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We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pat-
tern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and
prefrontal cortex. We show the model’s flexibility in representing large real world environments using
odometry information obtained from challenging video sequences. We acquire the visual data from a
camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal
point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of
view. Using established algorithms for calculating perceptual speed from the apparent rate of visual
change over time, we generate raw dead reckoning information which loses spatial fidelity over time
due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability
of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information
serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell
maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an
indoor square maze used in rodent experiments and an outdoor arena more than two orders of
magnitude larger than the indoor maze. Together these results bridge for the first time the gap between
higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-
inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world
studies in rodent-sized arenas and beyond.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The ability to successfully navigate to a predefined location is
often a life crucial task for many higher order organisms. The goal
location might be a food source, a temporary shelter, a nest, or
some other desired location. Squirrels are effective at rediscovering
their previously stashed food sources (Jacobs & Liman, 1991). Rats
can learn to revisit or to avoid known food locations (Brown, 2011;
Olton & Schlosberg, 1978). Mice learn to avoid an unpleasant envi-
ronment, such as a water-maze, by finding an out-of-sight escape
platform after only a handful of learning trials (Morris, Garrud,
Rawlins, & O’Keefe, 1982; Redish & Touretzky, 1998; Steele &
Morris, 1999). If a visible goal location is in the field-of-view of
the agent, the navigation task becomes trivial: The agent proceeds
towards the visible goal location avoiding potential obstacles on
the way. However, if the goal location is out of visual range or
hidden (as in the water-maze) then navigation mechanisms based
on cognitive capabilities that can exploit the previously encoded
and currently out of view goal location become important to guide
the agent to the goal. Such a navigation mechanism would not nec-
essarily need to pinpoint the goal location. It would be sufficient to
guide the agent to the general goal location neighborhood such
that the goal is in the visual range of the agent. Consequently,
the visually driven navigation system can take over to home the
agent into the goal location, an approach that has been used suc-
cessfully by the robotic mapping system used in this research
(Milford & Wyeth, 2009).

There is compelling evidence gathered from physiological and
behavioral data suggesting the existence of spatial cognitive mech-
anisms in the brain representing the agent’s spatial environment
and aiding it during goal-directed navigation experiments. The
entorhinal cortex and hippocampus play a role in goal-directed
behavior towards recently learned spatial locations in an environ-
ment. Rats show impairments in finding the spatial location of a
hidden platform in the Morris water-maze after lesions of the hip-
pocampus, postsubiculum, or entorhinal cortex (Morris, Garrud,
Rawlins, & O’Keefe, 1982; Steele & Morris, 1999; Steffenach,
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Witter, Moser, & Moser, 2005; Taube, Kesslak, & Cotman, 1992).
Recordings from several brain areas in behaving rats show neural
spiking activity relevant to goal-directed spatial behavior, includ-
ing grid cells in the entorhinal cortex that fire when the rat is in
a repeating regular array of locations in the environment falling
on the vertices of tightly packed equilateral triangles (Hafting,
Fyhn, Molden, Moser, & Moser, 2005), place cells in the hippocam-
pus that respond to mostly unique spatial locations (O’Keefe and
Nadel, 1978), head direction cells in the postsubiculum that
respond to narrow ranges of allocentric head direction (Taube,
2007), and cells that respond to translational speed of running
(O’Keefe, Burgess, Donnett, Jeffery, & Maguire, 1998).

Some of the evidence related to the goal-directed navigation
planning include forward sweeping events of spiking activity in
rat place cell ensembles that have been observed during vicarious
trial and error experiments (Johnson & Redish, 2007; Pfeiffer &
Foster, 2013) and sharp wave ripple events during goal-directed
spatial tasks (Davidson, Kloosterman, & Wilson, 2009; Foster &
Wilson, 2006; Jadhav, Kemere, German, & Frank, 2012; Louie &
Wilson, 2001). Furthermore, brief sequences of place cell ensemble
activity encoding trajectories from an agent’s current location have
been observed to be strongly biased towards the agent’s predicted
goal location (Pfeiffer & Foster, 2013).

In this work we combine two biologically inspired models that
generate and maintain representations of their environment as col-
lections of simulated spatially tuned neurons such as grid cells and
place cells.

The first one of these models is the RatSLAM model (Milford,
Wyeth, & Prasser, 2004) which has been implemented on real
robotic agents and has been shown to match or outperform the
state of the art probabilistic robotic systems in encoding and nav-
igating large environments over long periods of time (Milford &
Wyeth, 2009; Prasser, Milford, & Wyeth, 2006). However, the cur-
rent RatSLAM model is not easily scalable and its goal directed nav-
igation module is less biologically plausible than its Simultaneous
Localization and Mapping (SLAM) component.

The second model we use in our work is the HiLAM (Erdem &
Hasselmo, 2013), a biologically inspired goal-directed navigation
model based on look-ahead trajectories in a hierarchical collection
of simulated grid cells and place cells. While HiLAM is highly capa-
ble in simulating behavioral goal-directed navigation experiments,
it is prone to failure in the presence of noisy and degraded input,
since it does not have mechanisms in place to detect and to correct
for the stochastic loss of fidelity in its state representation. Conse-
quently, like many other high fidelity computational models, the
HiLAM has not been previously tested on real life data.

In this work we combine the RatSLAM model and the HiLAM
such that their individual fortes complement each other in gener-
ating and maintaining stable spatial maps using real life visual data
(RatSLAM) and in using the generated maps for goal-directed path
planning in a biologically plausible manner (HiLAM).
2. Material and methods

The framework presented in this work shows collaboration
between two previously developed computational models for spa-
tial mapping and navigation. While the RatSLAM model generates
rectified odometry data, the Hierarchical Look-Ahead Trajectory
Model (HiLAM) provides a mechanism for goal directed navigation.
We also show the scalability of the HiLAM using odometry data
extracted from noisy real-life visual information collected from a
small remote controlled vehicle referred to as the ‘‘agent’’. Using
ground truth extracted from external cameras, we show the goal
directed navigation accuracy in two environments, a small
open-field square indoor maze and an outdoor area that is larger
than the indoor maze by two orders of magnitude. We first extract
the unrectified odometry data from the optic flow information
implicit in the camera’s field of view. Then, we rectify the raw
odometry data by detecting loop-closure points in time and space
using the RatSLAM model. Finally, we form spatial representations
using grid cells and place cells in the HiLAM and select trajectories
to goal locations using hierarchical linear look-ahead probes in this
model.

2.1. Hierarchical Look-Ahead Trajectory Model (HiLAM)

In the HiLAM, head direction cells modulated by proprioceptive
velocity data provide inputs to downstream grid cells driven by a
phase interference model (Blair, Gupta, & Zhang, 2008; Burgess,
2008; Burgess, Barry, & O’Keefe, 2007; Hasselmo, 2008). Several
grid cells with different scales and field spacings converge to form
a single place cell. Each place cell also provides downstream spik-
ing input to a single reward cell proposed to represent prefrontal
cortex mechanisms, i.e., place cells and reward cells have a bijec-
tive topology (Fig. 1).

A head direction cell is a neuron that significantly increases its
firing rate when the rat’s allocentric head orientation in the world
horizontal plane, i.e., the head azimuth, approaches a specific angle
which is referred to as its preferred direction (Sargolini et al., 2006;
Taube, Muller, & Ranck, 1990). The head direction cell’s preferred
direction depends on the environmental cues and proprioceptive
inputs. The head direction cells simulated in the HiLAM are cosine
tuned and velocity modulated. Given the agent’s instantaneous
velocity vector v(t) and the preferred direction hi of a simulated
head direction cell i its output di can be given as:

diðtÞ ¼ vðtÞ �
cosðhiÞ
sinðhiÞ

� �
ð1Þ

A grid cell is a neuron type which increases its firing rate signif-
icantly when the animal traverses a regular array of periodic loca-
tions in the environment. The collection of locations where an
individual grid cell fires, i.e., the grid cell’s firing fields, forms a
two dimensional periodic pattern with regular inter-field intervals
and similar field areas. More specifically, the firing fields of a single
grid cell tile the infinite two dimensional plane as the vertices of
equilateral triangles. Extensive experimental data show the exis-
tence of grid cells with different inter-field spacing and field areas
along the dorsal to ventral axis of the medial entorhinal cortex
(Barry & Burgess, 2007; Hafting et al., 2005; Stensola et al.,
2012). In a single rat, grid cells in the medial entorhinal cortex
are organized in anatomically overlapping modules with distinct
firing field orientation and discrete scales (Stensola et al., 2012).
The simulated grid cells found in the HiLAM use a variant of the
persistent spiking model (Hasselmo, 2008) which belongs to the
class of phase interference models (Burgess, Barry, & O’Keefe,
2007) for grid cells. The spiking output of the jth grid cell gj can
be defined as:

/ði;jÞðtÞ ¼ 2p ft þ bj

Z t

0
diðsÞds

� �

sði;jÞðtÞ ¼ H cosð/ði;jÞðtÞ þ wði;jÞÞ � sthr

� �
gjðtÞ ¼

Y
s2Sj

sðtÞ

ð2Þ

where /(i,j) is the phase of the persistent spiking cell modulated
by the ith head direction cell, f is the frequency, bj is the scaling
factor for all persistent spiking cells projecting to the jth grid
cell, s(i,j) is the persistent spiking cell signal, w is the phase off-
set, sthr is the action potential threshold, H is the Heaviside func-
tion satisfying H(0) = 0, and Sj is the set of persistent spiking
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Fig. 1. The network topology showing how head direction cells in entorhinal cortex are proposed to drive persistent spiking cells that generate grid cells in entorhinal cortex.
In this model, the grid cells drive the activity of place cells in the hippocampus. Input from place cells converges with reward representations to drive the activity of reward
cells proposed to occur in the prefrontal cortex.
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cells projecting to grid cell j. In summary, a grid cell is the con-
junction of its immediate predecessors consisting of persistent
spiking cells.

A place cell increases its firing rate when the animal crosses a
compact region of the environment (O’Keefe and Nadel, 1978).
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pkðtÞ ¼
Y
g2Gk

gðtÞ ð3Þ

where Gk is the set of grid cells projecting to place cell k and pk is the
kth place cell.

A reward cell is a theoretical prefrontal cortex (PFC) cell repre-
senting whether a place cell is associated with a reward (or goal) or
not. Each reward cell receives its input from a single unique place
cell. The necessary and sufficient condition for a reward cell to fire
is satisfied when (i) its associated place cell is a goal place cell and
(ii) its associated place cell generates action potentials.

In the original look-ahead trajectory model (Erdem & Hasselmo,
2012) the agent initially generates a place cell map of its environ-
ment by exploring and recruiting place cells to represent salient
locations, e.g., food sources, escape platforms, etc. In HiLAM the
place cell map does not necessarily need to be dense, i.e., place
fields might be non-overlapping and distant from each other. Dur-
ing the goal directed navigation phase the agent picks a previously
visited location as its goal and marks all place cells with place
fields containing the goal location as goal place cells. Successively,
the agent generates look-ahead linear trajectory probes starting
from its current location towards several samples of candidate ori-
entations while stationary. If a look-ahead probe crosses a place
field containing the chosen goal location, then it causes the
respective reward cell to generate action potentials and is
considered as the winning probe. The agent then moves towards
the direction of the winning probe.

In the HiLAM (Erdem & Hasselmo, 2013) the agent represents its
environment at different scales creating a scale space (Lindeberg,
1993; Sporring, Nielsen, Florack, & Johansen, 1997). The spatial res-
olution of each level decreases going from lower levels to higher
ones. Equivalently, place field radii of place cells belonging to differ-
ent levels decrease going from higher to lower levels.

During the exploration phase, the agent recruits place cells from
each level to encode salient locations as long as no other previously
recruited place cell’s place field already contains that location (see
Fig. 2). During the navigation phase, the agent generates multiple
look-ahead linear trajectory probes with different bearings starting
from its current location. This time, however, probes propagate at all
levels of the hierarchy simultaneously but at different speeds propor-
tional with that level’s relative scale. For instance, if the scale of a
level l is three times larger relative to the previous level l � 1 then
the probe at level l will propagate simultaneously three times faster
than the probe at level l � 1. The necessary condition guaranteeing
that some probe at level l will always be able to cross a goal place
field at level l � 1 can be given as follows (Erdem & Hasselmo, 2013):

c0 > 2q0a�1
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
ð4Þ

In Eq. (4), c0 is the probe range at the lowest level of the hierarchy,
q0 is the place field radius at the lowest level of the hierarchy, and a
is the relative scale factor between consecutive levels of the hierar-
chy. This condition also guarantees that the agent will reach the
goal location after a finite amount of probe scans (Erdem &
Hasselmo, 2013).

The faster probe propagation at levels with larger scales allows
probes to cover longer ranges. More importantly, since the probe
propagation happens simultaneously at all levels of the hierarchy,
we can extend the maximum probe length of the hierarchical
model by simply adding levels on top of the hierarchy while
keeping the total time allocated for a single probe constant.
Assuming that the network noise accumulates faster during look-
ahead linear trajectory probes due to the absence of sensory cues,
and that the noise accumulation is directly proportional to the
duration of a single probe, the place cell hierarchy allows the
coverage of longer probe ranges guaranteeing noise accumulation
levels limited from above. Theoretical details of the hierarchical
look-ahead linear trajectory model can be found in (Erdem &
Hasselmo, 2013).

2.2. RatSLAM

RatSLAM is a state of the art robotic mapping and navigation
system inspired at a high level by the neural processes underlying
navigation in the rodent hippocampus and entorhinal cortex (Ball
et al., 2013; Milford, Wiles, & Wyeth, 2010; Milford & Wyeth,
2009; Milford et al., 2004). Here we use three key RatSLAM compo-
nents: visual self-motion estimation, visual place recognition, and
map relaxation to form a stable map of the environment which is
then used as the input into the HiLAM. In this implementation
the sole sensory input is low resolution visual imagery sampled
from the small remote-controlled vehicle (referred to here as the
agent) as it moves around the environments. No other sensory
modalities such as vehicle wheel encoders, inertial measurement
units or a compass are used. In this implementation we omit the
use of the pose cell (Milford, 2008) component of RatSLAM for
two reasons: firstly, the spatial cells used in the HiLAM model
provide a higher level of biological fidelity, and secondly because
the filtering capability provided by the pose cells is not required
in the experimental environments required here.

2.2.1. Visual self-motion estimation
To calculate rotational changes (rotational movement by the

agent), mean absolute image intensity differences D between the
two most recent consecutive images are calculated over all
horizontal (rotation) offsets:

D ¼min
Dx2r

gðDxÞ ð5Þ

where r is the complete range of relative horizontal image offsets
(0–100 pixels), and g( ) is given by:

gðDx; jÞ ¼ 1
s

X
x¼0

X
y¼0

jpmodðxþDx;wÞ;y � plast
x;y j ð6Þ

where s is the area in pixels of the image, w is the image width in
pixels and p is the pixel intensity value. The resultant difference
profile D is shown in Fig. 3c.

The horizontal pixel shift Dxm corresponding to the minimum
difference score is multiplied by a gain constant, 1, to obtain a rota-
tional velocity estimate, x:

x ¼ 1Dxm ð7Þ

1 is calculated by dividing the image horizontal field of view (360�)
by the down sampled horizontal pixel resolution (100 pixels).

The minimum mean absolute image intensity difference Dm is
multiplied by a gain constant, m, to obtain an estimate of the
agent’s translational speed, s:

s ¼ Dm ð8Þ

The gain constant is determined empirically for each environ-
ment using a short traverse of the agent over a known distance.
While the simplicity of the method means there is no guarantee
of consistent scale between different areas of an environment,
extensive studies in robotics have shown that such an approach
produces maps of an environment that are sufficiently metric to
enable robot navigation (Ball et al., 2013; Milford, Schill, Corke,
Mahony, & Wyeth, 2011; Milford & Wyeth, 2008).

2.2.2. Visual place recognition
Place recognition is performed by comparing the current cam-

era image to all images (also referred to as templates) that have
previously been learnt by the recognition system during prior
exploration by the agent (Fig. 4). In a similar manner to the visual



Fig. 3. (a) Visual self-motion estimation based on samples from the camera mounted on the agent. (a and b) Consecutive panoramic images are compared using a Sum of
Absolute Differences over a complete range of relative rotation offsets to generate a (c) difference profile. The change in agent orientation is calculated using pixel shift
corresponding to the minimum difference score, while agent translation is calculated using the minimum difference score.
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self-motion estimation process, the mean absolute image intensity
differences Dj between the current image and each learnt image j is
calculated:

Dj ¼
1
s

X
x¼0

X
y¼0

px;y � pj
x;y

			 			 ð9Þ

where s is the area in pixels of the image and p is the pixel intensity
value. If the minimum difference score over all previously learnt
images is below a recognition threshold, the current image is
matched to the corresponding learnt image, and a local view (LV)
cell associated with the scene is activated. Otherwise the current
camera image is learnt as a novel visual scene. More sophisticated
computer vision methods for image matching can also be used for
the visual place recognition phase of RatSLAM. However, the perfor-
mance of the template matching algorithm we use based on the
mean absolute difference between the new and the previously
experienced view proved to be good enough for the experiments
presented.

2.2.3. RatSLAM experience mapping
The experience mapping algorithm provides a mechanism for

using vision-based place recognition to correct for the accumulation
of self-motion errors over time in order to produce a stable and
Fig. 4. Visual place recognition system. The current camera image from the agent is down
If a strong image match is found, that image is used perform a loop closure in the exper
image database.
locally metric map of space. An experience map contains represen-
tations of distinct places, called experiences, e, and links between
experiences describing the transitions, t, between these places
(Fig. 5). In this simplified RatSLAM implementation, each experience
is defined by an active local view cell Vi. However, each experience is
positioned at a location pi in experience space, which is similar to real
world Cartesian space but with connectivity constraints. The com-
plete state of an experience can be defined as the 2-tuple:

ei ¼ fVi;pig ð10Þ

The creation of a new experience is triggered by the visual place
recognition algorithm learning a novel visual scene, while the re-
activation of an existing experience is triggered by the recognition
of a familiar visual scene. In either case, a transition link lij is learnt
from the previously active experience ei to the currently active
experience ej. These links encode the value of the change in posi-
tion, Dpij, computed directly from visual self-motion estimates:

lij ¼ fDpijg ð11Þ

The visual self-motion information defines the initial location in
the experience map space of a newly created experience:

ej ¼ fVj;pi þ Dpijg ð12Þ
sampled and compared to all existing image templates stored in an image database.
ience map. If no strong image matches are found, the current image is added to the



Fig. 5. Each local view cell represents a distinct visual scene in the environment, and becomes active when the camera sees that scene. Active local view cells and visual
odometry drive the creation of experience nodes (filled black circles) in the experience map, a semi-metric graphical representation of places in the environment and their
interconnectivity. Recognized visual scenes can drive re-activation of previously learnt nodes in the map in a process known as ‘‘loop closure’’. Black lines code the relative
motion information between experiences and are a net sum of motion (red dashed lines) between experiences. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Initially, the spatial relationships between linked experiences
exactly match the spatial information provided by the self-motion
estimates. However, when the first familiar visual scene is recog-
nized, a process of loop closure occurs, where the experience node
associated with that scene is reactivated, rather than learning a new
experience. Unless the self-motion estimates are perfect, a discrep-
ancy between the relative locations of the two most recently acti-
vated experiences is introduced. To distribute this error
throughout the map, a process of graph relaxation is performed,
which minimizes the discrepancy between inter-experience self-
motion estimates and relative location in experience map space.
The process involves changing the location of each experience by
Dpi:

Dpi ¼ a
XNf

j¼1

ðpj � pi � DpijÞ þ
XNt

k¼1

ðpk � pi � DpkiÞ
" #

ð13Þ

where a is a correction rate constant (0.5), Nf is the number of links
from experience ei to other experiences, and Nt is the number of
links from other experiences to experience ei. Eq. (13) is applied
to all experiences a set number of times per second of system oper-
ation (15 Hz for the experiments described here) as the map is
formed, and results in the experience map arranging itself so as to
average out self-motion errors throughout the map, maximizing
the local metric topology of any area of the map.
3. Experimental procedure

Experiments were performed in two distinct environments, a
small square rat arena and an outdoor area more than two orders
of magnitude larger. The larger area enabled us to test the scalabil-
ity of the HiLAM.

3.1. Agent

To gather data in the two testing environments, we used a high
speed, miniature remote control vehicle (referred to as the agent)
equipped with a panoramic imaging setup, as shown in Fig. 6.
The agent was equipped with a Kogeto dot panoramic combined
lens-mirror paired with a 720p miniature camera (808 #16 Micro
Key Chain Camera). Raw camera images were cropped and
unwrapped to create 480 � 80 pixel panoramic images with a field
of view corresponding to approximately 360� horizontally by 60�
vertically. These unwrapped images were gathered at 30 Hz as
the agent moved through the environment but down sampled to
an effective rate of 3 Hz before being input to the visual odometry
and visual place recognition algorithms. Downsampling achieved
two main benefits: perhaps counterintuitively, small amounts of
motion that are not detectable in consecutive low resolution
images at 30 Hz can be more reliably detected at 3 Hz, since the
apparent visual change is greater; and computation time is
reduced by an order of magnitude. The original RatSLAM system
has been demonstrated running at real-time speed in very large
environments (6 km2) (Milford & Wyeth, 2008); we would hope
to replicate this scalability in future work combining the RatSLAM
and HiLAM models.
3.2. Indoor square arena

The first experiment was conducted in a 125 cm � 125 cm
indoor square arena normally used in rodent experiments in the
Hasselmo Lab (Fig. 7). A downwards facing GoPro camera mounted
directly over the center of the arena captured video which was pro-
cessed to yield a ground truth trajectory for the agent. The arena
wall had one high contrast black cue and several external lights
to provide sufficient illumination for the small camera sensor.
The agent was tele-operated around the arena for 3 min 51 s over
a distance of approximately 2500 cm at an average speed of 11 cm/
s. The agent’s path during the experiment was determined by the
human operator to cover the arena with slight emphasis given to
laps following the perimeter.

The Hierarchical Look-Ahead Trajectory Model used for the
square arena consisted of two levels. The first level, providing the
highest resolution, contained place cells with place fields having
10 cm radii. The second level of the hierarchy had a scaling factor
of 3 relative to the first level. Consequently, the second level’s place
field radii were 10 � 3 = 30 cm. The look-ahead probe range of the
first level was 70 cm. The second level’s probe range was



Fig. 6. (a) Experimental agent with miniature panoramic imaging system shown in the outdoor environment. (b) 1280 � 720 pixel raw camera images were cropped and
unwrapped (red circles show boundaries of unwrapped area) to form (c and d) 480 � 80 pixel panoramic images corresponding to an approximate field of view of 360� � 60�.
(c) Unwrapped road image. (d) Unwrapped square arena image. The ‘‘A’’ in part (a) indicates the vertical corner of a distal building in the outdoor environment which we use
as an orientating landmark (for the reader) throughout the paper. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. (a) Square 125 cm � 125 cm experimental arena. Video from a downward facing GoPro camera mounted directly over the center of the arena was processed to extract
a ground truth trajectory for the agent. The four arena walls are labeled A to D for viewer orientation (see Fig. 14).
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70 � 3 = 210 cm. Each full look-ahead scan consisted of probes
spanning the egocentric bearing range between �90� and 90� with
10� increments in a clockwise frame. The 0� bearing is the agent’s
forward facing heading angle. The speed and duration of a single
look-ahead probe at the lowest level of the hierarchy were set to
70 cm/s and 1 s respectively. The speed of probes at a higher level
is scaled by that level’s relative scale. For instance, the speed of a
probe propagating at the third level is 70 � 32 = 630 cm/s given
that the relative scaling factor of that level is three. The full set
of parameter values is given in Table 1.

3.3. Outdoor road arena

The second experiment was conducted in a 1700 � 1000 cm
road area. A GoPro camera mounted to overlook the area at an
angle (not directly above due to practical considerations) captured
video which was processed to yield a ground truth trajectory for
the agent, which was then converted into standard (x, y) co-ordi-
nates using a homography transformation. The environment was
somewhat dynamic with lighting changes and pedestrian traffic
through the area. The agent was tele-operated around the arena
for 7 min 58 s over a distance of approximately 46,800 cm at an
average speed of 98 cm/s. The agent’s path during the experiment
was determined by the human operator to cover the arena with
slight emphasis given to laps following the perimeter.

The Hierarchical Look-Ahead Trajectory Model used for the out-
door arena consisted of four levels. The model was obtained by
adding two more levels on top of the model used to encode the
small indoor arena. Hence, relative scaling between two consecu-
tive levels remained at 3. The addition of two levels allowed the



Table 1
HiLAM parameters for the experiments.

Probe bearing range Probe bearing increment (�) Probe speed (cm/s) Probe duration (s) Level count q0 (cm) a

Indoor [�90�, 90�] 0 70 1 2 10 3
Outdoor [�90�, 90�] 10 70 1 4 10 3
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model to encode the outdoor arena at coarser resolutions equiva-
lently extending the maximum probe range to 70 � 33 = 1890 cm
while keeping the single probe time at 1 s as in the indoor maze.
The full set of parameter values is given in Table 1.
Fig. 9. Loop closure and map stabilization for the agent’s trajectory in the indoor
square arena. (a) Tracking agent location using raw visual self-motion estimates
alone leads to significant dead reckoning drift, but with the addition of vision-
induced loop closures, a stable map is achieved in (b).

Fig. 10. Loop closure and map stabilization for the agent’s trajectory in the larger
outdoor road arena. (a) The drift is somewhat worse than for the indoor
environment, but the addition of vision-induced loop closures results in a stable
map in (b).
4. Results

In this section we present results from the vision-based self-
motion estimation and place recognition processes, map formation
and navigation probes in the two environments. The main interac-
tion between the two processes of the hybrid model is as follows.
The RatSLAM process computes agent’s self-motion estimates in
terms of odometry data based on visual cues. The odometry data
then are input to the HiLAM process in the form of the corrected
internal representation of the velocity vectors at each sampled
position on the trajectory. The HiLAM process then uses this cor-
rected trajectory to generate the hierarchical place field map
encoding the explored area. Consecutively, HiLAM uses the hierar-
chical place field map to compute navigation paths towards goal
locations.

In the hybrid model’s implementation presented in this work
the interaction between the two models, i.e., RatSLAM and HiLAM,
is based on a serialized batch processing approach. In other words,
the collection of the odometry data by the RatSLAM model using
visual cues and the generation of the hierarchical place field map
using the odometry by the HiLAM model is almost mutually exclu-
sive. First the odometry information is collected and computed
then the hierarchical place field map is generated and used for goal
directed navigation. We talk about this approach more in the
discussion section.

4.1. Self-motion estimation, place recognition and stable map
formation

The maps of the agent’s trajectory through the environment for
the indoor and outdoor environments are shown in Figs. 9 and 10.
Using just visual self-motion estimates (visual odometry), the esti-
mate of the agent’s location drifts rapidly over time. However,
when using visual place recognition to perform loop closures,
the system is able to form a stable and representative map of the
agent’s trajectory through the environment (compare with the
Fig. 8. (a) Outdoor 1700 cm � 1000 cm road arena. Video from a GoPro camera mounted
truth trajectory for the vehicle, which was then converted into (x, y) co-ordinates using a
size, illumination changes and dynamic nature of the environment the ground truth is
topological correctness of the generated maps. The ‘‘A’’ in part (a) indicates the vertical c
throughout the paper.
ground truth plots in Figs. 7b and 8b). This stable mapping of space
is used as the input to the HiLAM.

4.2. Navigation probes

In this section we present the results of goal-directed naviga-
tion computed using the HiLAM model. In order to show the
importance of the loop closure used by the RatSLAM process we
show the results of goal-directed navigation using the same start
and goal locations on the place cell map generated using the raw
at the side of the arena (sample frame shown) was processed to extract a (b) ground
homogenous transform calculated using the measured arena dimensions. Due to the
less accurate than for the indoor environment, but is still useful for evaluating the
orner of a distal building which we use as an orientating landmark (for the reader)
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(no loop closure) odometry estimation and the place cell map gen-
erated using the corrected (with loop closure) odometry estimation.
We compare both raw and corrected navigation results to empha-
size the crucial role of loop closure correction of raw odometry esti-
mations. For all experiments the start and goal locations were
chosen in a pseudo-random fashion to reasonably span the arenas.

In these figures, we show both the scan locations and probes and
highlight the winning probes from each scan location. To aid in
visualization, we also plot the nearest views to each scan location
previously learnt by the system. In Section 5 we discuss multiple
strategies a robot could use to follow the successful probe scans
to a goal location, as in past RatSLAM work (Milford & Wyeth, 2009).
4.2.1. Without a stable map
To show the importance of achieving a stable, approximately

metric map, we present navigation probes in the indoor arena cal-
culated using a map produced without place recognition enabled,
and hence no loop closure. For a start and goal location seemingly
at opposite sides of the arena (Fig. 11a), two sets of scans are
required to plan a path to the goal, including a first scan with probe
length 210 cm (contrast with the scan length of 70 cm required to
plan a path across the arena in Fig. 13). However, examination of
the start and goal locations using the ground truth plot reveal that
they are actually only about 20 cm apart, demonstrating that
probe-based navigation is critically dependent upon the quality
of the underlying spatial map. The camera views for the two scan
locations are shown in Fig. 12 and confirm that the locations are
close to each other and that lengthy probes are unnecessary.
4.2.2. With a stable map
A sample navigation probe for the indoor arena is shown in

Fig. 13. Two sets of 70 cm long scans are required to scan to the
goal location. The corresponding views from the agent at each suc-
cessful scan location and orientation are shown in Fig. 14. The rel-
ative orientation of the goal location is indicated by a vertical red
line (relative to the successful scan orientation), with the bottom
of that line approximately corresponding to the goal location in
the environment. The first successful scan heads across the center
of the arena from the starting location near wall A to a location
near wall C. The second successful scan turns right by
Fig. 11. (a) Navigation probes across the indoor arena using an unstable, uncorrected ma
plan a seemingly lengthy path across the environment. However, the corresponding loca
almost on top of each other. Even with reasonably accurate self-motion information, the
closure is required to create a map representation that can be used for navigation.
approximately 45� and intersects with the place field of the goal
location. The ground truth plot (Fig. 13b) shows that both the
start/goal locations and the scan locations are similarly located in
both the RatSLAM map and in the ground truth plot.

A sample navigation probe for the outdoor environment is
shown in Figs. 15 and 16. The probe consists of four sets of scans
with the following successful scan lengths at each step: 1890 cm,
630 cm, 70 cm, 70 cm. The probe steps across the arena from right
to left, homing in on the goal location. Fig. 17 shows the camera
views corresponding to the four probe locations and orientations.
The successful scans at each scan step shift in orientation as the
overall probe homes in on the goal location. Once again the close
correspondence between navigation probe and start/goal locations
in the RatSLAM map and the ground truth plot can be seen in
Fig. 15b.
5. Discussion

State-of-the-art goal-directed robotic navigation systems per-
form extremely well for limited durations and within relatively
static environments. Higher level living organisms however appear
not to suffer from the degrading effects of persistent navigation for
extended periods of time and in dynamic environments. The tech-
nical challenge is bridging the spatial representation that autono-
mous systems use and the spatial representation created by grid
cells in the entorhinal cortex and place cells in the hippocampus.
Grid cells show stable firing over long time periods (10 min) even
in darkness (Hafting et al., 2005), indicating robust path integra-
tion despite the noise inherent in neural systems, achieving an out-
come that is challenging for state-of-the-art robotic navigation
systems. If the robust biological mechanisms of grid cells could
be implemented in robots they would provide a dramatic advance
over current robot capabilities.

In this work we have demonstrated how two seemingly differ-
ent biologically inspired navigation and mapping models can be
put to work together, complementing each other in areas that
are not their strongest suits. The RatSLAM (Milford et al., 2004)
system has been shown to perform well generating encoded repre-
sentations of space via visual information for extended periods of
time and for both small and large environments (Milford &
p representation. For the labeled start and goal locations, two scans are required to
tions in the ground truth plot (b) reveal that the start and goal locations are actually

inevitable accumulation of errors over time mean that place recognition and loop



Fig. 12. Panoramic camera views at each of the scan locations using an uncorrected map (black crosses in Fig. 11a). From examining the position and size of the cross
landmark in the first person views, it can be seen that the actual physical distance between the two probe locations is quite small, unlike the large distance encoded in the
probes shown in Fig. 11a.

Fig. 13. (a) Navigation probe across the indoor arena. Green dashed lines indicate the scans at each step, with the red line overlaying the winning scan. Note that the first scan
wins based on the second level place field with larger size surrounding the goal (End), and the second scan wins based on the first level place field with smaller size
surrounding the goal (End). The black line shows the corresponding nearest recallable view stored in the map representation of the environment, with each black cross
corresponding to the first person views shown in Fig. 14. Red circles indicate start and goal (end) locations. (b) Ground truth equivalent extracted using overhead tracking.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Panoramic camera views at each of the probe locations (black crosses in Fig. 13a). Each view is the closest learnt view to each scan location. The center of each image
corresponds to the planned forward direction of movement of the agent along the winning scan line. The projected goal location is shown by a thick red vertical line, with the
bottom of that line approximately corresponding to the goal location in the environment. Wall outlines are indicated by white lines. The probe starts when the agent is
adjacent to wall A but facing directly away from it (the wall is visible on either side due to the panoramic view). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Wyeth, 2008). However, RatSLAM’s goal navigation system is less
biologically plausible than its mapping system and has no current
mechanism for efficient scaling to larger environments. On the
other hand, HiLAM (Erdem & Hasselmo, 2013) provides a
framework to encode space in a hierarchical grid cell and place cell
topology and to provide guidance towards a preselected goal in the
environment. HiLAM is highly scalable while theoretically guaran-
teeing success in finite steps and providing upper limits for noise



Fig. 15. (a) Sample probes shown in green are projected across the agent trajectory shown in blue that was generated by both visual odometry and vision-based loop closure.
Red circles indicate start and goal locations. Red lines indicate the winning scans, and black lines indicate the nearest view path. The distal building cue marked by ‘‘A’’ in
Figs. 6, 8 and 17 is located approximately 2000 cm s to the left of the bottom edge of the graph shown in (a). (b) Ground truth equivalent extracted using overhead tracking.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Zoom of the final two scans in the outdoor probe, showing the significant
change of absolute direction for the second last scan, which is mirrored in the
camera views from the agent shown in Fig. 17. Black crosses show the nearest learnt
views to each of the scan locations.
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accumulation levels provided certain assumptions hold. However,
HiLAM is a path integration system; it strongly relies on velocity
data as its only input and is therefore highly susceptible to inaccu-
racies in the velocity parameter. In this work, we have demon-
strated that a unified system combining RatSLAM and HiLAM can
perform better than its individual parts alone even in the case
where the visual input is from a noisy, real life system.

The current unified system does not contain a feedback loop
between the two models, i.e., the generation of visual odometry
and velocity data (RatSLAM) is independent of the goal directed
navigation component (HiLAM). This architecture does seem con-
sistent with the training and test paradigm that most physiological
and behavioral tasks rely on. For instance, in Morris water-maze
experiments (Morris et al., 1982; Steele & Morris, 1999) the rats
presumably learn their task environment during the training trials,
which might correspond to the exploration phase in our system
involving visual odometry generation. Consecutively, in Morris
water-maze experiments control rats perform the task almost
flawlessly during test trials which might correspond to the goal
directed navigation phase in our experiments. However, the
absence of a feed-back loop between the two models in our frame-
work might also be preventing potential improvements in perfor-
mance. We are developing methods to improve the cooperation
between RatSLAM and HiLAM by adding a feedback loop.

The hybrid model implementation presented in this work
involving two previous models, i.e., RatSLAM and HiLAM, is based
on a serialized batch processing approach. More specifically, the
interplay between the two models is mutually exclusive. HiLAM
generates the hierarchical place field map only after RatSLAM col-
lects and processes the odometry data. This approach is definitely
not the only possible one. However, it is a reasonable method to
show the feasibility of interaction between two biologically inspired
goal directed navigation models published previously. Note that if
the RatSLAM did not use the loop closure approach to correct for sto-
chastic drift in the odometry estimation, using a real-time interac-
tion between the two models, where the RatSLAM’s estimated
odometry data is fed as soon as it is calculated to the HiLAM, would
be the preferred way. However, use of loop closure requires periodic
processing of past odometry data to correct the location representa-
tions in the previously coded odometry data. We are currently look-
ing for new improved methods that enable the corrective
propagation triggered by loop closure detection in the space of place
field maps. Such a method would allow us to switch from the cur-
rent batch processing implementation to a real-time continuous
interaction between the RatSLAM and the HiLAM.

The current version of HiLAM (Erdem & Hasselmo, 2013) is
capable of delivering ‘‘in a beeline’’ global directions towards the
selected goal location and does not explicitly take into account
potential obstacles in the environment, though an earlier version
did model obstacles (Erdem & Hasselmo, 2012). In more complex
environments, the introduction of a local motion planner
(Milford & Wyeth, 2009) would enable the system to balance glo-
bal navigation instructions provided by HiLAM with local consider-
ations such as navigating around static or dynamic obstacles.
Ultimately, the introduction of concepts such as barriers into the
HiLAM model would enable the system to appropriately reward
or penalize navigation probes based on known accessible or no-
go areas of the environment. Performing active robot navigation
using both the paths planned by HiLAM’s probes and the continu-
ous localization capability provided by RatSLAM should be feasible
based on previous successful active robot navigation experiments
using RatSLAM (Milford & Wyeth, 2009). The simplest and most
direct method would be to instruct the robot to follow the winning
probes provided by HiLAM (the red lines in Fig. 13), using RatSLAM
to provide both dead-reckoning and also place-recognition when
crossing previously visited locations.

An open question in the biological representation of space is the
trigger to associate hippocampal cells to certain spatial locations.
There is compelling evidence that the association trigger might
not only depend on spatial cues but on context as well
(Komorowski, Manns, & Eichenbaum, 2009). Further understand-
ing of how brain prioritizes contextual and spatial associations
could have significant impact on selection of sensory cues to
encode locations and their organization in a persistent database



Fig. 17. Panoramic camera views for the four scan locations shown in Fig. 15a (black crosses). The center of each image corresponds to the forward direction of movement
along the probe. Images have been artificially darkened by 40% only for presentation purposes. The projected goal location is shown by a thick red vertical line, with the
bottom of that line approximately corresponding to the goal location in the environment. The ‘‘A’’ indicates the vertical corner of a distal building which we use as an
orientating landmark (for the reader) throughout the paper (see Figs. 6 and 8). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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in robotic SLAM systems. Another interesting biological phenome-
non not very well understood so far is the remapping of the place
cells (Bostock, Muller, & Kubie, 1991; Jeffery, 2011; Markus et al.,
1995; Muller & Kubie, 1987). It is not yet very clear why or how
the remapping happens. More insight into this phenomenon might
result in more efficient encoding of space in robotic navigation.

The HiLAM tries to find the best direction towards the goal loca-
tion from the agent’s current location by generating hypotheses
about possible future trajectories in the spatial coordinate system
and picking the one that signals high probability of arrival to the
goal location depending on previous experience. A variation of
HiLAM might perform the hypothesis search in visual experience
space instead of (or in collaboration with) the spatial space. Rat-
SLAM’s spatio-visual experience map would be an excellent candi-
date search space. In this case the query for the goal directed
navigation would be a view of the goal location instead of an
abstraction of the goal. Furthermore, once the goal location enters
the visual range of the robot during goal directed navigation, the
local visual navigation may easily take over to guide the robot
towards its intended destination (Milford & Wyeth, 2009). We are
currently working on expanding our unified model to accommodate
goal queries in visual experience space. Together, we think the com-
bined HiLAM and RatSLAM models provide a unique method for
exploring, in a biologically relevant but functionally grounded man-
ner, how animals and robots might best make navigation decisions
based on their sensory-spatial representations of the world.

Acknowledgments

This work was supported by the ONR MURI Grant N00014-10-
1-0936, the ONR Grant N00014-09-1-0641 and an Australian
Research Council Discovery Project DP1212775.
References

Ball, D., Heath, S., Wiles, J., Wyeth, G., Corke, P., & Milford, M. (2013). OpenRatSLAM:
An open source brain-based SLAM system. Autonomous Robots, 1–28.

Barry, C., & Burgess, N. (2007). Learning in a geometric model of place cell firing.
Hippocampus, 17(9), 786–800. http://dx.doi.org/10.1002/hipo.20324.

Blair, H. T., Gupta, K., & Zhang, K. (2008). Conversion of a phase- to a rate-coded
position signal by a three-stage model of theta cells, grid cells, and place cells.
Hippocampus, 18(12), 1239–1255. http://dx.doi.org/10.1002/hipo.20509.

Bostock, E., Muller, R. U., & Kubie, J. L. (1991). Experience-dependent modifications
of hippocampal place cell firing. Hippocampus, 1(2), 193–205. http://dx.doi.org/
10.1002/hipo.450010207.

Brown, M. (2011). Social influences on rat spatial choice. Comparative Cognition and
Behavior Reviews, 6, 5–23. http://dx.doi.org/10.3819/ccbr.2011.60003.

Burgess, N. (2008). Grid cells and theta as oscillatory interference: Theory and
predictions. Hippocampus, 18(12), 1157–1174. http://dx.doi.org/10.1002/
hipo.20518.

Burgess, N., Barry, C., & O’Keefe, J. (2007). An oscillatory interference model of grid
cell firing. Hippocampus, 17(9), 801–812. http://dx.doi.org/10.1002/hipo.20327.

Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of
extended experience. Neuron, 63(4), 497–507. http://dx.doi.org/10.1016/
j.neuron.2009.07.027.

Erdem, U. M., & Hasselmo, M. E. (2012). A goal-directed spatial navigation model
using forward trajectory planning based on grid cells. The European Journal of
Neuroscience, 35(6), 916–931. http://dx.doi.org/10.1111/j.1460-
9568.2012.08015.x.

Erdem, U. M., & Hasselmo, M. E. (2013). A biologically inspired hierarchical goal
directed navigation model. Journal of Physiology, Paris. http://dx.doi.org/
10.1016/j.jphysparis.2013.07.002.

Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in
hippocampal place cells during the awake state. Nature, 440(7084), 680–683.
http://dx.doi.org/10.1038/nature04587.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure
of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806. http://
dx.doi.org/10.1038/nature03721.

Hasselmo, M. E. (2008). Grid cell mechanisms and function: Contributions of
entorhinal persistent spiking and phase resetting. Hippocampus, 18(12),
1213–1229. http://dx.doi.org/10.1002/hipo.20512.

Jacobs, L., & Liman, E. (1991). Grey squirrels remember the locations of buried nuts.
Animal Behaviour, 41, 103–110. <http://www.sciencedirect.com/science/article/
pii/S0003347205805068>.

http://refhub.elsevier.com/S1074-7427(14)00130-0/h0005
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0005
http://dx.doi.org/10.1002/hipo.20324
http://dx.doi.org/10.1002/hipo.20509
http://dx.doi.org/10.1002/hipo.450010207
http://dx.doi.org/10.1002/hipo.450010207
http://dx.doi.org/10.3819/ccbr.2011.60003
http://dx.doi.org/10.1002/hipo.20518
http://dx.doi.org/10.1002/hipo.20518
http://dx.doi.org/10.1002/hipo.20327
http://dx.doi.org/10.1016/j.neuron.2009.07.027
http://dx.doi.org/10.1016/j.neuron.2009.07.027
http://dx.doi.org/10.1111/j.1460-9568.2012.08015.x
http://dx.doi.org/10.1111/j.1460-9568.2012.08015.x
http://dx.doi.org/10.1016/j.jphysparis.2013.07.002
http://dx.doi.org/10.1016/j.jphysparis.2013.07.002
http://dx.doi.org/10.1038/nature04587
http://dx.doi.org/10.1038/nature03721
http://dx.doi.org/10.1038/nature03721
http://dx.doi.org/10.1002/hipo.20512
http://www.sciencedirect.com/science/article/pii/S0003347205805068
http://www.sciencedirect.com/science/article/pii/S0003347205805068


U.M. Erdem et al. / Neurobiology of Learning and Memory 117 (2015) 109–121 121
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal
sharp-wave ripples support spatial memory. Science (New York, N.Y.), 336(6087),
1454–1458. http://dx.doi.org/10.1126/science.1217230.

Jeffery, K. J. (2011). Place cells, grid cells, attractors, and remapping. Neural Plasticity,
2011, 182602. http://dx.doi.org/10.1155/2011/182602.

Johnson, A., & Redish, A. D. (2007). Neural ensembles in CA3 transiently encode
paths forward of the animal at a decision point. The Journal of Neuroscience: The
Official Journal of the Society for Neuroscience, 27(45), 12176–12189. http://
dx.doi.org/10.1523/JNEUROSCI.3761-07.2007.

Komorowski, R. W., Manns, J. R., & Eichenbaum, H. (2009). Robust conjunctive item-
place coding by hippocampal neurons parallels learning what happens where.
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,
29(31), 9918–9929. http://dx.doi.org/10.1523/JNEUROSCI.1378-09.2009.

Lindeberg, T. (1993). Scale-space theory in computer vision (pp. 444). Springer.
<http://www.amazon.com/Scale-Space-Computer-Springer-International-
Engineering/dp/0792394186>.

Louie, K., & Wilson, M. A. (2001). Temporally structured replay of awake
hippocampal ensemble activity during rapid eye movement sleep. Neuron,
29(1), 145–156. http://dx.doi.org/10.1016/S0896-6273(01)00186-6.

Markus, E., Qin, Y., Leonard, B., Skaggs, W., McNaughton, B., & Barnes, C. (1995).
Interactions between location and task affect the spatial and directional firing of
hippocampal neurons. The Journal of Neuroscience, 15(11), 7079–7094. <http://
www.jneurosci.org/content/15/11/7079.abstract>.

Milford, M. J. (2008). Robot navigation from nature: Simultaneous localisation,
mapping, and path planning based on hippocampal models (1st ed., Vol. 41, pp.
196). Berlin, Heidelberg: Springer Verlag. <http://www.amazon.com/dp/
3540775196>.

Milford, M. J., Wyeth, G. F., & Prasser, D. (2004). RatSLAM: A hippocampal model for
simultaneous localization and mapping. In Proceedings. ICRA’04. 2004 IEEE
international conference on robotics and automation, 2004 (Vol. 1, pp. 403–408).
IEEE. http://dx.doi.org/10.1109/ROBOT.2004.1307183.

Milford, M. J., Schill, F., Corke, P., Mahony, R., & Wyeth, G. (2011). Aerial SLAM with a
single camera using visual expectation. IEEE International Conference on Robotics
and Automation, 2011, 2506–2512. http://dx.doi.org/10.1109/
ICRA.2011.5980329.

Milford, M., Wiles, J., & Wyeth, G. (2010). Solving navigational uncertainty using
grid cells on robots. PLoS Computational Biology, 6(11).

Milford, M., & Wyeth, G. (2008). Mapping a suburb with a single camera using a
biologically inspired SLAM system. IEEE Transactions on Robotics, 24(5),
1038–1053.

Milford, M., & Wyeth, G. (2009). Persistent navigation and mapping using a
biologically inspired SLAM system. The International Journal of Robotics Research,
29(9), 1131–1153. http://dx.doi.org/10.1177/0278364909340592.

Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O’Keefe, J. (1982). Place navigation
impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683. http://
dx.doi.org/10.1038/297681a0.
Muller, R., & Kubie, J. (1987). The effects of changes in the environment on the
spatial firing of hippocampal complex-spike cells. The Journal of Neuroscience,
7(7), 1951–1968. <http://www.jneurosci.org/content/7/7/1951.abstract>.

O’Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J., & Maguire, E. A. (1998). Place cells,
navigational accuracy, and the human hippocampus. Philosophical Transactions
of the Royal Society of London, Series B: Biological Sciences, 353(1373), 1333–1340.
http://dx.doi.org/10.1098/rstb.1998.0287.

O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Philosophical
Studies, 2(04), 487–533. http://dx.doi.org/10.1017/S0140525X00063949.

Olton, D. S., & Schlosberg, P. (1978). Food-searching strategies in young rats: Win-
shift predominates over win-stay. Journal of Comparative and Physiological
Psychology, 92(4), 609–618. http://dx.doi.org/10.1037/h0077492.

Pfeiffer, B. E., & Foster, D. J. (2013). Hippocampal place-cell sequences depict future
paths to remembered goals. Nature. http://dx.doi.org/10.1038/nature12112.

Prasser, D., Milford, M., & Wyeth, G. (2006). Outdoor simultaneous localisation and
mapping using RatSLAM. Field and Service Robotics, 25, 143–154. http://
dx.doi.org/10.1007/978-3-540-33453-8_13.

Redish, A. D., & Touretzky, D. S. (1998). The role of the hippocampus in solving the
Morris water maze. Neural Computation, 10(1), 73–111. http://dx.doi.org/
10.1162/089976698300017908</p>.

Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser, M.-B.,
et al. (2006). Conjunctive representation of position, direction, and velocity in
entorhinal cortex. Science (New York, N.Y.), 312(5774), 758–762. http://
dx.doi.org/10.1126/science.1125572.

Sporring, J., Nielsen, M., Florack, L., & Johansen, P. (1997). Gaussian scale-space theory
(pp. 266). Springer.

Steele, R. J., & Morris, R. G. M. (1999). Delay-dependent impairment of a matching-
to-place task with chronic and intrahippocampal infusion of the NMDA-
antagonist D-AP5. Hippocampus, 9(2), 118–136. http://dx.doi.org/10.1002/
(SICI)1098-1063(1999)9:2<118::AID-HIPO4>3.0.CO;2-8.

Steffenach, H.-A., Witter, M., Moser, M.-B., & Moser, E. I. (2005). Spatial memory in
the rat requires the dorsolateral band of the entorhinal cortex. Neuron, 45(2),
301–313. http://dx.doi.org/10.1016/j.neuron.2004.12.044.

Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B., & Moser, E. I. (2012).
The entorhinal grid map is discretized. Nature, 492(7427), 72–78. http://
dx.doi.org/10.1038/nature11649.

Taube, J. S. (2007). The head direction signal: Origins and sensory-motor
integration. Annual Review of Neuroscience, 30(1), 181–207. http://dx.doi.org/
10.1146/annurev.neuro.29.051605.112854.

Taube, J. S., Kesslak, J. P., & Cotman, C. W. (1992). Lesions of the rat postsubiculum
impair performance on spatial tasks. Behavioral and Neural Biology, 57(2),
131–143. <http://www.ncbi.nlm.nih.gov/pubmed/1586352>.

Taube, J., Muller, R., & Ranck, J. (1990). Head-direction cells recorded from the
postsubiculum in freely moving rats. I. Description and quantitative analysis.
The Journal of Neuroscience, 10(2), 420–435. <http://www.jneurosci.org/content/
10/2/420.abstract>.

http://dx.doi.org/10.1126/science.1217230
http://dx.doi.org/10.1155/2011/182602
http://dx.doi.org/10.1523/JNEUROSCI.3761-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.3761-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.1378-09.2009
http://www.amazon.com/Scale-Space-Computer-Springer-International-Engineering/dp/0792394186
http://www.amazon.com/Scale-Space-Computer-Springer-International-Engineering/dp/0792394186
http://dx.doi.org/10.1016/S0896-6273(01)00186-6
http://www.jneurosci.org/content/15/11/7079.abstract
http://www.jneurosci.org/content/15/11/7079.abstract
http://www.amazon.com/dp/3540775196
http://www.amazon.com/dp/3540775196
http://dx.doi.org/10.1109/ROBOT.2004.1307183
http://dx.doi.org/10.1109/ICRA.2011.5980329
http://dx.doi.org/10.1109/ICRA.2011.5980329
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0110
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0110
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0115
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0115
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0115
http://dx.doi.org/10.1177/0278364909340592
http://dx.doi.org/10.1038/297681a0
http://dx.doi.org/10.1038/297681a0
http://www.jneurosci.org/content/7/7/1951.abstract
http://dx.doi.org/10.1098/rstb.1998.0287
http://dx.doi.org/10.1017/S0140525X00063949
http://dx.doi.org/10.1037/h0077492
http://dx.doi.org/10.1038/nature12112
http://dx.doi.org/10.1007/978-3-540-33453-8_13
http://dx.doi.org/10.1007/978-3-540-33453-8_13
http://dx.doi.org/10.1162/089976698300017908&lt;/p>
http://dx.doi.org/10.1162/089976698300017908&lt;/p>
http://dx.doi.org/10.1126/science.1125572
http://dx.doi.org/10.1126/science.1125572
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0225
http://refhub.elsevier.com/S1074-7427(14)00130-0/h0225
http://dx.doi.org/10.1002/(SICI)1098-1063(1999)9:2&lt;118::AID-HIPO4>3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1098-1063(1999)9:2&lt;118::AID-HIPO4>3.0.CO;2-8
http://dx.doi.org/10.1016/j.neuron.2004.12.044
http://dx.doi.org/10.1038/nature11649
http://dx.doi.org/10.1038/nature11649
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112854
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112854
http://www.ncbi.nlm.nih.gov/pubmed/1586352
http://www.jneurosci.org/content/10/2/420.abstract
http://www.jneurosci.org/content/10/2/420.abstract

	A hierarchical model of goal directed navigation selects trajectories in a visual environment
	1 Introduction
	2 Material and methods
	2.1 Hierarchical Look-Ahead Trajectory Model (HiLAM)
	2.2 RatSLAM
	2.2.1 Visual self-motion estimation
	2.2.2 Visual place recognition
	2.2.3 RatSLAM experience mapping


	3 Experimental procedure
	3.1 Agent
	3.2 Indoor square arena
	3.3 Outdoor road arena

	4 Results
	4.1 Self-motion estimation, place recognition and stable map formation
	4.2 Navigation probes
	4.2.1 Without a stable map
	4.2.2 With a stable map


	5 Discussion
	Acknowledgments
	References


