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We propose an extended version of our previous goal directed navigation model based on forward plan-
ning of trajectories in a network of head direction cells, persistent spiking cells, grid cells, and place cells.
In our original work the animat incrementally creates a place cell map by random exploration of a novel
environment. After the exploration phase, the animat decides on its next movement direction towards a
goal by probing linear look-ahead trajectories in several candidate directions while stationary and pick-
ing the one activating place cells representing the goal location. In this work we present several improve-
ments over our previous model. We improve the range of linear look-ahead probes significantly by
imposing a hierarchical structure on the place cell map consistent with the experimental findings of dif-
ferences in the firing field size and spacing of grid cells recorded at different positions along the dorsal to
ventral axis of entorhinal cortex. The new model represents the environment at different scales by pop-
ulations of simulated hippocampal place cells with different firing field sizes. Among other advantages
this model allows simultaneous constant duration linear look-ahead probes at different scales while sig-
nificantly extending each probe range. The extension of the linear look-ahead probe range while keeping
its duration constant also limits the degrading effects of noise accumulation in the network. We show the
extended model’s performance using an animat in a large open field environment.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

One of the crucial features of many living organisms capable of
locomotion is their ability to navigate from their current location
to another one to perform a life critical task. For instance squirrels
are surprisingly good at rediscovering locations of food they previ-
ously buried (Jacobs and Liman, 1991), rats can learn to revisit or to
avoid previously visited food locations (Brown, 2011; Olton and
Schlosberg, 1978). Many animals retreat to a previously visited
shelter in the presence of an immediate threat, e.g., a rabbit run-
ning to the safety of its burrow when it detects a bird of prey in
the skies, or of a long-term threat, e.g., a bear retreating to a cave
for hibernation to conserve energy during a cold season. It is a
plausible assumption that for the organisms to perform such nav-
igation tasks they should possess a cognitive mechanism to repre-
sent their environment as a collection of critical regions, e.g., nest
locations, food locations, etc., to recall these regions when the need
arises, and means to exploit relations between such regions
(O’Keefe and Nadel, 1978; Redish, 1999).

The entorhinal cortex and hippocampus play a role in goal-di-
rected behavior towards recently learned spatial locations in an
environment. Rats show impairments in finding the spatial
location of a hidden platform in the Morris water-maze after le-
sions of the hippocampus (Morris et al., 1982; Steele and Morris,
1999), postsubiculum (Taube et al., 1992) or entorhinal cortex
(Steffenach et al., 2005). Recordings from these brain areas in
behaving rats show neural spiking activity relevant to goal-
directed spatial behavior, including grid cells in the entorhinal
cortex that fire when the rat is in a repeating regular array of loca-
tions in the environment falling on the vertices of tightly packed
equilateral triangles (Hafting et al., 2005; Moser and Moser,
2008). Experimental data also show place cells in the hippocampus
that respond to mostly unique spatial locations (O’Keefe, 1976;
McNaughton et al., 1983; O’Keefe and Burgess, 2005), head direc-
tion cells in the postsubiculum that respond to narrow ranges of
allocentric head direction (Taube et al., 1990; Taube and Bassett,
2003), and cells that respond to translational speed of running
(Sharp, 1996; O’Keefe et al., 1998).

In a previous work we proposed a goal-directed navigation
model (Erdem and Hasselmo, 2012), inspired by experimental
in vivo findings, using a network of simulated head direction cells,
grid cells, and place cells. The model represents each salient spatial
location with the firing field of a place cell as the simulated subject
(animat) explores its environment. During navigation the model
guides the animat from an arbitrary location towards a previsited
goal location by sampling potential linear look-ahead trajectory
probes and picking the one which activates the place cell repre-
senting the desired location, i.e., the goal place cell. In this model
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all place cell firing fields are the same size and thus they represent
the environment at a single scale. However, the model has some
shortcomings. The noise accumulation during each look-ahead tra-
jectory scan (collection of probes during a single look-ahead ses-
sion) limits the duration and range of each look-ahead trajectory
probe. Hence there is no guarantee that any of the probes will
reach the goal place cell’s firing field. Furthermore, if the radial dis-
tribution of the probes is not dense enough the look-ahead trajec-
tory scan might still fail to activate the goal place cell even if the
goal place field is in the probe range.

In this paper we present a navigation model which has signifi-
cant extensions and improvements over our previously reported
navigation model in Erdem and Hasselmo (2012). The model pre-
sented here tackles the problem of noise accumulation during lin-
ear look-ahead scan phase by representing the environment in a
hierarchy of multiple scales. The hierarchical approach indirectly
helps limiting the critical noise accumulation during look-ahead
scans to acceptable levels. The extended model achieves noise sta-
bilization by keeping the duration of a linear look-ahead trajectory
probe, a critical component of the navigation system, constant
while extending its range arbitrarily. We also report several other
improvements over our previous single scale model.

The hierarchical approach to represent the environment in mul-
tiple scales is also supported by experimental in vivo recordings.
Differences in the firing field size and spacing of grid cells along
the dorsal to ventral axis of entorhinal cortex have been reported
in previous studies (Hafting et al., 2005; Sargolini et al., 2006; Gio-
como et al., 2011). Grid cell firing field size and separation grows
larger as the anatomical location of the cell slides from dorsal to
ventral border of entorhinal cortex. Also, CA3 place cell firing fields
ranging from <1 m to 10 m along the dorsal to ventral pole have
been previously recorded (Kjelstrup et al., 2008; Jung and Wiener,
1994; Maurer et al., 2005). Both findings encourage the idea of
hierarchical multi-scale representation of space in rats.

Our model of goal directed navigation based on spatial behavior
of grid cells is also suited as a biologically-inspired model for SLAM
(Simultaneous Localization And Mapping) in robotic navigation
(Milford et al., 2004; Eustice et al., 2006; Guanella et al., 2007; Mil-
ford, 2008; Fibla et al., 2010; Duff et al., 2011). However, none of
the cited previous work exploits the advantages of a hierarchical
approach.
2. Material and methods

In this section we present the main ideas and constructs used to
extend our previous goal-directed navigation model of linear look-
ahead trajectories. We start by briefly explaining our original nav-
igation model involving a network of the head direction cells, grid
cells, and place cells as shown in Fig. 1. We show how this network
is able to cognitively represent an explored environment as a place
cell map. We continue by showing how linear look-ahead trajec-
tory scans can be used to discover the best heading from the cur-
rent location of the animat towards a predefined goal location.
We then introduce our new model extending the previous one
by using a hierarchical approach. This extended model represents
a given environment using multiple place cell maps at different
resolutions.
2.1. Notation

We show scalar parameters by italic lowercase characters, e.g.,
a. Vectors are shown by bold lowercase characters, e.g., a. Vectors
are row-wise unless specified otherwise. Matrices are shown by
uppercase bold letter, e.g., A. We show an item’s position index
in a collection with subscripts, e.g., ai. Superscript is reserved for
power operations with the exception of the transpose operation,
e.g., aT. We show collections such as sets and populations by
uppercase italic letters, e.g., A. Lowercase italic bold characters
represent the class of the item they refer to, e.g., place cell p or grid
cell g.

2.2. Single level place cell map

In our previous work we proposed a single scale model to solve
the goal directed navigation task using a network of simulated
head-direction cells tuned towards specific allocentric orientations
using cosine tuning, entorhinal persistent spiking cells, entorhinal
grid cells, hippocampal place cells, and pre-frontal cortical col-
umns. Our original model works as explained briefly next.

2.2.1. Head direction cells
A head direction cell is a type of neuron tuned to increase its fir-

ing rate whenever the head direction (heading) of the animat gets
closer to the cell’s preferred angle (Taube et al., 1990). Extensive
experimental data describe head direction cells in the deep layers
of the entorhinal cortex (Sargolini et al., 2006) and in other areas
including the postsubiculum (Taube et al., 1990). Previous work
has also shown that usually a population of head direction cells
are anchored to a salient landmark cue. In light of these, assuming
that the firing rate of a head direction cell is cosine tuned and
velocity modulated, we can represent its firing rate as follows:

D ¼
cosðhi þ h0Þ . . . cosðhm þ h0Þ
sinðhi þ h0Þ . . . sinðhm þ h0Þ

� �
ð1aÞ

dðtÞ ¼ vðtÞ � D ¼ ½d1ðtÞ; . . . ; dmðtÞ� ð1bÞ

where hi is the ith cell’s preferred angle, h0 is the heading angle of
the anchor cue, D is the tuning kernel, d(t) is the vector of head
direction firing rates at time t, v(t) is the animat’s velocity vector
at time t, and m is the total number of head direction cells in the
model. All angles are allocentric, i.e., in the global coordinate
system.

2.2.2. Grid cells
A grid cell is a type of neuron tuned to fire whenever the ani-

mat’s spatial position falls into regions of space, or firing fields,
forming a periodic hexagonal grid pattern. Previous work have
shown existence of grid cells showing firing fields with different
inter-field spacing and firing field diameters (Hafting et al., 2005;
Sargolini et al., 2006; Giocomo et al., 2011). Several computational
models have previously been proposed to explain the grid cell
mechanism. In our work we chose to use the persistent spiking cell
model which falls into the category of phase interference models
(Burgess et al., 2007; Burgess, 2008; Hasselmo, 2008). In standard
slice preparations, most cortical neurons generate spikes during
depolarizing input, but will not continue firing after stimulation
ends. However, in the presence of cholinergic or metabotropic glu-
tamate agonists, pyramidal cells in medial entorhinal cortex com-
monly show persistent firing (Klink and Alonso, 1997; Egorov et al.,
2002; Fransén et al., 2006; Tahvildari et al., 2007; Yoshida et al.,
2008) even when all synaptic input is blocked. The mechanisms
of intrinsic persistent firing in single neurons could contribute to
persistent spiking shown with unit recording during the delay per-
iod of delayed matching to sample tasks in awake, behaving rats
(Young et al., 1997) and monkeys (Suzuki et al., 1997). Persistent
spiking could also underlie persistent fMRI activation appearing
during delay periods in human memory tasks, which can be re-
duced by muscarinic cholinergic blockade (Schon et al., 2004;
Schon et al., 2005; Hasselmo and Stern, 2006). More detailed treat-
ment of the grid cell model based on the interaction of persistent
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Fig. 1. The model for head direction cell ? persistent spiking cell ? grid cell ? place cell ? reward cell network.
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spiking cells can be found in Hasselmo (2008). The phase interfer-
ence models explain the formation of periodic firing field grid as
the result of interference between several oscillations with differ-
ent frequencies. In the persistent spiking cell model each grid cell
receives input from a set of persistent spiking cells. A persistent
spiking cell generates a periodic spiking output. The frequency of
this output is modulated by a head direction cell. The model is as
follows:
/ði;jÞðtÞ ¼ 2p ft þ bj

Z t

0
diðsÞds

� �
ð2aÞ

sði;jÞðtÞ ¼ Hðcosð/ði;jÞðtÞ þ wði;jÞÞ � sthrÞ ð2bÞ
gjðtÞ ¼

Y
s2Sj

sðtÞ ð2cÞ
where /(i,j) is the persistent spiking cell’s phase modulated by the
ith head direction cell and projecting to the jth grid cell, f is the fre-
quency, bj is the scaling factor for all persistent spiking cells project-
ing to jth grid cell, s(i,j) is the persistent spiking cell signal, w is the
phase offset, sthr is the threshold, H is the Heaviside function with
H(0) = 0, g is the grid cell signal, and Sj is the set of persistent spiking
cells projecting to the jth grid cell. A detailed coverage of each
parameter is given in Erdem and Hasselmo (2012).
2.2.3. Place cells
A place cell is a type of hippocampal neuron tuned to fire at spe-

cific, almost unique, locations in a given environment (O’Keefe,
1976). We model a place cell as a coincidence detector of action
potential inputs converging from several grid cells:

pkðtÞ ¼
Y
g2Gk

gðtÞ ð3Þ

where pk is the kth place cell signal and Gk is the set of grid cells pro-
jecting to the kth place cell. It is important to note that the animat’s
spatial location is encoded by the continuous and periodic phase
space of the persistent spiking cells while place cells generate ac-
tion potentials at discrete regions of the phase space and the
environment.

2.2.4. Reward cells
A reward cell is a theoretical neuron representing the reward

value associated with a place cell. Each place cell is bijectively con-
nected to a reward cell. A reward cell is the simplified version of a
pre-frontal cortex column presented in Erdem and Hasselmo
(2012). In our navigation model, reward cells play a crucial role
during the navigation towards a goal but not during random explo-
ration. In the current version of our model a reward cell generates
persistent spiking output whenever its associated place cell is a
goal location:
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rkðtÞ ¼
1 if pk is a goal location
0 otherwise

�
ð4Þ

where rk is the output of the reward cell connected to the kth place
cell.

2.3. Linear look ahead trajectory

The navigation task involves two phases: A random exploration
phase and a goal-directed navigation phase. During the random
exploration phase the animat cognitively encodes discrete regions
of the environment as the firing fields of place cells. The question of
when to represent a location by a place cell is still an open and very
interesting question. In our work the time between two consecu-
tive place cell recruitment is drawn from an exponential distribu-
tion parameterized by a rate parameter. The collection of place
cells recruited during exploration forms the hippocampal repre-
sentation of the explored environment as a place cell map. In the
second phase of the navigation task the animat initially decides
to navigate to a previously visited location represented by some
place cell pgoal. The respective reward cell rgoal starts generating
persistent spikes showing the animat’s intended goal location (a
goal location is associated with a reward) in the place cell map.
Then the animat probes several candidate directions, Fig. 2, by for-
ward linear look-ahead trajectories while stationary in one loca-
tion. Each probe engages the head direction ? persistent spiking
cell ? grid cell ? place cell network the same way as during free
roaming but in a faster timescale. At the end of a full scan the ani-
mat selects the probe heading hgoal which activated the place cell
pgoal and moves along heading hgoal. When the animat reaches the
firing field of pgoal the goal-directed navigation phase and the nav-
igation task ends.

Note that the original version of the goal-directed navigation
model proposed in Erdem and Hasselmo (2012) involves an addi-
tional step where an exponentially decaying reward signal propa-
gates across the reward cells following a connectivity topology
established during the exploration phase. The decaying reward sig-
nal propagation creates a sparse gradient field in the reward cell
Fig. 2. Didactic illustration of linear look-ahead trajectory probes for a single level
of the place cell map hierarchy. The probe lengths are not shown to scale. The
animat does not move while performing a full scan.
network with its peak centered at the goal location. This reward
gradient field serves two main purposes: (i) It allows the goal-di-
rected navigation phase to succeed even when the goal location
is out of range of the forward linear look-ahead probes. The animat
picks the heading of the probe activating the reward cell with max-
imum reward signal among all other reward cells activated during
the full scan. (ii) It allows the exploitation of never before experi-
enced short-cuts towards the goal location.

Nevertheless, the original single level approach of Erdem and
Hasselmo (2012) has several restrictions affecting the overall per-
formance of the navigation task. In this paper we alleviate these
restrictions by using a hierarchical place cell map representing
the environment at different scales.

2.4. Hierarchical place cell map

The three important limitations of the single level model are as
follows:

1. In the absence of reward diffusion the success of the navigation
task depends on the linear look-ahead probe range. If the goal
place cell is not in the range of any probe during a full scan
no probe will be able to activate any goal place cell. Without
any heading towards goal location to pick the animat will fall
back to random exploration. Unfortunately, increasing the
probe range is not feasible. First, the amount of time that the
animat can spend for a full scan is limited from above by a max-
imum value. Second, as the probe duration increases the noise
accumulation degrades the accuracy of the probe. Degraded
probe accuracy might generate false headings as the correct
ones. The noise accumulation is expected to be a serious prob-
lem especially during the linear look-ahead scanning phase due
to the absence of other sensory input modes, e.g., visual, that
are available during normal navigation and can be used to cor-
rect for the excessive noise drift.

2. The angular arclength subtended between two consecutive
probes becomes larger as the length of the probes increases.
Since the place cell firing field size is constant in the single level
approach, the probability of a probe to activate the goal place
cell decreases with the probe length even if the goal place cell
is in the range of a full scan. Decreasing the angle between
neighboring probes increases the probability of activating the
goal place cell but it also increases the number of probes and
equivalently the duration of a full scan which takes us back to
the first item.

3. Reward diffusion alleviates restrictions presented in items one
and two. Unfortunately, the effective reward diffusion radius
is also limited due to the signal decay at each hop between
reward cells. After a certain number of hops the signal fidelity
decreases to the cell’s inherent noise levels hence providing
no information for the linear look-ahead scan process.

In order to overcome these limitations, we propose a model
with multiple place cell maps each representing the environment
at a different scale as seen in experimental data by Kjelstrup
et al. (2008). We augment the original notation of the single le-
vel model by representing the persistent spiking cell, the grid
cell, and the place cell belonging to level l of the hierarchy as
s(i,j,l), g(j,l), and p(k,l). Other subscripts found in Eq. (2) and in
Eq. (3) also change following the same logic. The scale of level
l is parameterized by the scaling factor al of the augmented
Eq. (2a):

/ði;j;lÞðtÞ ¼ 2p ft þ albj

Z t

0
diðsÞds

� �
ð5Þ



Fig. 3. Illustration to explain trigonometric derivation of Eqs. (9) and (10). The red
circles are the firing fields of two goal place cells p(l�1) and pl from two consecutive
levels in the hierarchy. A is the actual location of the animat. The line segments AB1

and AB2 are neighboring probes at level l � 1 and jAB1j = jAB2j = c(l�1). B1 and B2 are
the tangent points between p(l�1) and the probes. Given that all goal place cell firing
fields at different levels of the hierarchy are overlapping by construction, the two
tangent firing fields as shown is the worst case scenario for the minimum probe
range such that at least one probe at level l � 1 is guaranteed to activate a goal place
cell at level l � 1 when the animat is in the firing field of a goal place cell at level l.
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The scale parameter al is inversely proportional to the firing field ra-
dius, ql, of place cell p(k,l). Given the place cell firing field radius q0 of
the highest resolution level 0 and a being the relative scaling be-
tween two consecutive levels, the following hold:

al ¼ a�l ! aðl�1Þ

al
¼ a and a0 ¼ 1 ð6aÞ

aðl�1Þ > al ð6bÞ
ql ¼ q0a�1

l ¼ q0a
l ð6cÞ

where l = 0, . . . , n � 1 and n is the total number of levels in the hier-
archy. Note that the scale of level l is inversely proportional to its
scale factor al. Eq. (6a) means that the lowest level has the largest
scale factor (or equivalently the smallest scale, i.e., smallest spacing
between grid cell firing fields) which is equal to 1 and the propor-
tion between consecutive level scale factors (al and a(l�1)) is con-
stant (a). Eq. (6b) shows that in our model the scale factor
progressively decreases (or the scale progressively increases) with
higher levels such that the highest level has the biggest scale (or
the smallest scaling factor). Thus higher levels in the hierarchy have
lower spatial resolution, appearing as large spacing between grid
cell firing fields and larger size of grid and place cell firing fields.

2.4.1. Random exploration phase
During the random exploration phase the animat recruits place

cells in a similar way to the single level case described above. We
model the place cell recruitment as a Poisson process hence the in-
ter arrival time between two consecutive place cell recruitments
follows an exponential distribution with rate parameter k. The
place cell recruitment occurs either when the animat’s location
does not activate any place cell at any level, i.e., the current loca-
tion is not represented in the hierarchical map, or when the Pois-
son process triggers it. Whenever the recruitment is triggered
new place cells are formed at levels where no existing place cell
is already active. The exploration phase serves the purpose of cre-
ating place cell maps of the same environment at different scales
(or resolutions) and the place cell recruitment strategy guarantees
full coverage of the environment by the top level (lowest resolu-
tion) place cell map as seen in Figs. 4 and 5b.

2.4.2. Goal directed navigation phase
The first step of the goal directed navigation phase is to pick a

place cell p(goal,q) as the animat’s goal place cell. Selection of p(goal,q)

activates its associated reward cell r(goal,q). Activation of reward cell
r(goal,q) also activates all other reward cells at levels higher than q
that are connected to place cells with firing fields overlapping
the firing field of p(goal,q). The spread of reward cell activation up-
wards in the hierarchy allows the representation of the selected
goal location at place cell map levels with lower resolutions. The
main idea is to gradually guide the animat towards the original
goal place cell p(goal,q) starting from the top (lowest resolution) le-
vel. After each full scan of look-ahead linear probes the animat
should be able to proceed and arrive to the goal place firing field
of the next lower level hence allowing the animat to move towards
p(goal,q) using sequential linear trajectory segments. Let the set of
reward cells activated right after selecting p(goal,q) be defined as
follow:

R ¼ frðgoal;lÞgl¼q;...;n�1 ð7Þ

Next all reward cells associated with currently active goal place
cells, i.e., goal place cells with firing fields containing animat’s cur-
rent location, are inhibited. If r(goal,q) is among the deactivated re-
ward cells then the navigation task ends successfully. Otherwise,
the animat performs a full scan of look-ahead linear probes to find
the heading that will take it towards the goal place cell of the next
lower level with higher resolution. At this point we need to make
sure that at least one of the probes will be able to activate the goal
place cell of the lower level. This guarantee can be achieved if two
conditions are satisfied. The first condition guarantees that the
range of probes at level l � 1, denoted by c(l�1), is large enough to
reach the goal place cell of the same level as shown in Fig. 3. We de-
rive the equations to satisfy the two conditions by analyzing a worst
case scenario, shown in Fig. 3, where the goal place cells belonging
to two consecutive levels of the hierarchy are externally tangent to
each other and the animats physical location (A in Fig. 3) is at the
intersection point of the line passing through the centers of both fir-
ing fields with the boundary of the larger goal place cell firing field.
This configuration is a worst case scenario for probe lengths be-
cause the lengths of the linear probes starting from this particular
location (A) of the animat and tangent to the smaller place cell firing
field are maximal among all linear probes that would start from any
other animat location inside the larger place field. Furthermore, the
angle between the two linear probes emanating from the animats
location and tangent to the smaller place cell firing field is the max-
imum that would guarantee intersection of at least one probe with
the small firing field when a complete scan of probes is performed.
A complete scan of probes involves n linear probes separated by 2p/
n degree angles. Based on this geometric analysis the first condition
becomes:

cðl�1Þ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ql þ qðl�1ÞÞ

2 � q2
ðl�1Þ

q
ð8Þ

Since the relative scale between consecutive levels is constant as in
Eq. (6a), we can obtain the condition for the probe range at level 0
by simply substituting c(l�1) by c0al�1 and ql by q0al in Eq. (8). After
algebraic simplifications we obtain:

c0 > 2q0a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a�1

p
ð9Þ

Eq. (9) guarantees us that the probe range at any level will be large
enough to reach a goal place cell if the probe range at level 0 is cho-
sen accordingly. The second condition concerns the angle between
two neighboring probes denoted by b. We have to make sure that
b is small enough to guarantee the activation of a goal place cell
at some level. After a trigonometric analysis using Fig. 3 and alge-
braic substitutions and simplifications as in Eq. (9) we obtain the
following relation:



Table 1
Simulation parameters.

Parameter Value Parameter Value

a 4 k 0.1
q0 10 cm c0 100 cm
b 7� j 500 ms
t 200 cm/s
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b < 2 sin�1 qðl�1Þ

2ql þ qðl�1Þ

 !
¼ 2 sin�1 1

2aþ 1

� �
ð10Þ

Since Eq. (10) gives the maximum amount of angular separation be-
tween neighboring probes guaranteeing goal place cell activation,
multiple probes might activate the same goal place cell depending
on the actual b value chosen. At this point we can guarantee that
at least one of the probes will activate a goal place cell during a full
look-ahead trajectory scan if we pick c0 and b satisfying Eqs. (9) and
(10). Note that the condition in Eq. (9) can also be used to calculate
the place cell radius q0 given the probe range c0 and the constant
relative scaling a between place cell map levels or to calculate a gi-
ven q0 and c0. The same is valid for the condition in Eq. (10) where a
can be obtained given b. We can, for instance, obtain q0 and a if a
single probe duration is limited to j and the probe speed is t. In this
case, the range of a single probe at level 0 will be c0 = jt. Substitut-
ing this into Eq. (9) we obtain:

jt > 2q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ aÞ

p
ð11Þ

which is a more general form of Eq. (9). For instance, if we set the
scale ratio between consecutive levels a to 4, the probe velocity t
to 200 cm/s, and the probe duration j to 0.5 s then Eq. (11) gives
11.36 as the maximum place cell firing field radius (cm) at the low-
est level of the hierarchy q0.

At this point the animat is ready to perform a full linear look-
ahead trajectory scan but with an important modification from
the original single level model. Before the full scan all scale factors,
al, are set to 1. This change allows the probe speed at level l to be al

(a is the scale ratio between two consecutive levels as defined in
Eq. (6a)) times faster than it is during normal navigation and lets
a probe at level l cover al times longer range than level 0 for the
same duration. Furthermore, we can increase the maximum probe
range that the animat can cover by adding more levels to the hier-
archy while keeping the duration of the full scan constant. Assum-
ing that the noise accumulation is proportional to the duration of a
single probe and everything else being equal, this approach can
limit the maximum amount of noise per probe while increasing
the maximum probe range arbitrarily.

Let Pgoal be the set of goal place cells activated after a full look-
ahead trajectory scan and Cgoal be the set of probe headings associ-
ated with the activated goal place cells in Pgoal:

Pgoal ¼ fpðgoal;lÞgl¼q;...;n�1

Cgoal ¼ fcðgoal;lÞgl¼q;...;n�1

ð12Þ

where c(goal,l) is a probe heading that activated goal place cell at le-
vel l. If multiple probes activate the same goal place cell at level l,
the animat picks one of them at random. The next probe heading
c⁄ to follow towards the goal is the one that activated the goal place
cell at the lowest level:

c� ¼ argmin
cðgoal;lÞ

l ð13Þ

The animat proceeds along c⁄ until it activates another goal place
cell by entering its firing field and the whole process starts over
again.

3. Results

Simulations are performed using MATLAB version R2009b. Sim-
ulation time step per single iteration is set to 0.02 s. Each place cell
in each level receives inputs from three unique grid cells. Each grid
cell receives inputs from three persistent spiking cells with fre-
quency (f) 7 Hz, spiking threshold value (sthr) 0.9, and shared fac-
tors (bj) are the same for all persistent spiking cells to the same
grid cell, but have different values 0.001, 0.002, and 0.004 for the
different grid cells projecting to a given place cell. Persistent
spiking cells connected to the same grid cell receive bijective in-
puts from three head direction cells with preferred directions (hi)
0, 120, and 240 degrees. Persistent spiking phase offsets (w(i,j)) de-
pend on the animat’s location at the time of place cell recruitment.
The head direction cell ? persistent spiking cell ? grid cell ?
place cell network using given parameters generate place cell fields
with radius (q0) 10 cm. We use an animat with first order motion
dynamics, i.e., constant speed and no acceleration. The animat’s
speed is set to 20 cm/s. Parameter/value tuples relevant to the
hierarchical model are given in Table 1. We conduct two simula-
tions. For both simulations we assume that the maximum accept-
able duration j for a single probe during a full linear look-ahead
trajectory scan is half a second (500 ms). We do not explicitly mod-
el noise. The virtual speed t during a single probe is set to 200 cm/
s. The probe range at level 0 (c0) then becomes 100 cm. We calcu-
late the parameters for the hierarchical place cell maps using pre-
viously explained conditions.

The first simulation is in an open field enclosed by a square wall
with 400 cm for each side. The number of levels n in the place cell
hierarchy is 4. The animat starts the simulation from a point close
to the lower-right corner of the enclosure. Fig. 4a shows the ani-
mat’s trajectory after 10 simulated minutes of the exploration
phase. Fig. 4b shows the place cell firing fields of each level con-
structed during the exploration phase. We pick a level 0 place cell
close to the top-left corner of the enclosure as goal location. Fig. 4c
shows 10 goal-directed navigation phase trajectories each for a
separate trial with the same goal place cells. Different trajectories
for the same starting point and the goal location are the result of
random selection of c(goal,l) from among multiple probes activating
the same goal place cell at level l. All 10 trials are successful, i.e.,
the animat reaches the goal location.

For the second simulation we increase the side length of the
enclosure 5 times, i.e., 2000 cm. In order to accommodate the in-
creased scale of the environment we add another level (n = 5)
increasing the maximum probe range. All other parameters are
the same as in the first simulation. Fig. 5a shows the trajectory
after 30 simulated minutes of the exploration phase. Fig. 5b shows
the hierarchical place cell maps and Fig. 5c shows the goal-directed
navigation phase trajectories of 10 trials and the goal place cells.
All trials are again successful. The hierarchical model presented
in this work is able to adapt to a large increase in scale of the envi-
ronment by the addition of a single level while keeping the maxi-
mum allowed single probe time the same.
4. Discussion

We presented an extension to our previous goal-directed navi-
gation model involving the use of different simulated neuron types,
i.e., head direction cells, persistent spiking cells, grid cells, place
cells, and reward cells to represent a novel environment. After
the selection of a goal place cell the animat performs a mental ra-
dial sweep around its current location via linear look-ahead trajec-
tory probes and picks the probe heading that activated place cell(s)
associated with active reward cell(s). In the original single level
model the environment was cognitively represented by homoge-
neous place cells with the same firing field size. This put a hard
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Fig. 4. Simulation 1 results for an open field environment enclosed by a square wall.
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constraint on the maximum probe range due to the degrading ef-
fects of accumulated noise and there was no guarantee that any
of the probes would activate any goal place cell. We relax the probe
range restriction of the original model by using a hierarchy of place
cell maps each representing the environment at different scales.
This approach allows arbitrary extension of the maximum probe
range while keeping the duration of a single probe constant and
equivalently guaranteeing a predefined level of noise accumulation
regardless of the probe range.

In the absence of any sensory information we expect a rapid
accumulation of noise during a linear look-ahead scan due to
inherent neuron signal noise. Consequently, the accumulated
noise, especially in the phase space of the velocity controlled oscil-
lators, would significantly degrade the fidelity of a grid cell’s spa-
tial tuning. Our assumption is that the noise accumulation can
stay below the catastrophic degradation level for some time even
in the absence of all stimuli. This assumption is especially realistic
when the model involves a network of coupled noisy oscillators
(Zilli and Hasselmo, 2010) where the network dynamics help
maintain the signal stability even in the presence of high noise lev-
els. During actual movement the network would still accumulate
noise but additional sensory inputs, e.g., visual, olfactory, tactile,
auditory, and proprioceptive, could be used to correct for the noise
accumulation and to reduce uncertainty keeping the signal degra-
dation at acceptable levels. We are currently working on mecha-
nisms to reset the cognitive map network parameters to a
previously experienced state when the animat revisits a previously
experienced location. While this reset mechanism does not address
the noise accumulation during look-ahead trajectory scan it should
help with the problem of ‘‘loop-closure’’ in a biologically inspired
way.

The current state of the hierarchical navigation model does not
explicitly deal with potential obstacles in the environment as the
previous single level did using a reward diffusion process. We
are currently investigating ways to improve the hierarchical model
to perform successfully in the presence of obstacles. We are also
working on extending the hierarchical approach to model the
remapping phenomenon previously seen during experimental
in vivo recordings.

One of the requirements of our previous work is the existence of
a topological connectivity in the reward cell layer allowing the
propagation of a reward signal starting from the goal place cell
and decaying at each hop from cell to cell generating a gradient.
In our new hierarchical model this requirement is no longer neces-



U.M. Erdem, M.E. Hasselmo / Journal of Physiology - Paris 108 (2014) 28–37 35
sary. Eliminating the reward signal gradient in our new model re-
sults in the advantage of a simpler model and imposes less physi-
ological constraints.

There is an increasing amount of evidence supporting the
hypothesis of representation of space at multiple scales in rats.
Recordings from neurons along the dorsal–ventral axis of the
entorhinal cortex show grid cell firing fields gradually increasing
in size and separation (Hafting et al., 2005; Sargolini et al., 2006;
Giocomo et al., 2011). Stensola et al. (2012) show that in a single
rat grid cells in the MEC are organized in anatomically layered
modules with distinct scale, orientation, asymmetry, and theta-
frequency modulation. Interestingly, the clustering of MEC grid
cells is of hierarchical nature and the relative increase of spacing
between firing fields in neighboring modules varies between rats
with an across-population mean of about

ffiffiffi
2
p

. The scale increase
found experimentally by Stensola et al. (2012) would correspond
to parameter a, the relative scaling between two consecutive lay-
ers, in our hierarchical model. Place cells have not been shown to
have discrete spatial scales, but they clearly vary their scale at dif-
ferent dorsal to ventral positions within the hippocampus. Brun
et al. (2008) reported that the distance between neighboring firing
fields of grid cells increases from around 50 cm at dorsal recording
locations to around 3 m at ventral recording locations. In a similar
way Kjelstrup et al. (2008) reported that CA3 pyramidal cells show
similar scale characteristics as place field diameters increase from
less than 1 m to around 10 m along the dorsal to ventral hippocam-
pal axis. Taking into account the functional connectivity between
the two cortical regions strongly suggests an interplay between
the spatial scale representations of place cells and grid cells. Fur-
thermore, it has been postulated that the running speed might
be an important factor in the generation of hippocampal multi-
scale spatial representations (Maurer et al., 2005).

Any fast sequential activation of spatially tuned neurons with
predictive properties for the animal’s immediate future locations
would constitute a good candidate as physiological evidence for
look-ahead scans postulated in our models. The relevant physio-
logical data currently includes spiking forward sweep events
(Johnson and Redish, 2007; Pfeiffer and Foster, 2013) and sharp
wave ripple events (Foster and Wilson, 2006; Davidson et al.,
2009; Louie and Wilson, 2001; Jadhav et al., 2012) observed during
goal directed spatial tasks. Evidence gathered about the multi-scale
spatial representation in rats combined with the phenomenon of
spiking sweep events observed during rat waking behavior at
choice points (Johnson and Redish, 2007) and the sweep events to-
wards the rat’s immediate and previously visited goal location in a
2 dimensional environment Pfeiffer and Foster (2013) encourages
us about the feasibility of our hierarchical model presented here.
An immediate prediction of our model is concurrent spiking sweep
activity at choice points, similar to the events observed by Johnson
and Redish (2007), Pfeiffer and Foster (2013), at different locations
along the dorsal–ventral axis of both entorhinal cortex and hippo-
campus (specifically the CA3 region).

Recent data has been used to argue against the oscillatory inter-
ference model of grid cells (Yartsev et al., 2011; Domnisoru et al.,
2013), but our current model does not depend upon a specific
mechanism for generation of grid cells. As an alternative, we could
use grid cells generated by attractor dynamics. In this case, the ani-
mal would sample different head directions and use a tonic veloc-
ity input to a grid cell model to sample the linear trajectory in that
direction for grid cells of different scales. This would require sepa-
rate attractor networks with different widths of radial connectiv-
ity, as proposed for generation of the discrete spatial scales of
different grid cells (Stensola et al., 2012).

The idea to represent a given space at different scales has been
extensively exploited in computer science, computer vision, and
signal processing communities under the concept of ‘‘scale space’’
(Lindeberg, 1993; Sporring et al., 1997). The ‘‘scale space’’ is a com-
pact and simultaneous representation of a given signal domain at
different scales. Each level is usually obtained by passing the origi-
nal signal through smoothing (low-pass) filters. For instance, in
computer vision based object detection the size of the object to
be detected is usually unknown a priori. Hence the detection algo-
rithm can be performed at all levels of the ‘‘scale space’’ of a given
image to find the unknown size object (Crowley and Sanderson,
1987). The motivation to generate a ‘‘scale space’’ originates from
the fact that objects in the real world are usually found at different
scales. Hence objects with arbitrary size can be successfully de-
tected by an algorithm running on different levels of the ‘‘scale
space’’. A similar approach can also be found in database and graph
theory as ‘‘spatial data partitioning’’ (de Berg et al., 2008). The main
idea is to partition and index a spatial data set to optimize the time
spent to perform a query at some cost of additional space to store
the partitioned space at multiple levels. Trees are the most com-
monly used data structures to represent the data at multiple levels
in a strict hierarchy. While the original data occupies the leaves of
the tree, each intermediate node contains information about its
sub-tree. Hence when a query is performed efficient retrieval of
the relevant data is possible by following an appropriate search
starting from the root and visiting intermediate nodes at each level
of the tree. Our hierarchical model approach is closely related to
the ‘‘spatial data partitioning’’ approach using a balanced tree (de
Berg et al., 2008). Levels of the place cell map hierarchy are analo-
gous to the levels of a balanced tree where each node is a place cell.
Each node’s firing field intersects with the firing fields of its sub-
tree. Hence the root, i.e., the top level, has the lowest spatial reso-
lution and the leaves, i.e., the bottom level, have the highest spatial
resolution. The query in our model is the path to the leaf node with
an active reward cell starting from root. The purpose of each linear
look-ahead trajectory scan is to find the correct node at the next
lower level on the path to the goal leaf node. In our current model
we do not specifically concern ourselves with either space or time
optimality of the hierarchy. However, we are currently working on
several extensions inspired by graph theory keeping in mind our
model’s close relation to computational geometry.

The technical challenge is bridging the spatial representation
that autonomous systems use and the spatial representation cre-
ated by grid cells in the entorhinal cortex and place cells in the hip-
pocampus. Grid cells show stable firing over long time periods
(10 min) even in darkness, indicating robust path integration de-
spite the noise inherent in neural systems which is an extremely
challenging feature for the state-of-the-art robotic navigation. If
the biological mechanisms of grid cells could be implemented in
robots they would provide a dramatic advance over current capa-
bilities of autonomous systems. This model is biologically inspired
by the response properties of different classes of neurons, but does
not yet address the full range of biophysical details in the system. It
is a natural tendency to try to imitate nature’s ways of dealing with
the navigation problem in synthetic environments such as robots.
However, one-to-one replication ofbiological mechanisms might
not be the best course of action. For instance, humans are very
good at visually recognizing locations they have previously been
but only if they can successfully recall the relevant memory im-
prints which rely on a relatively fragile memory system. In contrast
robots do not suffer from the memory degradation effects. They are
very good at efficient data storage and retrieval up to the capacity
of the storage medium they use but are far from being as good as
humans to process visual information. Another hurdle on the way
to a good navigation model is the noise in the system. If noise accu-
mulation is not corrected for accordingly the error between robot’s
estimated location and its actual location will reach unacceptable
levels pretty quickly. One way of dealing with noise is to reset
the robot’s internal representation to a known state based on sen-
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sory input. This reset based on sensory input is a mission critical
problem for robotic SLAM (SimultaneousLocalization And Map-
ping) systems (Bachrach et al., 2012; Fallon et al., 2013; Kaess
et al., 2011) which is also known as the loop closure problem. This
problem directly relates to the ability of recognizing with high
fidelity a previously visited location. A similar project to ours
addressing the mechanisms of goal directed navigation was done
by Duff et al. (2011). Their model is mainly rule based where sen-
sory inputs trigger actions and the result of the triggered actions
are fed back through the network to reinforce the chain of actions
leading to the goal state. One of the main differences between Duff
et al. (2011) and our model is the need for multiple trials for the
learning rules to converge for a particular goal contingency. When
the goal contingency switches, e.g., changing thegoal location from
left to right arm of a T-maze, the system parameters have to con-
verge to the new fixed point following several trials. Our model,
however, is able to perform the goal finding task without the need
of additional training trials even if the goal location changes once
the environment’s spatial topology is sufficiently acquired. In a re-
cent project, Fibla et al. (2010) propose a goal directed navigation
model utilizing gradient fields for path planning towards goal loca-
tions. In light of these results it might be a better approach to imi-
tate or get inspired by parts of the biological navigation systems
that solve or improve their synthetic counterparts.
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