
BEHAVIORAL NEUROSCIENCE

A goal-directed spatial navigation model using forward
trajectory planning based on grid cells
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Abstract

A goal-directed navigation model is proposed based on forward linear look-ahead probe of trajectories in a network of head direction
cells, grid cells, place cells and prefrontal cortex (PFC) cells. The model allows selection of new goal-directed trajectories. In a novel
environment, the virtual rat incrementally creates a map composed of place cells and PFC cells by random exploration. After
exploration, the rat retrieves memory of the goal location, picks its next movement direction by forward linear look-ahead probe of
trajectories in several candidate directions while stationary in one location, and finds the one activating PFC cells with the highest
reward signal. Each probe direction involves activation of a static pattern of head direction cells to drive an interference model of grid
cells to update their phases in a specific direction. The updating of grid cell spiking drives place cells along the probed look-ahead
trajectory similar to the forward replay during waking seen in place cell recordings. Directions are probed until the look-ahead
trajectory activates the reward signal and the corresponding direction is used to guide goal-finding behavior. We report simulation
results in several mazes with and without barriers. Navigation with barriers requires a PFC map topology based on the temporal
vicinity of visited place cells and a reward signal diffusion process. The interaction of the forward linear look-ahead trajectory probes
with the reward diffusion allows discovery of never-before experienced shortcuts towards a goal location.

Introduction

The entorhinal cortex and hippocampus play a role in goal-directed
behavior towards recently learned spatial locations in an environment.
Rats show impairments in finding the spatial location of a hidden
platform in the Morris water-maze after lesions of the hippocampus
(Morris et al., 1982; Steele & Morris, 1999), postsubiculum (Taube
et al., 1992) or entorhinal cortex (Steffenach et al., 2005). Recordings
in these regions during rat behavior show neural spiking activity
relevant to goal-directed spatial behavior, including grid cells in the
entorhinal cortex that fire when the rat is in a repeating array of
locations in the environment falling on the vertices of tightly packed
equilateral triangles (Hafting et al., 2005; Moser & Moser, 2008).
Recordings also show place cells in the hippocampus that respond to
mostly unique spatial locations (O’Keefe, 1976; McNaughton et al.,
1983; O’Keefe & Burgess, 2005), head direction cells in the
postsubiculum that respond to narrow ranges of allocentric head
direction (Taube et al., 1990a; Taube & Bassett, 2003), and cells that
respond to translational speed of running (Sharp, 1996; O’Keefe et al.,
1998). Models have simulated the generation of grid cell spiking
responses using mechanisms including interference (Burgess et al.,
2007; Giocomo et al., 2007; Hasselmo et al., 2007; Hasselmo, 2008)
or attractor dynamics (Fuhs & Touretzky, 2006; McNaughton et al.,
2006; Guanella & Verschure, 2007; Guanella et al., 2007; Burak &

Fiete, 2009). A number of previous models have addressed mecha-
nisms of goal-directed spatial behavior using biological circuits. Some
models drive goal-directed spatial behavior based on modified
connectivity between place cells (Touretzky & Redish, 1996; Redish
& Touretzky, 1998), or between place cells and units representing
behavioral motor actions (Burgess et al., 1997; Arleo & Gerstner,
2000; Foster et al., 2000; Hasselmo & Eichenbaum, 2005; Zilli &
Hasselmo, 2008; Sheynikhovich et al., 2009; Duff et al., 2011).
However, previous models have not used grid cells to perform goal-
directed planning of trajectories.
The model presented here performs goal-directed forward linear

look-ahead probes of potential trajectories through the environment
using a circuit of head direction cells, grid cells and place cells similar
to a previous model (Hasselmo, 2008). The circuit drives the
formation of a place cell map via Hebbian modification of connec-
tions between prefrontal cortex (PFC) cells to encode the environ-
ment’s topology. A reward signal then propagates through the place
cell map originating from goal locations. The look-ahead trajectory of
grid cells that activates place cells associated with highest reward
signal can then be selected to guide behavior. The forward probing
might be the underlying phenomenon of the previously reported
spiking sweep events seen during rat waking behavior at choice
points (Johnson & Redish, 2007). Both the spatial encoding and the
best next direction discovery recruit the same head direction cell, grid
cell, place cell and PFC cell circuit. One of the main contributions of
our work is how the best next direction toward the chosen goal is
discovered probing the diffused reward signal via forward linear
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look-ahead trajectory readouts emanating from the animal’s current
location, while allowing discovery of never-before experienced
shortcuts in the environment.

Materials and methods

In this section we present the main ideas and constructs used to
develop the goal-directed navigation model of a virtual rat. First,
for the sake of completeness, we explain the roles and computa-
tional models of three different neuron types, i.e. the head direction
cell, grid cell and place cell. We then elaborate on how these three
neuron types give rise to a place cell map based on interactions
with PFC cortical columns, and finally show how the head direction
cell, grid cell and place cell neural circuit (Fig. 1) can exploit the
place cell map connectivity using forward linear look-ahead
trajectory probes to guide the virtual rat towards chosen goal
locations.

Notation

We show scalar parameters by italic lowercase Latin characters, e.g. d,
or in normal lowercase Greek characters, e.g. h. Vectors are shown by
bold lowercase characters, e.g. d. Vectors are row-wise unless
specified otherwise. Matrices are shown by uppercase bold characters,
e.g. W. We show an item’s position in a collection with subscripts,
e.g. h5 or pk. Superscript is reserved for power operations, with the
exception of the transpose operation, e.g. dT. We show collections
such as sets and populations by uppercase italic characters, e.g. D.
Lowercase italic bold characters represent the class of the item they
refer to, e.g. place cell p or grid cell g.

Head direction cells

A head direction cell is a neuron type specialized to significantly
increase its firing rate as the allocentric head direction of the animal
gets closer to a specific polar angle value, which we refer to as the
‘tuned’ or ‘preferred’ direction of the cell. Extensive experimental data
describe head direction cells in the deep layers of the entorhinal cortex
(Sargolini et al., 2006), and in other areas including the postsubiculum
(Taube et al., 1990a) and anterior thalamus (Taube, 1995). Our goal-
directed navigation model uses head direction cells generating speed-
modulated signals – the firing rate is proportional to both the current
head direction and the speed of the virtual rat. Note that in the
simulations presented in this paper, we assume that head direction
matches the virtual rat’s movement direction. Previous experimental
data show that the tuned directions of all head direction cells of a
single subject tend to be locked to a specific main orientation (Taube
et al., 1990b; Knierim et al., 1995). Hence, the preferred direction of
the ith head direction cell can be represented as an angular offset hi
from a main orientation h0, i.e. (hi = 1,…, m + h0), where m is the head
direction cell population size. Given the tuning kernel:

D¼ cosðh1 þ ðh0 þ wdÞÞ � � � cosðhm þ ðh0 þ wdÞÞ
sinðh1 þ ðh0 þ wdÞÞ � � � sinðhm þ ðh0 þ wdÞÞ

� �
ð1Þ

and the virtual rat’s instantaneous velocity v(t), the head direction
signals can be obtained using:

dðtÞ ¼ vðtÞ � D ¼ ½d1ðtÞ; . . . ; dmðtÞ� ð2Þ

where di(t) is the population’s ith member’s head direction signal at
time t with preferred direction hi, and wd is the error term representing
the deviation from the main orientation due to noise.

Grid cells

A grid cell is a neuron type that increases its firing rate significantly
when the animal traverses a regular array of periodic places in the
environment. The collection of locations where an individual grid cell
fires, i.e. the grid cell’s firing fields, forms a two-dimensional periodic
pattern with regular inter-field intervals and similar field areas.
Extensive experimental data show the existence of grid cells with
different inter-field spacing and field areas along the dorsal to ventral
axis of the medial entorhinal cortex (Hafting et al., 2005; Sargolini
et al., 2006). In this work we use the ‘persistent spiking model’
(Hasselmo, 2008) to generate grid cells’ spiking activity. The persistent
spiking model belongs to the class of ‘phase interference models’.

Phase interference models

The phase interference models generate the grid cell’s typical grid-like
spatial periodic spiking activity by combining several speed-modu-
lated oscillations into a single interference pattern. In an early, single
cell version of the ‘oscillation interference model’ first defined by
Burgess et al. (2007), each dendrite of a grid cell receives its input
from a population of speed-modulated head direction cells tuned
towards the same preferred direction. The speed-modulated head
direction cell inputs shift the oscillation phase of each population
relative to each other. Finally, the different network oscillations are
combined to drive the spiking activity of individual grid cells. Recent
work suggests that this mechanism could more realistically involve
interactions of different network oscillations (Zilli & Hasselmo, 2010).

Fig. 1. Head direction cell fi persistent spiking cell fi grid cell fi place cell
circuit.
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In the phase interference model based on the interaction of entorhinal
persistent spiking cells (Hasselmo, 2008), which is implemented and
used in this work’s simulations, each population of entorhinal persistent
spiking cells receive synaptic inputs from their respective head direction
cell populations tuned towards the same preferred direction. Multiple
persistent spiking cell populations send convergent input to an
individual grid cell. Consecutively, a grid cell generates spiking activity
when all its dendritic inputs receive almost simultaneous spikes from
their presynaptic persistent spiking cell populations. We reproduce here
a slight variation of the persistent spiking model from Hasselmo (2008)
for the sake of completeness as it will be used to develop and explain
other concepts further in this paper:

uði;jÞðtÞ ¼ 2p ft þ bj
R t
0 diðsÞds

� �
sði;jÞðtÞ ¼ Hð cosðuði;jÞðtÞ þ wði;jÞ þ wði;jÞÞ � sthrÞ

gjðtÞ ¼
Q

s2Sj

sðtÞ

ð3Þ

where H() is the Heaviside step function with H(0) = 0, gj(t) is the
spiking output of the jth grid cell at time t, Sj is the set of persistent
spiking cells projecting to the jth grid cell, s(i, j)(t) is the output of the
persistent spiking cell receiving input from the ith head direction cell
and projecting to the jth grid cell, sthr is the spiking threshold value of
all persistent spiking cells, and w(i, j) is the noise term. The persistent
spiking cell has phase offset w(i, j), intrinsic baseline frequency f and
scaling factor bj. Note that in this model all persistent spiking cell
baseline frequencies are the same.
All the simulations presented in this work are based on our

persistent spiking model implementation.

Place cells

One of the main requirements of many goal-directed navigation
strategies is the existence of a place cell map representation
mechanism, i.e. the ability to associate real-world locations to
neuronal activities in a one-to-one fashion. Spatial representations
generated by grid cells are of many-to-one nature – the firing fields of
a single grid cell correspond to several periodic spatial locations. Place
cells are effective candidates for the spatial representation – they
mostly tend to fire exclusively inside a specific spatial area (O’Keefe,
1976; McNaughton et al., 1983; O’Keefe & Burgess, 2005), which
allows the formation of a place cell map by exploring an environment.

Model

There are several models trying to explain the formation of place cells
from grid cell inputs (McNaughton et al., 2006; Rolls et al., 2006;
Solstad et al., 2006; Gorchetchnikov & Grossberg, 2007). These
include models in which grid cells can drive place cells without
requiring synaptic plasticity (Almeida et al., 2009, 2010). In our
model a place cell acts as an AND gate for converging inputs from
several presynaptic grid cells. The kth place cell, pk, receives its
synaptic inputs from a population of grid cells, Gk, with different firing
field separation and sizes. A place cell generates spikes whenever all
of its inputs receive almost simultaneous spikes. The computational
model for a single place cell signal is as follows:

pkðtÞ ¼ H
Y
g2Gk

gðtÞ
 !

ð4Þ

While Eqn 4 addresses the place cell activity mechanism, it does not
yet clearly explain how:

1. a place cell’s firing field can be tuned to a ‘unique’ spatial location
(selectivity);

2. a place cell’s firing field can be tuned to an ‘arbitrary’ spatial
location (arbitrariness).

The model presented in Eqn 4 accomplishes these two place cell
properties by putting together populations of grid cells, Gk, with
special characteristics explained next.

Selectivity

Selectivity can be defined as how unambiguously a single spatial
location can be encoded by a place cell. In the ideal case a place cell
should only spike at a single spatial location creating zero ambiguity
and maximum selectivity. In a significant number of cases, however,
physiological evidence shows multiple firing fields per place cell
recorded in vivo (Fenton et al., 2008). We measure the ‘selectivity’ by
the number of a single place cell’s firing fields per a given area making
selectivity dependent on the size and shape of the enclosed
environment – a place cell with multiple firing fields might be highly
selective for a smaller area, but its selectivity might suffer as the
environment grows larger. In our place cell model the selectivity can
never be optimally maximum by construction but it can be param-
eterized by a number of factors, such as the number of converging grid
cells and their intrinsic properties, as presented below.
Each population Gk contains grid cells receiving inputs from

persistent spiking cells having the same intrinsic frequency f but
different scaling constants bj. When unit-amplitude oscillations with
different frequencies and identical initial phases are summed together,
the result is an interference oscillation with amplitudes of its highest
peaks equal to the number of summed oscillations and with frequency
of its highest peaks smaller than any of its components. Consider the
toy example with several 1D unit-amplitude cosine oscillations, as
shown in Fig. 2. In this example, each cosine oscillation with
frequency f scaled by a constant bj has periodic peaks at instantaneous
phase values that are multiples of 2p. We can represent this as follows:

ð2pbjftÞmod 2p ¼ 0, ðbjftÞ 2 Z ð5Þ

Equation 5 implies that two or more cosine oscillations with
different scaling factors will be in-phase when the terms (bjft) are
simultaneously integers. If we sum these oscillations, the resultant
interference pattern will have highest peaks at instantaneous phase
locations where all the component oscillations simultaneously satisfy
Eqn 5, as shown in Fig. 2 (bottom row), with peak amplitudes equal to
the number of its unit-amplitude components. Equivalently, the
resultant oscillation’s highest peaks will occur at instantaneous phase
values equal to the common multiples of its components’ (bjft) terms.
Hence, the period of the resultant’s highest peaks will be equal to the
‘least common multiple’ (LCM; Gorchetchnikov & Grossberg, 2007)
of the individual components’ periods by definition, i.e.:

ð2pbjftÞmod 2p ¼ 0, t ¼ LCMððbjf Þ�1Þwhere j ¼ 1; . . . ;

jGk j ^ ðbjf Þ 2 Q
ð6Þ

Note that because LCM is defined for the set of rational numbers, we
limit the domain of the frequencies to rational numbers. As a result of
this analysis we observe the following characteristics of the resultant
signal.
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1. The frequency of the resultant can be made arbitrarily smaller than
any of its components’ frequencies. The summation of oscillations
with different scaling factors creates a resultant oscillation with
relatively dampened peak amplitudes in the half-period neighbor-
hood of its highest peaks. If we apply an appropriate threshold to
the resultant signal (or to the component signals before summation),
we obtain a pulse wave with a much larger period than any of its
components.

2. The presented analysis is also valid when the continuous sinusoid
signals are thresholded to produce pulse waves and the summation
operation is replaced by the product operation. The product of pulse
waves with different scaling factors generates a resultant pulse wave
with frequency significantly smaller than any of its components.

3. In the discrete case, the resultant pulse wave’s single-pulse duration
is equal to the minimum of its components’ single-pulse durations.
This characteristic can be exploited in the parameterization of a
place cell’s firing field size.

Even though characteristics (1) and (2) do not provide a signal with
a globally unique peak or spike train location, they do guarantee an
ideal selectivity up to some neighborhood range that can be
parameterized by the number and the scaling constants of its
component oscillations. The analysis provided for 1D cosine signals

also extends to the 2D case where the component cosine signals are
replaced by grid cell firing fields and the resultant signal is replaced by
the place cell firing field(s).

Arbitrariness

We define the ‘arbitrariness’ as the ability to tune a place cell’s firing
field to an arbitrary spatial location. We accomplish this by exploiting
the translational effect of the phase offset value w(j, i) of Eqn 3 on the
grid cell firing fields. In the persistent spiking model, each persistent
spiking cell is in phase with a reference oscillation at a baseline
frequency. As the animal moves in the environment, the velocity-
modulated head direction signals shift the phases of the respective
persistent spiking cells relative to the reference oscillation. While the
raw spiking activity of a persistent spiking cell population modulated
by head direction cells tuned to the same direction will not show any
location selectivity, their phase shift relative to the spikes of the
reference oscillation will show band-like patterns (Hasselmo, 2008).
The grid cell receiving inputs from different persistent spiking cell
populations will fire only when all its inputs fire almost simulta-
neously, i.e. at spatial locations where all the phase bands seen in
Hasselmo (2008) coincide. In light of these observations, we can
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Fig. 2. Didactic example for sinusoid oscillation interference with three components. (Top three rows) Component signals. Both continuous oscillations and their
thresholded pulse wave versions are shown. The threshold value is 0.8. The sinusoids are generated by a cosine function with identical frequencies but different
scaling factors. These figures do not represent the actual output of the persistent spiking model-based grid cells given in Eqn 3. (Bottom row) The interference
(resultant) signals. The resultant pulse wave is obtained by multiplying the component pulse waves. The interference signal has maximum peaks with frequency
smaller than any of its components, as expected.
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conclude that by methodically translating the locations of these bands
(or equivalently by shifting the phase of persistent spiking cells by
constant offsets), we can translate the locations of a grid cell’s firing
fields. Furthermore, by finding a mapping from the phase offset
amount onto the firing field translation amounts, we can parameterize
the firing fields’ spatial locations. The phase offset translating the grid
cell j [Dx, Dy] units in Cartesian space is:

wði;jÞ ¼ �2p f þ bj½Dx;Dy� cosðhiÞ
sinðhiÞ

� �� �
ð7Þ

The minus sign in front of the right-hand-side of Eqn 7 is necessary
because translating an oscillation to the right is equivalent for its phase
to shift at an earlier offset. In summary, application of Eqn 7 to all
persistent spiking cells converging to the jth grid cell translates the grid
cell’s firing fields by the given amount in the Cartesian space, hence
achieving the arbitrariness.

Place cell map

In our navigation model the place cell map is a collection of PFC
cortical columns bijectively connected to the hippocampal place cells
(Fig. 3). Cortical columns of the PFC have been included in previous
models of goal-directed behavior where, similar to our model, spread
of reward activity drives selection of the next motor activity towards
the achievement of a goal state (Gorchetchnikov & Hasselmo, 2005;
Hasselmo, 2005). Previous experimental work reported observation of
place cell-like activity confined to specific regions of the behavioral
environment in recordings from the medial PFC (mPFC) during goal-
directed navigation planning in rats (Hok et al., 2005). Furthermore,
experimental papers have also reported observations of anticipatory
firing of rat mPFC cells prior to achievement of a goal such as release

of food pellets (Burton et al., 2009), similar to the anticipatory firing
of dorsal hippocampal cells (Hok et al., 2007). Bilateral lesions of the
ventral and intermediate hippocampus reduce the mPFC activity,
suggesting co-operation between the hippocampus and PFC during
goal-directed activity (Burton et al., 2009). This co-operation is also
supported by recordings showing that firing of mPFC neurons is
phase-locked to hippocampal theta rhythm (Hyman et al., 2005; Jones
& Wilson, 2005). Experimental data also support a potential role of rat
PFC neurons in maintenance of working memory during goal-directed
tasks (Baeg et al., 2003).
In our model each PFC cortical column contains three cell layers

connected to each other: a recency cell layer Q, a topology cell layer U
and a reward cell layer R. The recency layer cell qk maintains the
recency signal qk associated to the place cell pk. The recency signals
are used to update the lateral connections among the topology layer
cells. The topology cell layer’s lateral connections are updated
incrementally as the virtual rat experiences its environment. They
represent the environment’s spatial topology in the PFC. The reward
layer cell rk maintains the reward signal rk associated to the place cell
pk. The reward signal plays a crucial role in planning navigation
directions towards previously visited goal locations, such as food
sources or safe places. The functionality of all PFC cortical column
cell types and signals are explained in detail below.
The PFC cortical column’s topology layer cells are connected to

each other via lateral connections represented by the adjacency matrix
Wu. The place cell map encodes the spatial topology of the
environment’s visited areas via lateral connections enabling the
reward signal diffusion process. When the virtual rat is first introduced
to a never-before experienced environment the corresponding place
cell map is incrementally generated by recruiting new place cells and
PFC cortical columns, and updating the respective PFC signals
accordingly. While hippocampal place cells provide raw information
about the virtual rat’s location, e.g. ‘I am at location D’, the PFC
cortical columns augment the hippocampal information by the
neighborhood context, e.g. ‘I am at location D, which is close to
locations A, B and F’. For the rest of the paper the recruitment of a
new place will also imply the recruitment of a new PFC cortical
column and vice versa.

Place cell recruitment

When the virtual rat is introduced to a never-before experienced
environment, a place cell p0 is recruited receiving its synaptic inputs
from a population of grid cells, G0, with zero phase offset vectors
representing the virtual rat’s original starting position. The G0’s grid
cells’ phases act also as an anchor point in the recruitment of the
successive grid cells in the same environment. As the virtual rat
explores the new environment following a smoothed random walk
trajectory, it incrementally recruits new place cells. What triggers the
exclusive representation of a spatial location by a place cell is still
an open question. In our implementations the virtual rat recruits new
place cells either deterministically or in a pseudo-random fashion –
in the deterministic case the virtual rat recruits a new place cell as
soon as it enters a location in the environment that is not
represented by any other existing place cell. This approach creates
a relatively dense representation as all place fields are highly
overlapping. In the pseudo-random case the virtual rat recruits a new
place cell when: (i) the location is not represented by any other
place cell as in the deterministic case; and (ii) a sample drawn at
each time step from a probability distribution is smaller than a given
threshold value. In the pseudo-random case the density of the place
cell firing fields is parameterized by the probability distribution and

Fig. 3. Place cell fi PFC cortical column network. The letters p, q, u and r
represent, respectively, place cell, recency cell, topology cell and reward cell.
The cortical columns are also connected laterally via topology cell layer
enabling emergence of a temporal neighborhood of the experienced environ-
ment. In this illustration, only a subset of possible lateral connections are
shown. All connections without arrowheads are bidirectional.
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the threshold value. Examples for both triggering mechanisms are
given in Fig. 4.

Recruitment of a new place cell also means recruitment of a new
grid cell set and their respective presynaptic persistent spiking cells.
The virtual rat tunes the new place cell to its current location by
recruiting a new set of grid cells that are the translated versions of the
very first grid cell set G0. The translation is equivalent to setting the
new grid cells’ phase and phase offset vectors to G0 grid cells’ phase
vectors and to their additive inverses, i.e.:

Gkþ1 ¼ fgðkþ1;1Þ; . . . ; gðkþ1;jÞ; . . . ; gðkþ1;nÞg
Sðkþ1;jÞ ¼ fsðkþ1;1;jÞ; . . . ; sðkþ1;i;jÞ; . . . ; sðkþ1;m;jÞg

uðkþ1;i;jÞ ¼ uð0;i;jÞ
wðkþ1;i;jÞ ¼ �uð0;i;jÞ

ð8Þ

where n is the number of grid cells feeding synaptic input to a single
place cell and m is the head direction cells.

Temporal neighborhood topology

We impose a topology on the place cell map by creating lateral
connections among PFC’s topology layer cells, as shown in Fig. 3.
Each newly recruited place cell pk is associated with a new PFC
column containing a recency cell qk with recency signal qk, a
topology cell, and a reward cell rk with reward signal rk. The recency
signal value qk is proportional to the elapsed time from the virtual
rat’s most recent visit to the place cell pk. As long as the virtual rat is
in the firing field of some place cell pk the corresponding recency
signal qk stays at 1. Otherwise, at each time step, qk slowly leaks
towards zero following an exponential decay with parameter e and
decay rate k, which are constant for all recency cells. The value of the
recency signal qk Dt time units after the virtual rat’s last visit to place
cell pk is:

qkðDtÞ ¼ e�kDt ð9Þ

Eachtime the virtual rat visits a place cell pk, the topology layer’s
lateral connections are reinforced by Hebbian updates using the
following equation:

Wu ¼Wu _ HðqT � dÞ � Hðq� 1Þ ð10Þ

where q = [qi]i = 1, … , k is the recency signal vector, d is the
recency signal threshold, H() is the Heaviside step function with
H(0) = 1, and V is the element wise OR operator. Equation 10
updates the topology layer’s lateral connections by introducing or
reinforcing connections between the currently visited PFC topology
cells, represented by the indicator vector H(q)1), and the recently
visited PFC topology cells, represented by the indicator vector
H(qT)d). The threshold d determines the time window for a PFC
topology cell to be considered as recently visited. The use of the
recency effect for the connection updates, in a strictly algebraic
sense, imposes a temporal neighborhood disc with radius d
surrounding each place cell (recall that there is a one-to-one
relationship between place cells and the PFC cortical column cells).
This neighborhood relationship is not necessarily metric so the graph
induced by Wu is not necessarily planar. The recency signals are
time based, and hence they depend on the virtual rat’s speed and the
arc-length of the trajectory taken while visiting consecutive place
cells.

Navigating to a goal

So far we laid down the necessary foundation for the goal-directed
navigation model by showing the following.

1. How grid cells emerge using head direction cell inputs, and place
cells emerge using grid cell inputs.

2. How the presented place cell model is both selective and arbitrary.
3. How the place cell map can abstractly represent an environment’s
topology using PFC cortical columns as its main components.

4. How a temporal recency effect can be used to connect PFC cortical
columns by Hebbian updates.

In this section, we present our navigation model that can:

1. pick a goal location by activating the corresponding place cells and
PFC reward cells;

2. find the best next direction to proceed towards the goal location.
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Fig. 4. Illustrations of deterministic and pseudo-random recruitment of place cells. (Left) Place cells are recruited using the deterministic triggering mechanism.
Note the density and high portion of overlap. (Right) Place cells are recruited using the pseudo-random triggering mechanism. The recruitment probability is 0.001
for each simulation iteration. Note the increased sparsity. In both cases the place field diameters are 20 cm. The upside-down and upright triangles, respectively,
show the start and end locations. The rat trajectory is from experimental data (Sargolini et al., 2006).

Forward linear look-ahead trajectory model 921

Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
European Journal of Neuroscience, 35, 916–931



Goal representation

We define a goal as a task-specific spatial location in the environment
such that the virtual rat’s arrival to that location is considered success.
The virtual rat may reach a goal in two ways: (i) by chance, during
random exploration of a new environment when the goal location is not
yet represented in the place cell map, e.g. reaching a submerged
platform in a Morris water-maze task during the first trial; or (ii) by
strategy, following a predefined deterministic strategy made possible
by the virtual rat’s recent interactions with the goal and the
environment, e.g. reaching the same submerged platform after several
trials. In our navigation model we represent goals by PFC reward cells
and their respective reward signals r = [ri]i = 1,…, k. In this context a
place cell pk connected to a PFC column with reward signal equal to 1
represents a goal location. Hence, when the virtual rat decides on a goal
location it sets the corresponding reward cell’s reward signal value to 1.

Forward linear look-ahead trajectory probes

Once the reward signals are activated, the virtual rat decides on what
direction to proceed to reach the goal by probing several forward

linear look-ahead trajectory probes with different headings starting
from its current location with range qprobe (Fig. 5). Note that each
forward linear look-ahead trajectory probe fully engages the head
direction cell fi persistent spiking cell fi grid cell fi place cell
circuit as if the virtual rat was physically moving along the probe
trajectory, but on a faster scale possibly in a couple of theta rhythm
cycles, without any behavioral locomotion. The location of the rat,
during actual navigation or forward linear look-ahead trajectory
probing, is represented by shifts of the phase of individual persistent
spiking neurons relative to their baseline rhythm with frequency f.
During the normal navigation this baseline rhythm is in the theta band,
7 Hz in our simulations. During forward linear look-ahead trajectory
probes each persistent spiking cell’s intrinsic baseline frequency f
jumps to about gamma band, 200 Hz in our simulations, while the
velocity-modulated head direction input dj is scaled up significantly by
increasing its respective scaling constant bj. The scaling constant bj is
inversely proportional to the duration of a forward linear look-ahead
trajectory probe. Hence, manipulation of the scaling constant bj allows
the model to arbitrarily shorten the duration of a complete cycle of
linear look-ahead trajectory probe scan. For instance, at a constant
speed of 20 cm ⁄ s the virtual rat can travel 100 cm in 5 s on a straight
line during actual navigation. During linear look-ahead trajectory scan
phase the same amount of distance (100 cm) can be covered by a
single probe in 100 ms (Figs 6 and 7) if the scaling constant bj
increases 50 times, and in 10 ms if bj increases 500 times.
Furthermore, the number of linear look-ahead trajectory probes might
also be synchronized by the overall theta rhythm. For instance, if theta
frequency is 7 Hz it would take <2 s to finish a complete scan of 20
probes at a rate of two probes ⁄ theta cycle. The use of theta rhythm
during the model’s forward linear look-ahead trajectory probing is
supported by the presence of theta rhythm during forward sweeps in
neurophysiological recordings (Johnson & Redish, 2007) and in
stationary animals attending to salient stimuli (Sainsbury et al., 1987).
However, in our simulations we do not use theta oscillation to
synchronize the number of probes. Exceptions to the virtual rat’s
immobility during the probe may involve turning to different
directions as in vicarious trial-and-error (Johnson & Redish, 2007).
The forward linear look-ahead trajectory probes generate spiking
activity that can be observed as the virtual rat ‘thinking of following’ a
linear trajectory. In these simulations, during each forward linear look-
ahead trajectory probe the speed-modulated head direction activity
represents a constant radial direction and speed (though they could
conceivably be shifted). The constant speed-modulated head direction
activity causes a linear shift in the phase of persistent spiking cells that
cause periodic activity of different grid cells. This causes sequential
activation of place cells that are on the linear trajectory coded by the
grid cell phase, as shown in Fig. 7.
If the place cell(s) connected to reward cells with active reward

signals (representing the goal location) start to spike during a forward
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Fig. 5. Illustration of forward linear probes. The virtual rat’s location is
represented by the small blue disc. The goal place cell’s firing field is shown by
a thicker edge. In this simplified illustration the virtual rat probes eight
directions separated by 45� increments. The probe represented by the green line
activates the goal place cell, hence the best next direction for the virtual rat to
follow is towards northeast. For interpretation of color references in figure
legend, please refer to the Web version of this article.
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Fig. 6. Illustration of a single forward look-ahead linear trajectory probe (arrows) passing through a single place cell firing field (red circle). The probe starts from
the virtual rat’s current location, i.e. (0,0) in egocentric Cartesian coordinates, and heads towards east (0�). Its range is 100 cm. The forward look-ahead linear
trajectory probe duration is 100 ms. For interpretation of color references in figure legend, please refer to the Web version of this article.
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probe, then the virtual rat proceeds in the direction of the forward
probe directly leading to the goal location. Note that activation of
goal place cell(s) by a forward probe conveys only directional
information but not range. As soon as any goal place cell starts to
spike during the virtual rat’s translational motion the goal is
considered to be achieved.

The full engagement of the head direction cell fi persistent spiking
cell fi grid cell fi place cell circuit during forward linear look-ahead
trajectory probes requires a mechanism to store the actual state of the
network, i.e. oscillation phases, etc. before the probe and to restore it
after the probe. We assume this mechanism but do not explicitly
model it.

Persistent spiking cell signals modulated by 0° head direction:

Persistent spiking cell signals modulated by 120° head direction:

Persistent spiking cell signals modulated by 240° head direction:

Grid cell 1 action potentials:

Persistent Spiking Cells → Grid Cell

0 10 20 30 40 50 60 70 80 90 100

Grid cell 1 action potentials:

Grid cell 2 action potentials:

Grid cell 3 action potentials:

Place cell 1 action potentials:

Grid Cells → Place Cell

Time (millisecond)

Fig. 7. Illustration of persistent spiking cell fi grid cell fi place cell circuit engagement during a single forward look-ahead linear trajectory probe shown in
Fig. 6. (Top box) The time courses of three persistent spiking cells feeding synaptic inputs to grid cell 1. (Top box, first three plots) The three persistent spiking cell
signals shifted by velocity-modulated head direction cells with preferred angles 0, 120 and 240�. Blue shows the persistent spiking cells’ subthreshold membrane
potential oscillations, and red shows action potentials. (Top box, bottom plot) The action potentials of grid cell 1 receiving synaptic input from the previous three
persistent spiking cells. Grid cell 1 spikes whenever its presynaptic persistent spiking cells are in phase with each other. (Bottom box) The action potential time
courses of grid cells 1, 2 and 3 feeding synaptic inputs to place cell 1 with a 20-cm radius firing field centered about 30 cm far from the virtual rat’s location. (Bottom
box, first three plots) Action potentials of grid cells 1, 2 and 3 showing, respectively, increasing firing field radii. (Bottom box, last plot) Action potentials of place
cell 1 driven by grid cells 1, 2 and 3. Place cell 1 acts like an action potential coincidence detector for its presynaptic grid cells. The scaling constant bj increases 50
times during forward look-ahead linear trajectory probe with respect to its value during actual navigation, i.e. 20 cm ⁄ s. Hence, the duration of the forward look-
ahead linear trajectory probe is 100 ms. For interpretation of color references in figure legend, please refer to the Web version of this article.
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One of the advantages of this probing approach is that it does not
require the explicit long-term storage of any directional information in
the place cell map concerning the navigation direction from one place
cell firing field to another as proposed in some of the previous
approaches (Redish & Touretzky, 1998; Foster et al., 2000). Our
model requires a very short-term storage of the navigation network
state during the forward probing. Furthermore, our model does not
require storage of fixed route vectors between place cells and goal
locations. Instead, the virtual rat can pick any place cell as a goal
location, and decide on its next movement direction based on the
topology of the place cell map. The discovered goal direction is a
close approximation to the real integrated direction from the virtual
rat’s current location towards the goal, thereby allowing the virtual rat
to find shortcuts in the environment.

Reward signal diffusion

Nevertheless, there is an important limitation with this version of the
goal-directed navigation approach – the goal place cell is not
necessarily guaranteed to be in the range qprobe of the forward probes.
Thus, a full scan might be unable to activate the goal place cell, hence
forcing the virtual rat into random exploration. One way of dealing
with this issue is to expand the probe range, increasing a probe’s
chances to reach the goal location. However, this approach has the
following caveats.

1. We could guarantee activation of the goal place cell by at least one
probe if we would be able to set the probe range to half the
diameter of the graph induced by place cell map’s topology layer’s
lateral connections. But because the place cell map topology is not
necessarily planar, any computed graph diameter would be
meaningless for this purpose.

2. A longer probe range would require a longer engagement of the
head direction cell fi persistent spiking cell fi grid cell fi place
cell circuit, which would be highly prone to the degrading effects
of accumulated signal noise in the absence of corrective inputs
from other sensor modalities, e.g. visual, tactile, olfactory, etc.
(Zilli et al., 2009).

3. The direction towards the goal might be obstructed.

We address these issues by allowing the virtual rat to reach the final
goal in several steps following a reward signal gradient obtained by a
diffusion process.

The main idea of reward diffusion is to create a gradient in the place
cell map allowing the virtual rat to iteratively hill-climb through
intermediate goals and finally reach the hill’s summit, i.e. the final
goal. Starting with the reward signal vector where only the reward
cells associated with the goal place cells have value 1 and all others 0,
the diffusion process update equations are as follows:

að0Þ ¼ r
aðtÞ ¼ ðt þ 1Þ�1

aðtÞ ¼ Hðaðt � 1Þ �WuÞ
rkðtÞ ¼ maxðakðtÞ � aðtÞ; rkðt � 1ÞÞ

ð11Þ

where a(t) is the indicator vector for PFC reward cells visited at tth

diffusion iteration, H() is the Heaviside step function with H(0) = 0,
and a(t) is the diffusion decay value that can be any monotonically
decreasing function. The diffusion is implemented in a breadth-first
fashion visiting all connected reward cells of the place cell map. The
adjacency matrix Wu is not necessarily symmetric by construction. If

preferred, this can be accomplished by an OR operation between
H(Wu) and its transpose. The maximum operator in Eqn 11 guarantees
that the reward signal is updated only during the first diffusion visit of
each reward cell, as the place cell map is not necessarily acyclic.
The diffusion process happens once just after the selection of a new

goal location. After diffusion, the virtual rat performs several forward
linear look-ahead trajectory probes and moves toward the probe
direction that activates place cell associated with PFC reward cell
having maximum reward signal among all place cells activated by all
probes. A probe is parameterized by its egocentric direction hi and
range qprobe. More specifically, the direction h satisfying the following
equation, where PROBEh is the set of indices of the place cells
(equivalently of the PFC reward cells) activated by the probe
emanating towards egocentric heading h, is selected as the next
movement direction towards the goal:

argmax
h

¼ fmaxðfrPROBEhgÞg ð12Þ

While the number of unique probe headings during each full scan is
an important parameter of the model, directions activating maximum
reward signal are agnostic to the actual order in which the probes are
executed. In our simulations, a complete forward linear look-ahead
trajectory scan involves 100 linear look-ahead trajectory probes with
egocentric directions (h) uniformly distributed from )140� to 140�,
where 0� is the virtual rat’s egocentric heading angle. More details are
in the section on ‘Simulation environment’.
If the goal place cell is not in the range of the current forward linear

look-ahead trajectory probe, the virtual rat proceeds in the direction of
the discovered probe for a fixed amount of distance (4 cm) and then
starts another scan. Because the reward signal gradient has its peak at
the final goal location by construction, the virtual rat is guaranteed to
reach the goal after a finite number of steps. When the virtual rat
should initiate a new probe is an open question. One potential answer
is when the virtual rat encounters a novel stimulus, e.g. a novel path in
the previously experienced part of the environment; another answer is
when the virtual rat encounters decision points, e.g. turning points or
junctions in a maze.

The reward signal diffusion approach avoids the previously noted
caveats as follows:

1. the probe range can be relatively small, keeping the degrading eff-
ects of signal noise accumulation at manageable levels;

2. the reward signal gradient naturally allows the virtual rat to pick the
best next direction circumventing obstructions in the environment.

Shortcut discovery

It is a natural capability of the goal-directed navigation strategy
presented so far to find a shortcut to the goal location in an open field,
i.e. in the absence of any obstacles in the environment. The forward
linear look-ahead trajectory probe direction activating the goal place
cell(s) provides the most direct way to the goal location from the
virtual rat’s current location by construction. If the range of the probe
is not long enough to activate the goal place cells from the virtual rat’s
current location, then the virtual rat follows a piece-wise linear
trajectory towards the goal visiting transient waypoints using the
reward signal gradient. Even though the piece-wise trajectory is not
guaranteed to be the shortest path, it is guaranteed to be not longer
than any other path taken previously to the goal location from the
same starting location.
The presented goal-directed navigation strategy is also capable of

exploiting new shortcuts in an environment with obstacles. The virtual
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rat first creates a representation of the environment in its place cell
map by random exploration. We assume that the virtual rat is able to
detect and avoid obstacles by using sensory inputs such as its whiskers
and ⁄ or its eyes. Once the virtual rat has sufficient information about
the goal location it engages the forward linear look-ahead trajectory
probe mechanism to reach the goal. The virtual rat probes only
directions that are not obstructed in its immediate vicinity (2 cm) by
an obstacle. If we remove some obstacles or parts of obstacles from
the environment then the virtual rat would also be able to generate
forward probes in the direction of the missing obstacles. If any of these
forward probes, which were previously blocked by the removed
obstacles, activates a place cell with maximum reward signal then the
virtual rat will move through the newly available shortcut to reach the
goal location. One important caveat in this approach is that if the range
of the forward probes is less than the length of the new shortcut then
the virtual rat will not be able to exploit the shortcut as no probe will
be able to completely cross through the new opening. Recall that the
space previously occupied by the obstacle is not yet represented by
any place cell, but the forward linear look-ahead trajectory probe
mediated by grid cell phase can move through regions of space not
encoded by place cells until the forward probe reaches a location
previously coded by a place cell.

Simulation environment

All simulations are coded and performed using matlab version
R2009b. For all simulations, the simulations’ single iteration epoch is
set to 0.02 s. Each place cell in the place cell map receives inputs from
three unique grid cells generating firing fields with diameters about 20,
40 and 60 cm. During actual navigation the three grid cells receive
bijective inputs from three unique persistent spiking cells having
frequency (f) 7 Hz, spiking threshold value (sthr) 0.9, and scaling
factors (bj) 0.01, 0.004 and 0.002. During forward linear look-ahead
trajectory probes the three persistent spiking cells’ frequencies jump to
200 Hz, and their scaling factors increase 100 times to 1, 0.04 and
0.02. Finally, the three persistent spiking cells receive bijective inputs
from three head direction cells with preferred directions 0, 120 and
240�. The recency threshold d is chosen such that connections

between all place cells visited in the last 3 s and the current place cell
get reinforced according to Eqn 10. During each complete scan 100
forward linear look-ahead trajectory probes sequentially occur at 2.82�
intervals, starting from )140� and ending at 140�, where 0� is the
virtual rat’s egocentric heading angle. All forward linear look-ahead
trajectory probe lengths are set to 200 cm.

Virtual rat model

We use a virtual rat for all our synthetic experiments. The virtual rat
uses first order motion dynamics, i.e. constant speed and no
acceleration. It also has the capability of detecting and avoiding
obstacles in the environment by a limited line-of-sight mechanism.
The line-of-sight mechanism can only classify the virtual rat’s
egocentric directions as obstructed if an obstacle is closer than 2 cm
to the virtual rat, or as free if no obstacle is present in the range of
2 cm. The virtual rat has two predefined behaviors: exploration and
target seeking. The exploration behavior enables the virtual rat to
experience its current environment by iteratively picking random
transient waypoints in its limited line-of-sight area. The target-seeking
behavior directs the virtual rat to a given location in its current
environment. We would like to emphasize that even though the virtual
rat uses a line-of-sight-based obstacle-avoidance mechanism, the only
inputs for the construction and utilization of the place cell map for
goal navigation purposes are the virtual rat’s velocity vectors. The
speed of the virtual rat throughout the simulation experiments is
constant at 20 cm ⁄ s, except during the forward linear look-ahead
trajectory probes during which the virtual rat is stationary. Further-
more, the virtual rat performs a full scan of forward linear look-ahead
trajectory probes after each 4 cm of travel during test trials.

Results

In this section we provide the results obtained by conducting several
synthetic experiments using the proposed goal navigation framework
in a simulated Morris water-maze (Morris et al., 1982), a Tolman
maze (Tolman et al., 1992) and a hairpin maze (Alvernhe et al.,
2008). More specifically, we report four sets of simulations. The first
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Fig. 8. Morris water-maze goal-directed navigation simulations in ideal conditions. The escape platform is shown as a green square in the upper-right quadrant. The
start and end locations of the trajectories are shown with upside-down and upright triangles, respectively. The place cell firing fields are shown as red circles. Goal
place cell firing fields are shown as red circles with thicker perimeters. (Left) The trajectory (dashed blue lines) and the place cell map after the training trial. (Center)
Five test trial trajectories using the same starting location as the training trial. Note the formation of new place cells (additional red circles) during test trials. (Right)
Fourteen test trial trajectories using starting locations other than the one used in the training trial. In all test trials the virtual rat is able to proceed directly to the goal
platform as expected. For interpretation of color references in figure legend, please refer to the Web version of this article.
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set uses simulated Morris water-maze (Morris et al., 1982) where all
conditions are ideal, i.e. no noise, no obstacles. In the second set of
experiments we inject noise in the head direction signals or the grid
cell signals independently, and compare Morris water-maze escape
latencies vs. the amount of noise. In the third and fourth sets of
experiments, we show our system’s ability to exploit the never-before
experienced shortcut paths in a simulated Tolman maze (Tolman
et al., 1992) and a hairpin maze (Alvernhe et al., 2008). In all trials we
end the simulation and classify it as success when: (i) the virtual rat
touches the goal platform; or (ii) the virtual rat enters the firing field of
a goal place cell. The virtual rat starts each set of experiments with an
empty place cell map, and continues to update its place cell map
during both the training and test trials. The first trial of each set of
experiments is a training trial, where the virtual rat is expected to
discover the goal platform for the first time by random exploration.
We do not impose a time limit for the training trials. During each test
trial we end the simulation if the virtual rat is not able to find the goal
platform in less than 30 seconds.

Morris water-maze simulations

We conduct the virtual Morris water-maze simulations with the goal
platform placed in the upper-right quadrant. The water-maze is a

circular pool with diameter equal to 120 cm, and the escape platform
is a square area with each side equal to 18 cm.
In the first set of experiments all signals in the head direction cell,

grid cell and place cell circuit are ideal with no noise, as shown in
Fig. 8. During the training trial of this simulation, the virtual rat
performs a random exploration of the Morris water-maze until it finds
the hidden platform. After the training trial (Fig. 8, left), we test the
performance of the model for two conditions: (i) starting from the
same location as the training trial (Fig. 8, center); and (ii) starting from
several locations other than the one used in the training trial (Fig. 8,
right). After the random exploration of the training trial, the virtual rat
is able to find a direct route towards the platform with a single scan, as
expected, using the forward linear look-ahead trajectory probe
approach for both test conditions, because the probe range is long
enough to activate the goal place cell recruited during the training trial.

Noise effect

The second set of experiments shows the behavioral effect of head
direction cell or grid cell signal noise on the performance of the
navigation model. We chose to inject zero mean independent and
identically distributed Gaussian noise with exponentially increasing
standard deviations to the head direction signals and the grid cell
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Fig. 9. Morris water-maze goal-directed navigation simulations with noisy forward linear look-ahead probes. Only a small subset of trials is shown. The dashed
dark blue trajectories represent successful trials (escape time <30 s) and the dashed light blue trajectories represent failed trials. The top row shows the behavioral
effect of the head direction signal degraded by i.i.d. zero mean Gaussian noise with exponentially increasing standard deviation. The bottom row shows the
behavioral effect of the grid cell noise with the same amount of noise as the top row. There is a noticeably higher degree of performance loss due to the grid cell
signal noise as opposed to the head direction signal noise, which is evident from the trajectory arc-lengths. A statistical analysis is given in Fig. 10. For interpretation
of color references in figure legend, please refer to the Web version of this article.
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signals in different experiments. We performed 100 trials for each noise
standard deviation value and place of injection, i.e. grid cells vs. head
direction cells. The noise is injected only during the forward linear

look-ahead trajectory probes to simulate the absence of sensory inputs,
which most probably would be used to correct the signal corruption.
The signals are noiseless during actual movement of the virtual rat. We
aim to simulate the uncertainty in the self-perceived orientation with
the head direction signal noise and the uncertainty in the spatial coding
with the grid cell signal noise. The behavioral effects of the signal noise
are shown in Fig. 9. Both the head direction signal noise and the grid
cell signal noise illustrations show their disruptive effects on the
navigation performance. The navigation model seems to be more
resilient to the head direction signal corruption than the grid cell signal
corruption caused by the same amount of noise. This tendency
becomes clear in the uniformity test statistics plot of Fig. 10. Note that
while the relation between signal noise and navigation model
performance is also dependent on many other parameters, e.g. signal
thresholds, grid cell field spacing, place cell field size, etc., the
presented analysis is a first step in showing the relative effect of the
signal noise at different stages of the navigation circuit.

Tolman shortcut maze simulations

The third set of experiments shows the navigation model’s intrinsic
ability to exploit never-before experienced shortcuts in the environ-
ment to reach a previously discovered goal location using simulated
versions of Tolman’s shortcut mazes (Tolman et al., 1992). In these
experiments we let 10 virtual rats perform a single training trial each in
the first Tolman maze (Fig. 11, left). After the training trial each
virtual rat performs a test trial in the second Tolman maze (Fig. 11,
right). During the test trials each virtual rat is able to exploit the correct
new shortcut to reach the goal location (Fig. 11, right). The forward
linear look-ahead trajectory probe along a pathway not represented by
any place cell is made possible by the continuous periodic nature of
the grid cell signals coding the environment, hence allowing shortcut
discovery. As described in the Materials and methods, the forward
linear look-ahead trajectory allows sequential probing of different
individual head directions, with each different head direction causing
shifts in the phases of persistent spiking cells to cause progressive
shifts in grid cell activity representing different locations in a line
along that specific head direction. This allows the rat to sequentially

cm

cm

–50 0 50

–40

–20

0

20

40

60

80

100

120

140

Tolman Maze Training Trials

cm

cm

–50 0 50

–40

–20

0

20

40

60

80

100

120

140

Tolman Maze Test Trials

Fig. 11. The Tolman shortcut experiments. (Left) The maze Tolman used to train the rats. Goal platform is the green square at the north-east end of the linear path.
Ten virtual rats are trained in this maze. Each virtual rat performs a single training trial starting from a point close to the path’s bottom entrance. Dashed blue lines
show virtual rat trajectories. (Right) Tolman’s test maze. During test trials the path used during training is blocked. Each of the 10 trained virtual rats starts from a
point close to the bottom of the circular area. Only one of the radial arms is the correct one. All virtual rats are able to pick the correct radial arm leading to the goal
platform. For interpretation of color references in figure legend, please refer to the Web version of this article.
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sample a series of different head directions corresponding to the
direction of each arm of the radial arm in the second Tolman maze,
until it finds the direction that activates the goal representation. The
virtual rat can then select that specific head direction to correctly
approach the goal location.

Hairpin shortcut maze simulations

The fourth set of experiments further demonstrates the ability of the
navigation model to discover and exploit never-before experienced
shortcuts in the environment using a hairpin maze (Alvernhe et al.,
2008). In these experiments we let 10 virtual rats perform a single
training trial each in the hairpin maze (Fig. 12). After the training trial
each virtual rat performs five test trials in a maze with a specific shortcut
opened between the segments of the maze. Each hairpin maze used for
the test trials allows a different shortcut towards the goal platform
(Fig. 12). All virtual rats are able to exploit the shortcuts in all test trials.

Discussion

The model presented in this paper demonstrates goal-directed behavior
for finding a spatial goal, such as a hidden platform in the Morris
water-maze or food reward in the Tolman task or the hairpin task,

addressing the potential circuit mechanisms underlying the role of
different regions demonstrated by lesion data in rats. The circuit
demonstrates how mechanisms of goal-finding can be supported by
spatial representations provided by grid cells in entorhinal cortex
(Steffenach et al., 2005; Moser & Moser, 2008), head direction cells
in the postsubiculum (Taube et al., 1990b, 1992) and place cells in the
hippocampus (Morris et al., 1982; Steele & Morris, 1999). The model
also shows the selection of a route through barriers such as the
pathway to reward in the hairpin task (Alvernhe et al., 2008;
Derdikman et al., 2009). The spatial behavior of the model uses
input from cells coding head direction (Taube et al., 1990b) and speed
(Burgess et al., 1998) to update a phase interference model of grid cell
activity (Burgess et al., 2007; Hasselmo, 2008) that then drives the
activity of simulated hippocampal place cells.
One important new feature of this model relative to other models is

the sampling of forward linear look-ahead trajectory probes through
the environment, based on head direction activity driving a progres-
sive shift in spiking phase in the grid cell model. Sequential readout of
possible forward trajectories based on a sequential shift in head
direction allows look-ahead sampling of multiple possible forward
trajectories to find the one that intersects with the goal location. This
could allow a rat to select its direction based on possible pathways
through the environment, even if the trajectory crosses a portion of the
environment that the rat has not previously visited. The forward
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trajectory readout could underlie the spiking sweep events seen during
rat waking behavior at choice points in a tone-cued alternation task
(Johnson & Redish, 2007). This type of forward trajectory readout
could also underlie replay during sleep (Skaggs & McNaughton, 1996;
Louie & Wilson, 2001), as modeled previously using a variation of
this network (Hasselmo, 2008; Hasselmo & Brandon, 2008). It is
possible that the forward probes would include circuits for generation
of sequences of activity within the hippocampal formation (Hasselmo
& Eichenbaum, 2005; Lisman et al., 2005).

The proposed navigation model is not dependent exclusively on the
head direction cell–persistent spiking cell–grid cell network. Any
mechanism giving rise to the formation of place cells and continuous
coding of the space could potentially work seamlessly in the proposed
goal-directed navigation model. Our aim here is to show that the
previous grid cell models based on phase interference are good
candidates fulfilling both requirements – they can be used to generate
place cell representations and they have the ability to represent the
space in a continuous way allowing linear look-ahead along specific
trajectories to evaluate possible directions of movement in a task. This
flexible sampling of possible forward trajectories through the
environment allows goal-directed behavior in open field environments
with only sparse place cell coding, and allows the finding of shortcuts
in a variety of different tasks.

The question of when to recruit place cells to represent locations is
an open and important question relevant to the proposed model’s
performance. In the current implementation place cells are recruited
following an ad hoc pseudo-random method that might not result in a
good representation. One potential idea is the use of salient contextual
changes in the environment, such as sharp turns or choice points (Fibla
et al., 2010), together with coverage constraints, i.e. guaranteeing
minimum distance between closest place cells. This is one of our
current research areas to improve our model’s performance.

Another question is when to perform a full scan of forward linear
look-ahead trajectory probes in order to find the next direction to
follow on the way to the goal location. Currently, the virtual rat
performs a full scan after each 4 cm travel during test trials. A
plausible idea is to let the novelty in the environment trigger the
forward linear look-ahead trajectory probes, e.g. the virtual rat
performs a new forward linear look-ahead trajectory scan when it
encounters a novel path in a familiar location. This way the virtual rat
would also have a chance of discovering new shortcuts by probing the
novel potential routes.

The proposed model also offers some interesting predictions. If the
hippocampal place cells are formed by projections from the entorhinal
grid cells and persistent spiking cells, then the forward linear look-
ahead trajectory probing mechanism would suggest compressed replay
activation of grid cells in the entorhinal cortex and of head direction
cells whenever hippocampal place cells show replay activity during
sharp wave ripple activity in the hippocampal electroencephalogram
(EEG). Furthermore, due to the bijective connection between place
cells and PFC cells, the model would also predict such simultaneous
spiking replay activity in the PFC during sharp wave ripple activity in
the hippocampal EEG. Another prediction is the role of the PFC in the
goal-directed navigation. According to the suggested model, any
disruption, such as a lesion, to the PFC topology layer should also
impair the ability of the virtual rat to reach the goal location.

Another new feature of the model concerns the interaction of
trajectory planning with barriers in the environment. The inclusion
of barriers in the environment has been shown to alter the firing of
hippocampal place cells (Muller & Kubie, 1987) and entorhinal grid
cells (Alvernhe et al., 2008; Derdikman et al., 2009). The framework
described here shows how the selection of a trajectory that reaches the

goal location while avoiding the barrier locations could result in
differential place cell representation formed in environments with
barriers. Similar to many previous models, this model requires
exploration of the environment for creation of place cell representa-
tions, but can discover new shortcuts between these place cell
representations by forward linear look-ahead trajectory probes through
regions without place cells. By using random distribution of place
cells, and absence of place cells in a new shortcut, our simulations
clearly show the importance of being able to use the grid cells to
bridge across gaps in the map of the environment provided by place
cells and PFC.
The mapping of space during exploration is similar to many

previous models (Touretzky & Redish, 1996; Burgess et al., 1997;
Redish & Touretzky, 1998; Foster et al., 2000). In some cases, these
models have used Hebbian modification of concurrently active units
(Redish & Touretzky, 1998); in other cases they have gated the
synapse modifications based on a reward signal influence (Burgess
et al., 1997; Arleo & Gerstner, 2000), sometimes using temporal
difference learning (Foster et al., 2000; Hasselmo & Eichenbaum,
2005; Zilli & Hasselmo, 2008). The current model has the advantage
that it does not require association of each place cell with the direction
of actions leading to other place cells or the goal location. Instead, this
model can compute the direction by forward sampling of possible
trajectories through the environment.
The forward scanning could also provide a mechanism for greatly

increasing the speed of exploration of the environment, which is an
important problem for creation of maps (Kollar & Roy, 2008). This
could be accomplished by allowing the scanning of forward look-
ahead trajectories during exploration, and creating place cells and
associations between place cells during the activation of place cells by
the grid cell network by scanning of forward trajectories during
exploration. In addition, if there is some mechanism for internal
computation of the change in visual feature angle during forward
scanning, then the network could form associations between the place
cells and visual features during exploration even for unvisited
locations. This model of spatial behavior using grid cells is well-
suited as a biologically inspired model for Simultaneous Localization
And Mapping (SLAM) in robotic navigation (Milford et al., 2004;
Eustice et al., 2006; Guanella et al., 2007; Milford, 2008; Fibla et al.,
2010; Duff et al., 2011).
As shown in the simulations, the model can perform the Morris

water-maze in the absence of noise, selecting the correct trajectory to
the goal location from starting points that were not previously visited.
The model shows sensitivity to noise in the grid cell representation,
indicating the need for low levels of noise during probing of forward
look-ahead trajectories, and the need for resetting of grid cell phase by
environmental stimuli (Burgess et al., 2007). This resetting could
involve feedback from the hippocampal formation where neuronal
responses are influenced by sensory features of the spatial environ-
ment (Leutgeb et al., 2007; Rennó-Costa et al., 2010).
A similar work to ours addressing the mechanisms of goal-directed

navigation is by Duff et al. (2011), where the model is mainly rule
based where sensory inputs trigger actions and the result of the
triggered actions are fed back through the network to reinforce the
chain of actions leading to the goal state. One of the main differences
between Duff et al. (2011) and our model is the need for multiple
trials for the learning rules to converge for a particular goal
contingency. When the goal contingency switches, e.g. changing
the goal location from the left to right arm of a T-maze, the system
parameters have to converge to the new fixed point following several
trials. Our model, however, is able to perform the goal-finding task
without the need of additional training trials even if the goal location
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changes once the environment’s spatial topology is sufficiently
acquired. This difference is mainly based on the fact that while their
work relies mainly on the learned rules using past experience, our
model relies on the sampling of future states given a gradient on the
state space, i.e. the reward diffusion. Furthermore, even though Duff
et al. (2011) do not provide any shortcut finding analysis, it seems
like their model would not be able to exploit shortcuts in the
environment. In a recent work, Fibla et al. (2010) propose a goal-
directed navigation model utilizing gradient fields for path planning
towards goal locations. In Fibla et al. (2010), the robot moves in the
direction with the highest gradient value similar to our model where
the gradient is represented by the diffused reward value through
simulated PFC cells. However, there are two main differences
between the Fibla et al. (2010) model and our model: (i) in their
model the place cell map necessary to construct the gradient fields is
required to be dense (almost overlapping), otherwise potential gaps
between gradient fields centered at place cell firing fields might force
the robot to stop or to random exploration; and (ii) the Fibla et al.
(2010) model would not be able to exploit never-before experienced
shortcuts in the environment because the gradient field is strictly
confined to the existing place cell map. Hence, any area of the
environment not represented by any place cell will not have any
gradient value associated.
The primary input to the grid cell model utilizes only heading angle

and speed of movement, which is very similar to the data obtained
from inertial sensors in a robot. In addition, grid cells are proposed to
drive hippocampal place cells that code individual locations
(McNaughton et al., 2006; Rolls et al., 2006; Solstad et al., 2006;
Hasselmo, 2008; Almeida et al., 2009, 2010) analogous to grid
mapping in robotics (Moravec & Elfes, 1985; Fox et al., 1999;
Milford, 2008). The technical challenge is bridging the spatial
representations that autonomous systems use and the representation
created by grid cells in the entorhinal cortex and place cells in the
hippocampus. Grid cells show stable firing over long time periods
(10 min) even in darkness, indicating robust path integration despite
the noise inherent in neural systems, which is an extremely
challenging feature for the state-of-the-art robotic navigation. If the
biological mechanisms of grid cells could be implemented in robots
they would provide a dramatic advance over current capabilities of
autonomous systems.
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