimulation
will affect the interpulse interval by driving the activity in the network.
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(panels B and C). Stabilized timing in the network over the
range of excitatory strengths can allow better learning in the
network, since the modification of the excitatory connections
and redistribution of the network activation will not cause
disruption of the overall timing of the network activity, and,
therefore will reduce any negative effect learning can induce
on communication between populations in the network.

Applying these results to the model of spatial navigation [1],
one can conclude that the balance of excitatory and inhibitory
strengths should not matter much for the behavior of the model
as long as both strengths stay not lower than 4. In this case
the interspike interval falls mostly within 60–70ms. The actual
simulations of [3] used 4 and 5 for excitatory and inhibitory
strengths, respectively, and showed that this interval allows
proper behavior. The results from Figure 5 show that a wide
variety of parameter settings can achieve a similar interval. Out
of this variety the strongest inhibition is preferable if learning
is enabled in the excitatory lateral connectivity of the model.
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APPENDIX

A. Dendritic compartment

Dendritic compartment representation is derived from the
standard approximation of the cable equation [7]:

Cm
dVm

dt
=

∑
Ch

gCh(ECh − Vm) +

+ ga(Vm+1 + Vm−1 − 2Vm)− glVm (1)

whereVm is a membrane potential in this compartment [mV ],
Vm±1 are membrane potentials in neighboring compartments
[mV ], gCh is a conductance of ligand gated ion channel [mS],
gl is a leakage conductance [mS], ga is an axial conductance
[mS], and Cm is a membrane capacitance [µF ].

Equation (1) can be simplified for the purpose of this study
to

Cm
dVm

dt
=

∑
Ch

gCh(ECh − Vm) +

+ ga(Vm+1 − Vm)− glVm (2)

since there is only one neighboring compartment. Further
more, to convert the actual capacitance and conductances to
their dimension independent counterparts, we divide both sides
by πdl to obtain

CM
dVm

dt
=

∑
Ch

gCh

πdl
(ECh − Vm) +

+
dgA

4l2
(Vm+1 − Vm)− gLVm (3)

whereCM = 1µF/cm2. Current version of KInNeSS allows
to set

z =
dgA

4l2

[
mS

cm2

]
(4)

directly.
For the ligand-gated channels, the value

∑
Ch

gCh

πdl is rep-
resented as individual channel conductancesgCh[nS] times

the synaptic weightw = NCh

πdl

[
106

cm2

]
corresponding to a

channel density in millions of channels percm2 of the
membrane. Channel conductance is calculated according to
a dual-exponential equation

gCh =
ḡChp

τf − τr
(e
− t

τf − e−
t

τr ) (5)

if τf 6= τr, and according to the alpha function

gCh = ḡCh
t

τf
e
(1− t

τf
)

(6)

if τf = τr. In both cases̄gCh[nS] is the maximal conductance,
and t is time since presynaptic action potential. In (5)p is a
scaling coefficient that enforces

max
(

p

τf − τr
(e
− t

τf − e−
t

τr )
)

= 1 (7)

Note that setting of the synaptic weightw to a experimen-
tally measured channel density in the synapse would not be
correct. It should accommodate the non-uniform distribution
of ligand-gated channels in the compartment by averaging out
the total number of channels in respective synapses over the
membrane area of awhole compartment, not just the area of
the synapse.

B. Somatic compartment

To lower the computational complexity of the model, the
generation of action potentials is simulated using the reduced
version of Hodgkin-Huxley equation also known as the theta-
neuron or canonical Type I equation [8], [9]. This equation
was modified to take the form

dθ
dt = [1− cos(θ) +

+ (1 + cos(θ)) (qI − r)] τ if θ ≤ 3.125
θ = −3.04 otherwise

(8)
where the numerical limits forθ were set so that membrane
potential

Vm = tan
(

θ

2

)
(9)

changes between approximately -20 and 120mV . This allows
us to replace the reduced representation with a complete
Hodgkin-Huxley type equation without affecting the rest of
the model if the need arises. The dimensionless parameterr
is the original threshold controlling the dynamics of the cell.
In the absence of input, the negative value ofr sets the cell in
excitable state, when a certain excitatory input is necessary to
make it fire, while a positive value ofr sets the neuron to a
constantly firing state, when the excitatory input only modifies
the firing frequency, but the inhibitory input can force it to
cease firing. For more detailed discussion of this parameter
influence see [9].

Additional modifications over the original version of re-
duced equation discussed in [9] include two dimensionless
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TABLE II

POPULATION-SPECIFIC PARAMETERS OF THE MODEL.

Population ḡAMPA, r Axonal
nS delay, ms

Prefrontal cortex n/a -0.01 0.1

EC III interneurons 0.15 -0.01 0.1

EC III pyramidals -0.02 2.0
(from PFC) 0.247
(recurrent) 0.15

scaling factors:q – overall voltage gain factor that allows
scaling of realistic synaptic potentials provided by (3) to values
fit for use by (8);τ – time scaling factor that allows to adjust
behavior of (8) to the same timescale as the rest of the model.

The input current is calculated according to a simplified
version of the second term in (3)

I = zVm−1 (10)

Comparing to (3)Vm = 0 here, because due to the specific
nature of the reduced representation, the value ofVm stays
within [−0.6, 0.6] mV unless the spike is generated (in which
case the influence of the input on the cell dynamics is
minimal), while the value ofVm−1 is of the order of tens
mV . Parameterz is defined in (4).

C. Parameters of the simulations

For simplicity, all of the populations use only two types of
synaptic channels: AMPA receptor and GABAA receptor with
the parameters as described in [10]. Unless the parameter was
under study in specific experiment, the following values were
used. For AMPA channelsECh = 0mV , τr = 2ms, τf =
2ms, ḡCh varied from population to population and is listed
in Table II. Parameters forGABAA channels wereECh =
−70mV , τr = 1ms, τf = 7ms, ḡCh = 2.461nS. Parameters
in equation (8) were:q = 10, s = 0.45, and thresholdr was
population specific and is listed in Table II.

TABLE III

CONNECTION STRENGTHS.

Target Type Source Weight(σ)

EC III AMPA EC III pyr 9.0
interneurons GABA recurrent 0.25 (0.8)a

EC III AMPA PFC 1.0 (0.6)
pyramidals

aRecurrent projections exclude the connection from cell to itself.

KInNeSS does not allow to set different axonal delays for
different outputs of the same cell. To compensate for this
problem, the axonal delay for pyramidal cells was set to
the pyramidal-to-pyramidal value, and axonal delay of the
interneurons was artificially reduced to accommodate smaller
pyramidal-to-interneuron delay. The axonal delay of prefrontal
cells does not influence the system dynamics, since they do not
receive any recurrent input. In equations (3-4) for simplicity
z = 3.0 andgl = 0 for all cells. Synaptic connection strengths
that did not change across experiments are listed in Table III.
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