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A B S T R A C T   

The ability to use symbols is a defining feature of human intelligence. However, neuroscience has yet to explain 
the fundamental neural circuit mechanisms for flexibly representing and manipulating abstract concepts. This 
article will review the research on neural models for symbolic processing. The review first focuses on the 
question of how symbols could possibly be represented in neural circuits. The review then addresses how neural 
symbolic representations could be flexibly combined to meet a wide range of reasoning demands. Finally, the 
review assesses the research on program synthesis and proposes that the most flexible neural representation of 
symbolic processing would involve the capacity to rapidly synthesize neural operations analogous to lambda 
calculus to solve complex cognitive tasks.   

1. Introduction 

The human brain has the capacity to guide behavior based on rep
resentations of the full scope of human knowledge, ranging from prac
tical navigation through tasks in the daily world to the highest levels of 
abstract thought on topics of philosophical, social, scientific, or math
ematical concepts. However, the fundamental neural circuit mecha
nisms for flexibly representing a broad range of concepts for a broad 
range of behaviors have not been elucidated. Within psychology, the 
flexible formation of new concepts for guiding a wide range of different 
behaviors is referred to as general intelligence. Most researchers seem to 
accept that we have not yet described the neural mechanisms for general 
intelligence. While much progress has been made on training neural 
models to perform specific tasks such as image recognition, neural 
models do not have the capacity to flexibly solve multiple new problems 
in the manner that humans can. This has been shown by relatively 
limited performance in tasks such as the Raven’s progressive matrices 
task (Carpenter et al., 1990; Raven, 2003) and the Abstraction and 
Reasoning Challenge (Chollet, 2019) exhibited by existing neural 
models (Barrett et al., 2018; Kolev et al., 2020; Rasmussen & Eliasmith, 
2011; Raudies & Hasselmo, 2017) 

Most existing neural network models of brain function utilize a 
standard representation of neural activity as vectors of activity which 
spread through matrices of synaptic connections that influence activity 
in other vector representations. However, the flexible formation of new 
concepts and representations appears to require an intermediate level of 
representation that is not fully expressed in this neural network vector 
code. For instance, deep neural network models have been criticized for 

failing to represent the essential features of symbolic processing found in 
human behavior (Lake et al., 2017). These include the properties of 
productivity, compositionality and systematicity (Fodor and Pylyshyn, 
1988). Productivity refers to the capacity for a set of representations to 
generate an infinite number of meaningful combinations. Composi
tionality and systematicity refer to the capacity to take component el
ements of representations and use them with the same meaning in other 
circumstances. Handwritten characters recognition, a task in which 
deep neural network and humans both excel in, can illustrate this point 
(Lake et al., 2017). People can learn to recognize a new handwritten 
character from a single example, whereas deep neural network require a 
lot more training data. Moreover, people learn a concept when they do 
pattern recognition. They can parse a character into its most important 
parts and relations (compositionality), apply them to different situations 
(systematicity), and generate new examples (productivity). Deep neural 
network models have yet to demonstrate these abilities (Marcus, 2018). 

This article reviews research on neural models for symbolic pro
cessing. The review first focuses on the question of how symbols can be 
represented as role-filler interactions in neural circuits, which would 
satisfy the productivity, compositionality and systematicity re
quirements. The review then addresses how neural symbolic represen
tations could systematically and flexibly be constructed and combined to 
solve a variety of behavioral tasks by forming hierarchical representa
tions and planning actions. Finally, the review addresses the research on 
program synthesis and proposes that the most flexible neural represen
tation of symbolic processing would involve the capacity for neural 
program synthesis, using a flexible set of neural operations analogous to 
lambda calculus. 
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2. Historical background 

For many decades, various fields of research in computer science, 
psychology and neuroscience have wrestled with the question of 
whether neural circuits in the brain have mechanisms for manipulations 
of symbols in a manner analogous to computers. One of the first re
searchers to emphasize this idea was Allen Newell. Inspired by the 
amazing feats accomplished by digital computers, Newell hypothesized 
that there is a physical symbol system that underlies humans’ cognitive 
abilities, and that “these symbols are in fact the same symbols that we 
humans have and use every day of our lives” (Newell, 1980). Symbols 
are useful because they allow us to reason about relational roles in which 
objects or entities are engaged, rather than just viewing the literal fea
tures of the objects. This ability to think explicitly about relations is 
central to mathematics, science, engineering, art, or even simple tasks 
like planning a meal or making an analogy (Gentner, 1983; Goldstone 
et al., 1991; Holland et al., 1989; Holyoak & Thagard, 1995; Hummel, 
2000; Palmer, 1978). It arguably underlies some of the most fascinating 
aspects of human experience. 

2.1. The challenge of neural representations of symbols 

If symbols are indeed stored and manipulated, then what is the data 
structure for the symbols in the brain, that is, how can symbols be 
represented? Classical artificial intelligence (AI) researchers, those who 
followed Newell’s footsteps, essentially ignored this question and 
described symbols as the syntactic mechanisms developed in proposi
tional logic (Minker, 2000), which deals with the ways statements relate 
to and interact with one another. In this view, intelligence behaviors can 
emerge from the “same symbols that we humans have and use every day 
of our lives”, as Newell has hypothesized (Newell, 1980). One obvious 
problem with this approach is that syntax does not equate to semantics, 
and no matter how structured these statements or propositions are 
organized, the associative semantic links to the meaning behind each 
word, a fundamental aspect of cognitive processes, are missing. Indeed, 
many AI researchers today are stepping away from pure syntactic rep
resentations and emphasizing the importance of tying semantic meaning 
to symbol (Santoro et al., 2021). 

Due to the initial failure of the classicists, an opposing camp pro
posed that information is stored non-symbolically within neurons and in 
the connections between networks of neurons (Churchland & Sejnowski, 
1992). They argued that symbolic processing was an inadequate model 
for the cognitive flexibility exhibited by the mind (Cummins, 1991; 
Elman, 1990; McClelland et al., 1995; Rogers & McClelland, 2004; St. 
John & McClelland, 1990). Starting with the Parallel Distributed Pro
cessing framework published in the 80s (Rumelhart et al., 1986) and 
after going through several waves of variation in success, pure con
nectionist models have achieved some impressive results in recent years, 
especially in image and pattern recognition (Krizhevsky, Suthskever, & 
Hinton, 2017; LeCun, Bengio, & Hinton, 2015). Connectionist models 
have been developed to address performance of some specific aspects of 
intelligence tasks such as the Raven Progressive Matrices task (Barrett 
et al., 2018) partially addressing the long-standing criticism of its 
inability to represent symbolic structures and to model tasks requiring 
symbolic operations (Fodor & Pylyshyn, 1988). Connectionist models 
like Convolutional Neural Network (CNN) and Long Short-Term Mem
ory (LSTM) have properties that allow them to encode and operate on 
the spatial and temporal relationships between stimuli (Battaglia et al., 
2018). Canonical multilayered feed-forward neural networks are uni
versal function approximators that can represent any arbitrary relations 
(Hornik et al., 1989). However, one of the major challenges that remains 
with this type of models is that the relationships are hard coded within 
these architectures as fixed connections with weight values that change 
slowly and are retained long term, diverging from the expressive power 
of the brain to rapidly represent and flexibly apply arbitrary relations to 
novel contexts with limited training (Diamond, 2013; Hasselmo, 2018; 

Miyake et al., 2000; Zelazo, 2015). Graph Neural Network (Battaglia 
et al., 2018), an approach that combines both symbolic representation 
and neural network, might be a promising remedy, but it is unclear how 
one can modify graph structures during the course of computation to 
adapt to the ever-evolving relations encountered in the real world. 

2.2. Symbolic-Connectionist representations 

Attempting to bridge the gap between connectionist and classical AI 
models, a view that reconciles the two suggests that networks of neurons 
implement a symbolic processor at a higher and more abstract level of 
description (Marcus, 2001), pertaining to Marr’s levels of analysis 
(Marr, 1982). Marr’s multi-level view ironically results in two 
competing camps whose difference reflects the fundamental conflict 
between the Connectionists and the Classicists. One side preferred a 
bottom-up approach focused on neural implementations, building up 
neural networks that can eventually manipulate symbols, while the 
other side favors a top-down approach, starting with algorithms and 
cognitive functions and using brain and behaviors as constraints. 

One idea from classical AI that needs to be addressed by the bottom- 
up approaches to symbolic processing involves role-filler binding. This 
idea suggests that abstract ideas or concepts called roles can be occupied 
by or bound to fillers, arbitrary individuals, or instances. For example, in 
the sentence, Alice ordered a coffee from Bob, Alice and Bob are fillers, 
and the underlying roles that these fillers are bound to can be customer 
and barista. Role-filler can also be referred to as type-token or class- 
instance. A single role bound to different fillers can enable rapid 
generalization across new tasks and situations. If Bob and Alice occupied 
the same role of a barista, they should serve similar functions if placed in 
the same coffeehouse setting, despite being different individuals. Mul
tiple role-filler bindings can also give rise to a structured and composi
tional representation that is characteristic of cognition (Fodor, 1975). 
Bob the barista can be bounded to another role, either in parallel such as 
Bob the graduate student, or hierarchically, such as Bob the barista, an 
employee at Starbucks. Thus, from the bottom-up approach perspective, 
role-filler binding presents an important test of the ability to link 
network of activity of neurons to more abstract symbolic representa
tions. Unsurprisingly, there are disagreements within this approach as to 
how neurons might participate in the process. 

The most prominent idea in this framework is conjunctive coding. 
The idea proposes that roles and fillers are represented by separate 
vectors of activity, and the binding is represented by a weight matrix 
that is a conjunction of the role and filler vectors (Fig. 1a). In other 
words, the encoding process of an arbitrary structure occurs through 
some forms of multiplication between its constituents. Multiplying the 
conjunctive weight matrix with a constituent should return the other 
component, hence simulating a retrieval process. Though present in the 
early days of connectionism (Rumelhart et al., 1986), conjunctive cod
ing gained additional traction with work by Paul Smolensky (Smolen
sky, 1990) introducing tensor product as a potential binding 
mechanism. However, though this framework continues (Smolensky 
et al., 2016) and argues that the representations appear in recurrent 
neural networks (McCoy et al., 2019), this approach has not been 
broadly implemented within the field. 

As an alternative, Tony Plate (Plate, 1991) proposed circular 
convolution as a mean to bind between role and filler to alleviate the 
exponentially increasing size of tensors required by tensor product 
representation. More recently, building on Plate’s idea, Chris Eliasmith 
and colleagues created semantic pointer architecture using these circu
lar convolutions to link role and filler and built a large-scale model 
(Eliasmith et al., 2012) capable of performing a variety of cognitive 
tasks. 

One major criticism of conjunctive coding is that it fails to preserve 
role-filler independence. Role-filler independence, also known as type- 
token distinction, refers to the difference between two processes of 
recognizing a symbol as a certain type, and individuating that symbol as 
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a particular token of that type. A viewer being asked to count the 
number of pears or pick out a red apple in a large bowl of fruits cannot 
rely solely on type information. He or she must be able to quickly 
individuate token of the same type (Kanwisher, 1987). This requirement 
has been helpful in explaining repetition blindness and illusory con
junctions (Chun, 1997; Kanwisher, 1991; Kanwisher, 1987). In repeti
tion blindless, when a stimulus is repeated, it is sometimes identified 
only by type but not tokenized, and therefore is not identified correctly 
as another occurrence. In illusory conjunctions, subjects erroneously 
combine features of two objects into one object, essentially linking one 
token to two types. Conjunctive coding returns a stable representation 
where role and filler are always mixed (Fig. 1a) and therefore cannot 
explain the above phenomena. Another common example (Hummel 
et al., 2004) to illustrate the failure of conjunctive coding to preserve 
role-filler independence is the sentence Alice loves Bob and its inverse, 
Bob loves Alice. In both cases, even though the two sentences have very 
different meanings, the example of Alice should intuitively be inde
pendent from her role as a lover or a beloved. One can easily think of 
cases when Alice the lover is the same as Alice the beloved. In fact, it is 
precisely this capacity that allows us to rapidly generalize across novel 
contexts. Conjunctive coding, however, would always create two sepa
rate representations or units for Alice the lover and Alice the beloved 
that are dissimilar to each other (Fig. 1b). If Alice the lover discovered 

that Bob is having an affair, conjunctive coding would describe Alice the 
beloved as having no clue what is going on. 

2.3. Role-filler interactions - dynamic binding with conjunctive coding 

A potential solution to this issue is perhaps to create distinct links 
arising from a single node representing Alice, connecting her to the 
distinct roles of a lover and of a beloved. These links would have to be 
rapidly created or destroyed, since if Bob cheated on Alice, then Bob no 
longer loves Alice, thereby breaking the link between Alice and her role 
as the beloved. Alice will probably no longer love Bob at that point, so 
the remaining link between Alice and her role as the lover should be 
destroyed too. This solution, termed Dynamic Binding (Fig. 1c,d), will 
satisfy the role-filler independent requirement and can be implemented 
in the brain using the spike timing of neurons. The idea first took root 
when Von der Malsburg proposed temporal correlation in neural spiking 
activity (von der Malsburg, 1994) as a potential way to form complex 
representation. Basically, spikes that co-occur can be summed together 
by synaptic interactions on the dendritic tree. Dynamic Binding by the 
temporal synchrony of spiking activity (Hummel & Biederman, 1992; 
Hummel & Holyoak, 1993; Konen & von der Malsburg, 1993; Shastri & 
Ajjanagadde, 1993) was a natural next step. In this framework, the 
relationship between role and filler is represented by temporal 

Fig. 1. Vector Representations of Role-Filler Interactions. (a) Conjunctive Coding returns a multiplicative interaction between a filler and a role. (b) The returned 
role-filler representation from conjunctive coding for the same filler with different roles are distinct. (c) Dynamic Binding via temporal synchrony involves summing 
and maintaining the individual role and filler. (d) The returned representations for the same filler bound to different roles are similar in dynamic binding, facilitating 
generalization. (e) Temporal synchrony does not perverse causality. Temporal asynchrony alleviates this issue by keeping track of the order of spike timing. 
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synchrony of spikes that can be created and destroyed on the fly, and the 
same units can participate in different bindings either simultaneously or 
at different times. Role-filler independence is preserved in this frame
work. However, these models have not been scaled to large cognitive 
processing systems. 

Temporal synchrony runs into issue when its unit must act simulta
neously as a role and a filler. An example from Gary Marcus (Marcus, 
2001) did a good job illustrating this point. Imagine a book about sci
ence sitting on a table. Temporal synchrony tells us how to bind science 
with book, and book with table. Thing gets a bit fuzzy when all these 
three units, science, book, and table fire together. Temporal synchrony 
does not preserve directionality in its binding, so it is not clear which 
unit is a predicate, and which is an argument. In other words, we can’t 
tell from the example whether the science book is sitting on top of the 
table or whether the table is sitting on top of the science book (Fig. 1e). 
There would have to be additional mechanisms that marks what purpose 
book serves in each binding, since one can imagine how things get 
complicated quickly when we consider the more complex recursive 
structure that is found in human language or even bird songs (Gentner 
et al., 2006). 

The potential problems with the previous dynamic binding approach 
were addressed by the use temporal asynchrony (Love, 1998) as a so
lution that enables more complex recursive binding. The intuition is 
simple. If unit A fired before unit B, which fired before C, ordering in
formation or causality is preserved (Fig. 1e). Asynchronous binding can 
also simulate complex tree structures, the abstract representations of 
hierarchy and recursion. There does not appear to be further work 
implementing temporal asynchrony to scale. 

Synchrony with spike timing models could also be energetically 
expensive, especially if used constantly to keep track of the causal 
interaction between the diverse contents in the environment. It is esti
mated that less than 1% of neurons can be activated simultaneously 
(Lennie, 2003). The biological cost of maintaining an active code 
through persistent firing in spike timing models led some researchers to 
propose dynamic binding through synaptic traces as an alternative 
(Mongillo et al., 2008). Formally referred to as synaptic or ‘activity-si
lent’ working memory theory (Mongillo et al., 2008; Stokes, 2015; 
Trübutschek et al., 2019), this framework suggests that information can 
be stored silently as pattern of synaptic weights. A rapid reconfiguration 
of the functional connectivity through short term synaptic plasticity 
(Zucker & Regehr, 2002) would modify the information encoded and 
allow for dynamic binding (Stokes, 2015). It is worth noting that neural 
oscillations can also reconfigure functional connectivity by phase 
aligning different periods of excitability to maximize or suppress the 
opportunity for information transfer (Fries, 2005). There is also evi
dence for rule-specific subnetworks formed by oscillatory synchroniza
tion of local field potentials (Buschman et al., 2012). It is therefore 
possible that there is some complementary interaction between synaptic 
plasticity and phase coding to enable dynamic binding (Lundqvist et al., 
2011, 2018; Miller et al., 2018; Stokes, 2015), but more experimental 
findings are needed to verify and probe this interaction. 

Another big problem with spike timing models is their inability to 
store binding in long term memory (Hummel & Holyoak, 1997) due to 
the transient nature of spikes. To overcome this capacity issue, re
searchers have looked for ways to integrate conjunctive coding to take 
advantage of long-term memory storage by the creation of persistent 
patterns of weight strengths between units, while maintaining dynamic 
binding to achieve rapid role-filler binding, role-filler independence, 
and simultaneous role-filler representation (Hummel et al., 2004). The 
exciting structural and dynamical constraints found in grid cells (Gio
como & Hasselmo, 2008; Hafting et al., 2005; Yoon et al., 2013) might 
hint at how the nervous system can implement a joint conjunctive and 
dynamic binding strategy. Cognitive variables can be stored in 
conjunctive grid cells (Constantinescu et al., 2016), but in attractor 
network models, modification of those variables would require slow 
circuit reconfiguration, and formation of higher dimensional state 

spaces would suffer from the curse of dimensionality (Klukas et al., 
2020). Phase information from the periodic firing fields of grid cells can 
be rapidly and dynamically combined (Bush & Burgess, 2014) to allow 
for a combinatorial coding range, but can’t efficiently represent high- 
dimensional space (Fiete et al., 2008). A combination of the two stra
tegies, termed “mixed modular coding” (Klukas et al, 2020), employs 
spatial phase coding of conjunctive grid modules and enables flexible 
on-demand coding as well as efficient memory states for variables in 
high dimensional vector spaces. Conjunctive grid cells can exhibit 
temporal phase coding in 2D space (Climer et al., 2013). It is an open 
question whether grid modules can employ spatial phase coding in 
higher dimensional cognitive space. Recent data suggests that phase 
coding might be behaviorally important because manipulations of 
neuronal oscillations regulated by the medial septum cause impairments 
of behavior in tasks such as the radial arm maze (Chrobak et al., 1989) 
and spatial alternation (Zutshi et al., 2018), but driving medial septum 
at different frequencies does not prevent firing of place cells (Zutshi 
et al., 2018) or grid cells (Lepperød et al., 2021). 

2.4. Role-filler interactions - coding by neural sequences 

Research in episodic memory can offer additional clues as to how the 
brain might utilize spike timing and conjunctive coding to represent and 
store abstract variables. The main advantage of all these spike timing 
models over conjunctive coding can essentially be boiled down to its 
ability to preserve similarity between the encoded representations. This 
is a rephrasing of role-filler independence violation discussed previ
ously, where the representation for Alice the lover radically differs from 
that of Alice the beloved. Our capacity for relational generalization and 
transitive inference would prefer a unified representation of fillers 
(Hummel, 2011; Piaget, 1928). In the hippocampus, there is evidence 
supporting the presence of overlapping representations (Brown et al., 
2010; Eichenbaum et al., 1999; Hasselmo, 2012; Howard et al., 2005; 
Kraus et al., 2013, 2015; Shohamy & Wagner, 2008; Wood et al., 2000; 
Zeithamova & Preston, 2010) that capture and preserve similarity, and 
are arguably critical for relational memory (Eichenbaum et al., 1999). 
These overlapping ‘sequences’ of neural activity could bridge repre
sentations of distinct events, linking related episodes in a memory space 
(Eichenbaum et al., 1999). Sequential firing cells, or ‘neural sequences’ 
have been attributed to coding for place, time and other cognitive var
iables (Aronov et al., 2017; Dombeck et al., 2010; Hasselmo, 2012; 
Howard et al., 2014; Kinsky et al., 2020; Koay et al., 2021; Kraus et al., 
2013, 2015). Neural sequences provide a common syntactic mechanism 
that the brain could employ for cognition and is highly reminiscent of 
the aforementioned temporal asynchrony model (Love, 1998), as well as 
the abstract syntax utilized in classical AI. 

If neural sequences provide syntactic structure, is there any mecha
nism that can provide symbols with the necessary semantics, or mean
ings that were lacking in classical AI? Disambiguation of overlapping 
experience is in fact critical to episodic memory, and modelling work 
has shown that contexts can provide the necessary guidance to distin
guish between similar events (Hasselmo & Eichenbaum, 2005; Hasselmo 
& Stern, 2018; Howard et al., 2005; Katz et al., 2007). Experimental 
findings provide ample evidence of cells that could be coding for tem
poral and spatial contexts in the hippocampal formation (Bright et al., 
2020; Dudchenko & Wood, 2014; Frank et al., 2000; Kinsky et al., 2020; 
Komorowski et al., 2009; Solstad et al., 2008; Tsao et al., 2018; Wood 
et al., 2000). It is likely that these ‘context’ cells are tightly coupled with 
cells coding for stimulus identity, perhaps through some form of asso
ciative outer product mediated by synaptic hebbian plasticity (Bliss & 
Collingridge, 1993; Hasselmo & Eichenbaum, 2005; Lisman et al., 2002; 
Tiganj et al., 2018), forming an item-place-time conjunction (Cruzado 
et al., 2020; Hasselmo, 2012; Hasselmo et al., 2010; Komorowski et al., 
2009), providing the necessary information about what, where and 
when underlying abstract syntax. Neural sequences alone should be 
sufficient to code for spatial and temporal contexts, and to participate in 
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conjunctive coding with cells representing stimulus features. However, 
the latest theoretical framework (Howard & Hasselmo, 2020) empha
sizes the existence of a distinct population closely related to neural se
quences but with different receptive fields that code for time and space 
in a more efficient manner, facillitating more complex computations in 
abstract cognitive space. There is some evidence for the existence of 
such populations (Bright et al., 2020; Kraus et al., 2013; Mau et al., 
2018; Tsao et al., 2018), but it is unclear whether these cells are causally 
related to neural sequences, as well as whether they participate in 
conjunctive coding with stimulus cells. 

Whatever the case, there is evidence to suggest that item-place-time 
conjunctions, once formed, can be stored in long term memory, there
fore solving the capacity issue of spike timing models. Perhaps the most 
famous example in memory research, the selective sensitivity of recent 
episodic memories but not remote memories in patient H.M. (Scoville & 
Milner, 2000) led researchers to propose that during offline periods like 
sleep, hippocampal episodic memories become stored in long-term 
neocortical semantic memory over time through system consolidation 
(Hasselmo et al., 1996; McClelland et al., 1995). This process is thought 
to involve a loss of time and place, contextual information, and a tran
sition to more fact-based semantic representation. There are debates as 
to whether this theory is valid (Nadel & Moscovitch, 1997; Yassa & 
Reagh, 2013; Yonelinas et al., 2019), but experimental findings of 
sequential reactivation of neurons encoding previous experience, or 
replay in hippocampal and cortical regions (Davidson et al., 2009; 
Euston et al., 2007; Foster & Wilson, 2006; Karlsson & Frank, 2009), as 
well as neocortical-hippocampal coupling during sleep (Logothetis et al., 
2012; Siapas & Wilson, 1998; Sirota et al., 2003), do support the idea 
that item-place-time binding started in the hippocampus and propa
gated to the cortex, with additional processing there to extract the 
regularities in item information from the detailed contextual informa
tion, perhaps through matrix factorization (Bengio et al., 2012; Higgins 
et al., 2018; Koren et al., 2009; Liu et al., 2019; Morin et al., 2021; Zhu 
et al., 2020). This is a simplistic view, however, since information can 
also flow in the opposite direction during sleep, with neocortex activity 
preceding that of hippocampus (Hahn et al., 2006; Ji & Wilson, 2007; 
Karimi Abadchi et al., 2020; Liu et al., 2021; Sirota et al., 2003), hinting 
at a more complex bidirectional process of consolidation. More 
comprehensive modeling and experimental designs are needed to un
tangle this intricate process. 

2.5. Flexible planning for behavioral tasks - reinforcement learning 

Since the discussion thus far deals mainly with how symbols are 
represented in a bottom-up fashion, the next step in describing mecha
nisms of general intelligence is to discover the algorithms that select and 
organize operations acting on said representations, i.e, planning or 
searching. These issues were the major focus of researchers who follow 
the symbolic-connectionists perspective but favor the more abstract 
modeling of behavior rather than the neural mechanisms, which we will 
refer to as the top-down approach. Then there is also the question of 
identifying and mapping elements from the external world to internal 
representations that are suitable for relational reasoning, i.e detection 
and recognition. Both are difficult questions. This paper will only focus 
on the question of planning algorithms, since this is where the top-down 
approach really shines, but see (Hinton, 2021) for an interesting dis
cussion on the mapping of external world to internal representations. 

On the topic of planning, perhaps the most famous top-down 
approach is reinforcement learning (Sutton & Barto, 2018). Progress 
in optimal control theory (Eveleigh, 1967) and evidence from trial-and- 
error learning in animals (Pavlov, 1927) helped guide and constraint a 
model of behavior in which the learning agent aims to learn a policy that 
would maximize reward obtained while interacting with states in an 
environment to achieve a goal. Essentially, the bulk of reinforcement 
learning (RL) methods focus on estimating a value function that de
termines the total amount of reward one can expect to accumulate over 

time. The best course of actions is one that maximizes this value func
tion. The main problem with classical RL is scalability, since the agent 
needs to encounter and store a large number of states and actions 
combinations in the environment to learn the best course of actions, or a 
policy, but it is not feasible to explore all possible combinations of states 
and actions. Deep RL promises a potential solution by introducing a 
function approximation that outputs values given a continuous range of 
actions and states, and one can represent and train this function with 
data using deep neural networks and gradient descent. This is beneficial 
for generalization but also problematic because the known sample in
efficiency problem of deep learning will create an RL agent that requires 
massive amounts of training data; hence this is the reason most appli
cations of Deep RL are in controlled simulated environments like video 
games where data generation is not an issue (Mnih et al., 2015). Another 
problem is transferability. Agents encountering a novel, yet similar 
environment will have to learn an entirely new policy and can’t rely on 
previous experience (Bhandari & Badre, 2018; Gamrian & Goldberg, 
2018; Kansky et al., 2017). Recent approaches to life-long RL promises 
to minimize this issue of catastrophic forgetting (McCloskey & Cohen, 
1989) by explicitly retaining learned knowledge, leveraging shared 
structure and learning to adapt and learn (Khetarpal et al., 2020). 

The paper will focus mainly on leveraging shared structure since it is 
the most relevant to the discussion on planning with symbolic repre
sentations. RL agents navigating the world can find repeatable structure 
through state and action abstraction, and thereby reuse solutions from 
previous problems to novel situations. This involves reducing the 
number of states observed by the agents and aggregating primitive ac
tions into higher level action in frameworks like Options (Bacon et al., 
2016; Frank & Badre, 2012; Sutton et al., 1999), Feudal RL (Dayan & 
Hinton, 1992; Vezhnevets et al., 2017), Hierarchical Abstract Machines 
(Parr & Russell, 1997) and MAXQ (Dietterich, 2000). The general idea is 
that state abstraction and action or temporal abstraction allow for better 
knowledge representations that significantly reduce search space and 
are easily transferable across environments once learned. For example, 
instead of telling an experienced chef to choose the bread, stack the meat 
and cheese followed by some condiments, we can just ask this person to 
make us a burger. The chef through experience has already abstracted 
away the trivial steps in between. This is action or temporal abstraction. 
To illustrate state abstraction, imagine working from home when it is 
sunny versus working from home when it is raining out. The weather 
indicates different states of the environment but working from home 
long enough and each day would eventually feel the same. We have 
clustered all these different states together, abstracted away the differ
ences, and every day of working from home feels the same as any other 
day. 

Though promising, these frameworks however have not been widely 
adopted since hierarchy cannot yet be defined automatically, and sam
pling inefficiency is still a big issue for RL in general. In fact, on simple 
tasks, it has been shown that a simple random search can outperform 
reinforcement learning algorithms (Mania et al., 2018). However, 
progress in RL is rapidly guiding and informing neurophysiological 
findings in memory, navigation (Banino et al., 2018; Stachenfeld et al., 
2017), and decision making (Wang et al., 2018). Early neural imple
mentations of RL sought to find mechanisms for selection of specific 
pathways through the environment. In recent work, grid cells can be 
thought of as the eigenvectors of the graph Laplacian or equivalently the 
successor representation in 2D navigation (Dayan, 1993; Stachenfeld 
et al., 2017), and is therefore useful for clustering connected compo
nents in a graph. This is a well-known algorithm in machine learning 
called spectral clustering (Ng et al., 2001). Assuming an environment 
can be represented as a graph, these grid-like eigenvectors can help 
discover a hierarchical decomposition of the environment, finding 
connected states, essentially performing state abstraction in a hierar
chical RL framework. These theory-guided findings suggest that we will 
soon gain a better understanding of what neural representations underly 
states and actions in the RL framework, and perhaps use that knowledge 
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to better inform algorithm design. 

2.6. Flexible planning for behavioral tasks – Bayesian inference 

Tackling the issue of sample inefficiency, a success story might be 
that of Bayesian Program Learning (Lake et al., 2015). This is a top-down 
approach that can capture one-shot learning, the ability to learn con
cepts after a single example. This approach follows a long line of re
searchers who attempted to explain human learning and inductive 
reasoning in terms of Bayesian Inference (Griffiths et al., 2010). Spe
cifically, in this framework, when given an inductive problem, one 
specifies the hypotheses under consideration, the relation between these 
hypotheses and observable data, as well as the prior probability of each 
hypothesis. To rephrase in term of learning, a learner considers a set of 
hypotheses H that might explain observed data D and assigns a proba
bility p(H) before even observing the data. This is a prior probability that 
depends on previously acquired knowledge. Then according to Bayes’ 
rule, the chosen hypothesis after observing the data will be determined 
by how well the hypotheses cohere with prior knowledge, as well as how 
well they explain the data (the likelihood or the probability of observing 
data D if hypothesis H is true). One major strength of this framework is 
that it is representation-agnostic. Hypotheses can take any form as long 
as they specify a probability distribution over the observed data. 
Furthermore, inductive biases can be controlled by changing the prior 
probability, allowing one to model how previously learned knowledge 
can aid or interfere with new learning. In fact, this ability to arbitrarily 
modify inductive biases is what is missing in most Connectionist models 
(Battaglia et al., 2018). However, this incredible flexibility of the 
Bayesian framework might also be its biggest weakness in modelling 
brain and behaviors, since the models can become immune to falsifi
cation (Bowers & Davis, 2012). It is further highly unlikely that neurons 
employ an optimal method for inference like the classical Bayes Rule 
since most biological features are evolved to be good enough rather than 
optimal, and non-Bayesian approaches sometimes provide a better ac
count of human performance than Bayesian inference (Bowers & Davis, 
2012). A framework that aims to connect naturalistic behaviors to 
neural implementations would therefore need to capture these biolog
ical constraints. 

Major theoretical attempts to describe how neurons can represent 
probability distribution and perform probabilistic computation are the 
Neural Sampling Hypothesis (Fiser et al., 2010; Hoyer & Hyvärinen, 
2002; Kutschireiter et al., 2017) and Probabilistic Population Code 
(PPC) (Beck et al., 2008; Ma et al., 2006). Essentially, these frameworks 
model neural activity as either representing samples from a probability 
distribution or coding for the natural parameters of said distribution. 
According to the Neural Sampling Hypothesis, each neuron can repre
sent a particular feature of external stimuli, with higher spike counts 
correspond to higher confidence that a feature is present, and the high 
variability in spike counts can correspond to high uncertainty. This 
framework was inspired by a powerful machine learning algorithm 
called Markov chain Monte Carlo sampling (Brooks et al., 2011), which 
is particularly useful for computing large hierarchical models and rep
resenting high-dimensional probability distributions. On the other hand, 
in the PPC framework, each neuron has its own tuning curve with some 
parameters that encode some distribution, and the combined population 
activity would code for the probability distribution over stimuli. In the 
case of Poisson-like variability of single cell recording observed in cortex 
(Ma et al., 2006), Bayesian inference is simple since the log-probability 
distribution over stimuli is a linear combination of tuning curves. The 
question of which framework is a better candidate to describe how 
neural circuits represent probability is currently a topic of substantial 
debate and controversy that goes beyond the scope of this paper. 

Going back to Bayesian program learning (Lake et al., 2015), to 
enable one-shot learning, one can impose a strong inductive bias, or a 
strong prior to restrict the number of possible solutions or hypotheses 
induced. A learner taking advantage of this strong prior only requires a 

small number of examples to converge to a solution. Combining this 
simple principle with the compositionality found in Hierarchical 
Bayesian modeling (Gelman & Hill, 2007), one can learn complex con
cepts from basic primitives or building blocks given a single training 
sample. One classic example to illustrate the power of hierarchical 
Bayesian modeling is the eight-school problem (Gelman & Hill, 2007; 
Rubin, 1981) which considers the effectiveness of SAT coaching pro
grams conducted at eight parallel schools. A naïve observer viewing the 
SAT score might calculate the average score from each school to 
compare the difference or look at the standard error (uncertainty) of the 
score to judge whether all coaching programs are similar. In the 
Bayesian language, this is essentially forming a hypothesis by looking 
only at the immediate data, for instance the average score, presumably 
with some bias on whether the observer thinks the effectiveness of 
different coaching programs should be the same or different. A metic
ulous researcher, however, would reason that there are other factors at- 
play here, since even though each school has different teachers teaching 
different students, the SAT curriculum is standardized across schools, so 
there must be some mixed effects on the score. Thus, this researcher 
would form another hypothesis that the observed average score for each 
school comes from another distribution whose parameters depend on 
teachers’ variability and the curriculum’s similarity. What is powerful 
about this chained hypothesis-forming framework is that the researcher 
can now reliably predict how effective an SAT coaching program is for 
new incoming students given only some prior information about those 
eight schools. Applying this hierarchical framework to Bayesian prob
lem learning, researchers have simulated inventing a new handwritten 
letter from basic strokes, or designing a new mode of transportation 
from simple building blocks (Lake et al., 2015). Furthermore, Hierar
chical Bayesian program learning can be used to construct complex role- 
filler interactions from basic primitives (Fig. 2, adapted from Lake et al., 
2015), capturing the productivity, compositionality and systematicity 
requirements of symbolic processing (Lake et al., 2017). However, from 
the SAT example, it is easy to recognize that the major challenges with 
Bayesian program learning, and essentially Hierarchical Bayesian 
Modelling, are hierarchy design and choosing a good hierarchical prior. 

The idea that complex concepts are probabilistic programs compo
sitionally built from simpler primitives can go a long way, as shown with 
the recent progress made by the DreamCoder model (Ellis et al., 2020), 
which tackles both aforementioned challenges to hierarchical Bayesian 
modelling. This system can learn to solve problems by writing computer 
programs given tasks in many different domains like text editing, 
graphics generation, symbolic regression, or even physics. Taking 
inspiration from the field of program induction (Solomonoff, 1964), 
DreamCoder treats learning a new task as searching for, or synthesizing 
a new program that solves it. Viewed in term of a probabilistic inference 
problem in the Bayesian framework, DreamCoder observes a training set 
of task X, and infers both a program p for solving each task x in X as well 
as a prior distribution over programs, encoded as a library L. Basically, it 
is a system that can generate hypotheses and update its prior. This is 
made possible due to the incorporation of separate encoding and 
consolidation phases of the Wake-Sleep cycle (Hinton et al., 1995), in 
which samples during encoding are replayed during consolidation to 
explore the problem space (Fig. 3). This allows training of a neural 
network to link specific examples from the problem space to bias the 
selection of specific program elements from the library. The wake-sleep 
algorithm was inspired by the changes in functional connectivity regu
lated by cholinergic modulation between waking and sleep (Hasselmo & 
Bower, 1993; Hasselmo, 1999). The inferred program is a hierarchy 
automatically formed by chaining together basic building blocks. This is 
related to the idea of planning discussed in the aforementioned rein
forcement learning framework, and program synthesis can be imple
mented in an reinforcement learning fashion (Simmons-Edler et al., 
2018). During the sleep phase, programs are syntactically compressed to 
speed up search. This is reminiscent of the action abstraction in Hier
archical Reinforcement Learning. The elemental ‘actions’ or basic 
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building blocks to represent programs in DreamCoder are lambda cal
culus expressions (Fig. 4), which are Turing-complete and can therefore 
perform any computation a programmable computer can. Fig. 4 pro
vides an overview of the use of lambda calculus to provide elements for 
constructing programs. If there is a neural analogy to lambda calculus, it 
could provide the elements for building neural programs. This frame
work is indeed well in line with the symbolic-connectionists’ perspective 
(Piantadosi, 2021). This raises the important question of whether neural 
circuits could implement primitive operations similar to lambda calcu
lus or combinatory logic (Piantadosi, 2021) and could allow a process of 
program synthesis in neural circuits. 

2.7. Flexible planning for behavioral tasks - operations 

This paper has so far discussed how variables and complex data 
structures can be represented in neural circuits, as well as how opera
tions acting on said representations can be combined in a biologically 
plausible way. The discussion on lambda calculus operations provides a 
segue to the next section, since the next piece of the puzzle is on what 
elemental operations the brain utilizes to build programs. The field has 
not converged on a standard representation of operations within mul
titudes of different binding and non-binding strategies that have been 
proposed. On the pure connectionist front, the latest theoretical work 
(Domingos, 2020) suggested that the deep learning models trained on 
gradient descent are approximately equivalent to kernel machines, and 
their main operation is to superimpose training data for storage in the 
kernel spaces, enabling efficient matching with future query. This is 
reminiscent of the operations performed by Willshaw’s associative 
network model (Willshaw et al., 1969). Biological neural network 

models on the other hand have been used to model various forms of 
attractor dynamics (Ben-Yishai et al., 1995; Brody et al., 2003; Chaud
huri & Fiete, 2016; Hopfield, 1982; Redish et al., 1996; Seung, 1996; 
Wang, 2001), supported by evidence from a growing number of large- 
scale neurophysiological recording and manipulation studies (Bassett 
et al., 2018; Inagaki et al., 2019; Knierim & Zhang, 2012; Yoon et al., 
2013). Essentially, these networks are dynamical systems that over time 
settle to a stable pattern termed ‘attractor’. That pattern might be sta
tionary, cyclic, or chaotic. The networks’ state at stability could then be 
described as residing on some low-dimensional manifold (point, line, 
circle, plane, toroid, etc.), which enables various robust and reliable 
information processing capabilities like noise reduction (Pouget et al., 
1998), categorization (Wong et al., 2007), integration (Seung, 1996), or 
memorization (Hopfield, 1982). Interestingly, these observations are 
consistent with the Manifold Hypothesis (Fefferman et al., 2013) in 
machine learning, which states that the embeddings of high-dimensional 
real-world data tend to lie in the vicinity of a low dimensional manifold. 
The challenge for the connectionists then is to establish the neural op
erations that can manipulate manifolds by controlling and constructing 
attractors, perhaps by introducing translation to move the network’s 
state to another location inside or outside of an existing attractor, or by 
transforming or changing the kind of attractor the network is imple
menting on-the-fly (Eliasmith, 2005). Such operations are likely to exist 
since they are theoretically realizable through short-term synaptic 
potentiation (Igarashi et al., 2012; Itskov et al., 2011; Katori et al., 2011; 
Mongillo et al., 2008; Seeholzer et al., 2019; Torres et al., 2007). 

For the symbolic-connectionists, the focus is on the algebraic oper
ations acting on high dimensional vectors (Kanerva, 2009). For example, 
these operations can be dot product, component-wise addition, 

Fig. 2. Building Concepts with Bayesian Program Learning. (a) In Bayesian Program Learning, Type or Role level involves constructing template from basic 
primitives, sub-parts and parts, forming complex relations in the process. (b) Token or Filler level involves adding variation to the different features of the preexisting 
object template, for instance applying an affine transform to each letter, or changing the name of a person. The results are symbols or concepts. 
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component-wise multiplication, or permutation. The closest analogy is 
the built-in Arithmetic Logic Unit (ALU) found in a Von-Neumann 
computer, and it is reasonable to believe that the brain has a diverse 
set of innate operations that are utilized. Indeed, several researchers 
(Dyer & Dickinson, 1996; Gallistel, 1998) have argued for an innate 
arithmetic calculator in honeybees and desert ants that allow them to 
calculate the sun’s position to stay on course during foraging. The latest 
theory on pre-existing neural operations is a framework called Assembly 
Calculus (Papadimitriou et al., 2020), which proposed a set of opera
tions that could result from the activity of neurons and synapses, and 
diverge from the vector algebraic operations like add, multiply and 
permute. Some examples of operations in the Assembly Calculus 
framework are projection, associate, merge, disinhibit, inhibit, and fire. 

Symbolic-connectionist operations integrate quite nicely into the 
program synthesis framework, where problem-solving is defined as the 
process of searching for and utilizing different combinations of opera
tions (Fig. 4b). Program synthesis can use the lambda calculus as the 
basic building blocks for initial construction of programs (Ellis et al., 
2020). The question of whether neural circuits can implement lambda 
calculus operations can be addressed with Category Theory (Eilenberg & 
MacLane, 1945; Leinster, 2014; Spivak, 2014), a bird’s-eye view theory 
about the common patterns, trends, structures between different 
mathematical realms like set theory, group theory, topology, linear 
algebra, etc. Each mathematical area has objects in it that can be related 
to each other in some ways, termed morphisms (set theory have sets that 
relate via functions, linear algebra has vector spaces that relate via linear 
transformation, topology have topological spaces that relate via 
continuous functions). A category is defined as a collection of objects 
that relate to each other via morphisms, such that the morphisms 
(functions, linear transformations, etc.) can be composed associatively, 
and there exists an identity morphism for each object. Different 

categories like Set (Set Theory) or Top (Topology) or Vect (Linear 
Algebra) can be related or mapped through functors. Simply typed 
lambda calculus is equivalent to a category called Cartesian closed 
category (CCC). Thus, finding a neural implementation of lambda cal
culus can be thought of as finding a mapping (functor) between carte
sian closed category and the category that neural operations belong to. 
This is in fact the same process that compiler can use to map Haskell (a 
lambda calculus-based programming language) to digital hardware 
(Elliott, 2017). Hypothetically, if neural operations utilized high 
dimensional vector algebras, then they would belong to the FinVect 
category (the category of finite dimensional vector spaces). The question 
then becomes, what is the functor that maps CCC to FinVect, and indeed 
there are several existing attempts that try to derive a vector interpre
tation of lambda calculus using this framework (Elliott, 2017; Valiron & 
Zdancewic, 2014). 

3. Discussion 

It is particularly challenging to study how the brain can manipulate 
symbols, since this question is spread out across so many fields, with no 
agreement upon a common theory or framework. This review paper 
outlines the current debate and present some opposing viewpoints, 
discusses the progress made and emphasizes the remaining challenges to 
coming up with a falsifiable unifying theory detailing the circuit 
mechanisms of symbolic processing. 

Juggling evidence and perspectives across fields, it seems that a good 
representation for symbols that satisfy the productivity, composition
ality, systematicity requirements (Fodor & Pylyshyn, 1988) is the 
conjunctive binding between neural sequences and neural populations 
coding for stimulus information. Sequences provide a natural way to 
order information, hence providing the syntax for thoughts. Stimulus 

Fig. 3. DreamCoder Diagram. (a) In the 
wake stage, a recognition model (i.e., 
convolution neural network) takes the task 
as input and proposed a set of programs from 
the existing library that might be able to 
provide the solution. (b) In the sleep 
abstraction stage, proposed programs are 
compressed and refactored to reusable mod
ules in the library. (c) In the sleep dreaming 
stage, task encountered during the wake 
stage as well as random combinations of 
these tasks are replayed, and the recognition 
model are then trained to map these tasks to 
the programs found during waking, as well 
as novel programs generated from the 
library.   
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information provide meanings or semantics that are bound to sequences 
and can be retrieved effortlessly. The efficient and flexible arrangement 
and organization of these symbols could then depend on the fascinating 
nature of grid patterns. It is likely that these grid populations facilitate 
efficient planning by clustering and compressing similar and frequently 
used syntactic structures, while phase coding enables rapid combination 
and manipulation of those structures. 

Reinforcement learning is a good biologically plausible framework to 
guide the searching and planning process, but trial and error learning 

has to be coupled with the constructing and updating of prior and hy
pothesis, essentially forming an internal model as described in the 
Bayesian inference literature (Craik, 1943) to alleviate the sample in
efficiency issue. In fact, Bayesian inference and the aforementioned 
optimal control theory in RL frameworks are mathematically equivalent, 
and goal-directed planning can be thought of as doing Bayesian infer
ence to estimate a sequence of steps given the observation of a successful 
task completion (McNamee & Wolpert, 2019). 

It is an important question how priors and hypotheses are 

Fig. 4. Lambda Calculus. (a) The most basic operation in lambda calculus is role-filler binding (also known as abstraction), specified by the λ operator. Multiple 
fillers can be bound to different relations using relatively simple notations. Placing different inputs to the right of the role-filler terms (also called lambda terms) 
signifies an application of the relations to the different fillers. (b) All operators in lambda calculus can be further reduced to the different combinations of the λ 
operator, for instance the Y-combinator. Operators can be combined to form complex concepts. In this example, the mathematical concept of a factorial can be broken 
down into a simple program that calls itself recursively until the input integer as well as all the positive integers smaller in magnitude are multiplied and accounted 
for. From the primitive operators, using some searching or planning algorithm, a program is proposed and evaluated that would eventually satisfy the requirement of 
the computation of the mathematical concept of factorial. 
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represented in neural circuits. Neural sequence can have tuning curves 
that parametrically code a probability distribution as Probabilistic 
Population Code (Ma et al., 2006) has suggested, and its spike count can 
also sample said distribution in accordance with the Neural Sampling 
Hypothesis (Hoyer & Hyvärinen, 2002). Furthermore, the item-place- 
time conjunctive representation can be thought of as the joint proba
bility of observing an item in a particular place at a particular time 
(Tiganj et al., 2018). These ideas could be useful for building a neural 
framework of program synthesis, since a program is represented as a 
hierarchy of priors and hypotheses in DreamCoder (Ellis et al., 2020), 
which can therefore flexibly address a broad range of tasks, building up 
to the capacity for general intelligence. 

Mapping program synthesis to neural circuits could then be a 
promising approach to developing neural implementations of flexible 
symbolic processing but would also require development of neural op
erations analogous to the lambda calculus, since DreamCoder relies on 
such operations to perform computation. Category Theory is a powerful 
tool that can relate neural operations to existing mathematical frame
works, enabling us to utilize the rich theoretical foundations developed 
across multiple mathematical realms to build our intuition and 
strengthen our understanding of brain computations. It is an open 
question what Category neural operations fall into. 

If the manifold hypothesis is correct, neural representations would 
lie on some low dimensional manifold. Short-term plasticity would 
likely play an essentially role in manipulating manifold by constructing 
and controlling attractors. It is therefore beneficial to study what neural 
operations are theoretically realizable given this biologically constraint 
and determine whether one can map those operations to lambda cal
culus using Category Theory. Such finding would bridge the gap be
tween connectionism and classical AI and let us derive the circuit 
mechanism that would enable the brain to manipulate symbols. 
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