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ABSTRACT: A number of studies have examined the theta-rhythmic modu-
lation of neuronal firing in the hippocampal circuit. For extracellular record-
ings, this is often done by examining spectral properties of the spike-time
autocorrelogram, most significantly, for validating the presence or absence of
theta modulation across species. These techniques can show significant rhyth-
micity for high firing rate, highly rhythmic neurons; however, they are sub-
stantially biased by several factors including the peak firing rate of the neuron,
the amount of time spent in the neuron’s receptive field, and other temporal
properties of the rhythmicity such as cycle-skipping. These limitations make it
difficult to examine rhythmic modulation in neurons with low firing rates or
when an animal has short dwell times within the firing field and difficult to
compare rhythmicity under disparate experimental conditions when these fac-
tors frequently differ. Here, we describe in detail the challenges that research-
ers face when using these techniques and apply our findings to recent
recordings from bat entorhinal grid cells, suggesting that they may have lacked
enough data to examine theta rhythmicity robustly. We describe a more sensi-
tive and statistically rigorous method using maximum likelihood estimation
(MLE) of a parametric model of the lags within the autocorrelation window,
which helps to alleviate some of the problems of traditional methods and was
also unable to detect rhythmicity in bat grid cells. Using large batteries of
simulated data, we explored the boundaries for which the MLE technique and
the theta index can detect rhythmicity. The MLE technique is less sensitive to
many features of the autocorrelogram and provides a framework for statistical
testing to detect rhythmicity as well as changes in rhythmicity in individual
sessions providing a substantial improvement over previous methods. VC 2014
Wiley Periodicals, Inc.

KEY WORDS: theta; grid cell; bat; rat; maximum likelihood estimation

INTRODUCTION

Elucidating the intrinsic and network properties that underlie the fir-
ing of neurons is a critical component to how we understand the brain.
Researchers performing large-scale, extracellular recordings in animals

commonly attempt to examine these properties via
analysis of the timing of action potentials.

In the rodent hippocampal circuit, theta frequency
(6–10 Hz) oscillations are a prominent part of the
local field potential (Green and Arduini, 1954; Van-
derwolf, 1969; Buzs�aki et al., 1983; Stewart and Fox,
1991; Buzs�aki, 2002). Although the exact mechanism
of theta rhythm generation is unclear, neurons in
these areas intrinsically generate theta frequency sub-
threshold membrane potential oscillations and are res-
onant to theta frequency inputs (Alonso and Llinas,
1989; Hutcheon and Yarom, 2000; Erchova et al.,
2004; Heys et al., 2010; Buzs�aki et al., 2012). In the
rat, neurons in the hippocampal formation fire theta
rhythmically (Fox et al., 1986; Csicsvari et al., 1999;
Cacucci et al., 2004; Jeewajee et al., 2008; Boccara
et al., 2010; Deshmukh et al., 2010), and the timing
of neuronal action potentials relative to the ongoing
oscillation carries information about the trajectory of
the animal (O’Keefe and Recce, 1993; Burgess et al.,
1994; Skaggs et al., 1996; Hafting et al., 2008;
Huxter et al., 2008; Climer et al., 2013). Further-
more, entorhinal grid cells, which have periodic recep-
tive fields for the position of a rodent in an
environment, lose their spatial tuning when theta is
blocked by inhibition of neurons in the medial sep-
tum (Brandon et al., 2011; Koenig et al., 2011) in
support of models that rely on theta oscillations for
the generation of grid cells (O’Keefe and Burgess,
2005; Burgess, 2008; Zilli et al., 2009; Barry et al.,
2012). Taken with a wealth of behavioral and single
unit coding data, theta rhythmic interactions between
neurons have been proposed as an important mecha-
nism underlying function in these circuits (For
reviews, see Buzs�aki, 2002; Hasselmo, 2005; Zilli,
2012; Colgin, 2013).

In other studies, however, the impact of theta
rhythm oscillations on the hippocampal circuit has
been disputed. In non-human primates and humans,
theta oscillations have been associated with movement
planning (Watrous et al., 2011), and spike-field coher-
ence with theta oscillations has been associated with
memory function (Tesche and Karhu, 2000); however,
the theta rhythm in primates is much less prominent
in the local field potential and rhythmicity is less
apparent in single units. In rodents, theta rhythm is
not required for the function of place cells and
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remapping in new environments (Brandon et al., 2014), and
the loss of grid cell tuning associated with medial septal inhibi-
tion may be the result of the loss of cholinergic tone (Newman
et al., 2014). Recent recordings from bat hippocampus and
entorhinal cortex have shown short bouts of theta oscillations
and no significant theta in the timing of spiking of neurons
outside of these short theta events (Yartsev et al., 2011; Yartsev
and Ulanovsky, 2013). In conjunction with other critiques
(Remme et al., 2010; Domnisoru et al., 2013; Schmidt-Hieber
and H€ausser, 2013), these data were interpreted as causal dis-
proof of computational models that rely on theta oscillations
and have brought into question the overall role of theta oscilla-
tions in cognitive and memory processes.

The canonical way of examining theta rhythmicity of neu-
rons in rodents and bats is the theta index (Jeewajee et al.,
2008; Boccara et al., 2010; Deshmukh et al., 2010; Yartsev
et al., 2011; Yartsev and Ulanovsky, 2013). However, it has
been shown that the theta index is sensitive to lower firing
rates, such as those observed in bat grid cells (Barry et al.,
2012). There are potential flaws in the analysis of established
measures of theta rhythmicity and the effects of differences in
firing rate, and thus, an in-depth analysis of rhythmicity meas-
ures has been proposed (Yartsev et al., 2012).

Here, using analytical techniques and large batteries of simu-
lated cells, we have examined many features that confound the
interpretation of the theta index and would make detection of
rhythmicity under many conditions more difficult. In addition,
we describe a novel technique for examining theta rhythmicity
by estimating the estimated likelihood of spiking as a function
of previous spiking history over a range of lags. This technique
provides increased power in detecting rhythmicity over the
theta index. We have implemented this new technique in
MATLAB, and the code is available at https://github.com/
jrclimer/mle_rhythmicity.

METHODOLOGY

Grid Cell Recordings

Recordings from rat grid cells have been presented previ-
ously (Climer et al., 2013; Newman et al., 2014). Briefly, ani-
mals were anesthetized with isoflurane and a Ketamine cocktail
(Ketamine 12.92 mg/ml, Acepromazine 0.1 mg/ml, Xylazine
1.31 mg/ml), placed in a stereotaxic holder, and the dorsal
skull was cleared of skin and periosteum. Anchor screws were
inserted, and one screw was positioned above the cerebellum in
contact with the dura, wired to the implant, and used as a
recording ground. Recording drives were either single bundle
microdrives (Axona Ltd., St. Albans, Hertfordshire, United
Kingdom) with four recording tetrodes (4, 12.7-micron
nichrome wires twisted together) that could be moved together,
or hyperdrives containing 16 tetrodes that could be moved
individually. Craniotomies were made �4.5 mm lateral of
bregma and near the anterior edge of the transverse sinus.

Microdrives were angled �12� in the anterior direction, and
hyperdrives were not angled. Some drives were targeted in line
with the ear bars and angled �12� in the posterior direction.
The craniotomy was sealed with Kwik-Sil (World Precision
Instruments, Shanghai PRC) and the drive was secured with
dental acrylic. After at least seven days postoperative recovery,
animals were screened for grid cells using criteria from previous
studies (Fyhn et al., 2004; Hafting et al., 2005, 2008) as ani-
mals foraged in open environments. Rat grid cells shown are
25 grid cells, theta rhythmic by the theta index, from 25 quan-
tiles of the number of lags in the autocorrelogram. Bat grid
cell spike times were generously provided by Yartsev et al.
(2011).

Examination of Traditional Methods: The Theta
Index

The theta index was calculated here as by Yartsev et al.,
(2011). First, we computed the autocorrelation of the spike
train binned by 0.01 s with lags up to 60.5 s. Without nor-
malization, this may be interpreted as the counts of spikes that
occurred in each 0.01 s bin after a previous spike (Fig. 1a).
The mean was then subtracted, and the spectrum was calcu-
lated as the square of the magnitude of the fast-Fourier trans-
form of this signal, zero-padded to 216 samples. This spectrum
was then smoothed with a 2-Hz rectangular window (Fig. 1b),
and the theta index was calculated as the ratio of the mean of
the spectrum within 1-Hz of each side of the peak in the 5–11
Hz range to the mean power between 0 and 50 Hz.

The significance of this score has been estimated a number of
ways: including an arbitrary cutoff at 5 or by jittering the spike
times. Here, we uniformly jittered spike times by 610 s and
recalculated the theta index. We did this 1,000 times to generate
an empirical null distribution and to estimate the significance
(P-values) of the theta index (Fig. 1c). Previous studies including
Yartsev et al. (2011) have used these high jitters. Such high jit-
ters would not be possible to include in our simulations of the
autocorrelogram window and would eliminate all structure
including any spatial tuning of the neuron. This may produce a
null distribution that is not representative of neurons with the
same firing properties as the original cell but are a priori not
rhythmic. Thus, we also used a smaller jitter: half of the period
of the peak frequency from the spectrogram minus 1 Hz. This
limits jitters to be between 60.05 and 60.125 s (range between
0.1 and 0.25 s), and the jitter would be 60.083 s for a cell
with a peak frequency at 8 Hz (range 0.17 s). This would elimi-
nate any structure at frequencies within 1 Hz and above the
peak power in the theta range, removing any theta rhythmicity,
while preserving the other properties of the neuron. In 29 of the
50 real bat and rat cells examined, the bootstrapped null distri-
butions were significantly different between these techniques (50
Bonferonni corrected Kolmogorov-Smirnov tests, P< 0.05/50).
Of these, all of the shuffled distributions had a slightly smaller
median (Mean difference 20.57, standard error 0.06). Thus, a
smaller shuffling window made it slightly easier for the theta
index to detect rhythmicity by left shifting the null distribution;
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however, this did not affect the number of significantly rhythmic
bat cells.

To illuminate the shortfalls of the theta index, we generated
several simulated spike trains as inhomogeneous Poisson proc-
esses: one with a rate rising and falling with a 10 Hz sinusoid
(Figs. 1a–c row 2); another as a series of linearly decreasing
ramps over 1.5 s, separated by 2 s (Figs. 1a–c row 3); a
metronome-like cell that randomly omits beats spaced at 0.1 s
(Figs. 1a–c row 4); and a theta skipping cell firing on alternate
theta cycles using the distribution described by our estimator
(Figs. 1a–c row 5). These were all normalized to have the same
average firing rate of 10 Hz in the 10 min simulated period.

To generate simulated local field potential theta oscillations,
we filtered white noise by the magnitude of the Fourier spectra
of entorhinal local field potential recorded from a rat in our lab-
oratory during a foraging task. Similarly, to generate the behav-
ioral data white noise was filtered by the spectra of the speed
and angular head direction velocities of the real animal, and the
filtered noise was scaled so the power matched the original sig-
nal. These signals were integrated to make a path through space,
with trajectories being reflected if the animal reached the bound-

ary of the virtual enclosure (1 3 1 m for 2D, 290 3 280 3

270 cm for 3D). To simulate animals moving at higher veloc-
ities, we generated longer patterns of behavior and resampled by
interpolation. For example, to simulate an animal moving at
twice the original speed we would generate a string of data twice
as long and subsample every other position point.

To model the instantaneous firing rate of spatial cells, we
used a phasor-model of grid cell precession (Climer et al.,
2013) for grid cells and a Gaussian function on the distance
from the field center for place cells. The width of the place
fields was defined as the diameter of the region in which the
firing rate exceeded 95% of the peak rate. Only the magnitudes
of the rates were used from these models, so the specific model
identity does not affect the neurons’ underlying rhythmicity.
The resulting signal varied between 0 and 1 as the animal went
in and out of the firing field(s). To generate the rhythmicity,
this rate was modulated by the square of the positive shifted
cosine of the phase of simulated theta LFP. These signals were
then scaled so that when the animal was in the field center,
they averaged to a peak rate chosen between 0.1 and 20 Hz for
the grid cells and 0.1 and 30 Hz for the place cells across a

FIGURE 1. Challenges facing traditional methods. a-c.) Theta
index analysis for different autocorrelograms generated by a real
grid cell (row 1), a perfectly sinusoidally modulated cell (row 2), a
cell which ramps off (row 3), a pacemaker (row 4), and a theta-
skipping cell (row 5). a.) Spike time autocorrelograms, b.)
Smoothed squared magnitude of FFT, c.) Approximation of the
null cumulative distribution function (CDF) for the theta index.
d.) 95% confidence intervals for the autocorrelogram shape as a
fraction of the actual peak rate. Using the same rhythmic baseline
rate profile (dashed line), the region that the autocorrelogram will
fall with 95% confidence is indicated for a range of peak firing
rates. Each shaded area represents a different peak rate, which is
modulated at further lags as the dotted line. Peak rates are scaled
logarithmically. e.) The theta index decreases at low firing rates.

Theta index of 1000 simulated phaselocked grid cells firing with
different peak rates, showing strong correlation between peak rate
and theta index. Example rate maps and autocorrelograms from
cells with relatively high and low firing rates are shown. f.) The
theta index also decreases with higher velocity. 5,000 simulated
place cells with different peak rates and mean simulated velocities.
Peak rate is indicated by the color of the dot. Example rate maps
and autocorrelograms from cells with relatively high and low
mean velocities are shown. g.) Median theta indices for bins of
data shown in f. The white line indicates the threshold for which
50% of simulated cells were significantly rhythmic by the shuffled
theta index, and the black line indicates the region for which 95%
of simulated cells were significantly rhythmic.
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theta cycle. Spike times were then generated using MATLAB’s
poissrnd function and jittering the resulting counts by the LFP
sampling frame width. Simulated sessions were 30 min for the
2D grid cells and 40 min for the 3D place cells.

Confidence Intervals on Autocorrelograms and
the Theta Index

To generate confidence intervals about the autocorrelogram,
we modeled the values in each small time bin of the autocorre-
logram as the sum of a series of n poisson processes, where n is
the number of spikes. Each lag bin following a spike was mod-
eled as a Poisson process with rate ki (in the ith lag bin), which
is the true underlying rate estimated by the autocorrelogram.
Thus, the total autocorrelogram was modeled as a series of
Poisson processes with rate ki3n. A numerical solution was
then found for the range of ki, for which the actual count ki

fell within the 95% probability of being produced. This
yielded theoretical confidence intervals for the rate profile that
underlay a given autocorrelogram, defining bounds within

which the actual underlying rate would fall with confidence.
By searching all of the rate profiles in these bounds using
MATLAB’s fmincon function, we can find the most rhythmic
and least rhythmic rate profiles that may underlie the firing of
the cell with confidence. The theta index of these profiles gives
us confidence intervals on the theta index for an individual
cell, allowing for us to determine on a cell-by-cell basis if we
can exclude high or low values of the theta index.

Maximum Likelihood Estimation (MLE) of the
Distribution of Lags

To alleviate challenges arising from the use of the spike-time
autocorrelogram, we used MLE to extract parameters from the
spike train as follows. First, we calculated the average firing
rate of the cell ðk) as the maximum likelihood estimator for a
Poisson process: thus, k̂5 n

T 6C
ffiffiffiffiffi
n

T 2

p
, where n is the number

of spikes, T is the duration of the session, and C is the critical
value for the standard normal distribution (for rejection region
P < 0:05, C51.96).

Then, we took a 0.6 s window following every spike, and
we found the lags at which spikes occurred in these windows
and marginalized the number of spikes in each of these win-

dows as a Poisson rate. We normalized this by k̂ to get an in-
window multiplier, M . If ki is the count of spikes in each win-

dow, then M̂ 5
�kT
n 6CT

ffiffiffiffi
�k
n3

q
. For cells with identifiable recep-

tive fields, M̂ is typically >1: a cell’s firing rate is higher than
its mean when the animal’s state is in the cell’s receptive field,
and the animal is more likely to be in the cell’s receptive field
if the neuron has just fired.

This left us with a set of m lags at which spikes occurred,
x1; . . . ; xm. We then estimated a parametric model for the mar-
ginal distribution of the lag of a spike, given that it occurred
within 0.6 s of another spike. This describes many of the fea-
tures of the autocorrelogram as shown in Figure 3 and
Dynamic Figure 1 (available at http://conte.bu.edu/jrclimer/Cli-
merEtAl_2014_DynamicFigure1/DynamicFigure1.html). With-
out skipping, the estimated likelihood (L) is modeled as:

Lðx; s; b; c; f ; rÞ5Dðð12bÞexp ð2 x

10sÞðrexp ð2 x

10cÞF ðtÞ11Þ1bÞ

(1)

where x is a lag between 0 and 0.6 s, 10s is an overall expo-
nential falloff rate [log10(sec)], b is a baseline likelihood (unit-
less), 10c is an exponential falloff rate for the magnitude of the
rhythmicity (log10(sec), Vinogradova et al., 1980), f is the fre-
quency of the rhythmic modulation (Hz), r is the rhythmicity
factor (unitless), and s is the amount of skipping (unitless). c
and s were made logarithmic, as changes in these values at
higher ranges do not appreciably affect the distribution in the
examined window. The term D is a normalization factor, such
that

Ð 0:6
0 L x; s; b; c; f ; s; rð Þdx51. With no skipping,

F xð Þ5cosð2pfxÞ.
To add skipping (s > 0), we added a second sinusoid,

replacing F tð Þ above with:

FIGURE 2. Confidence intervals for underlying rate and theta
index for bat (left) and rat (right) grid cells. Bars indicate actual
counts from the autocorrelograms. For each cell, the gray shaded
region indicates the 95% confidence region for the actual underly-
ing rate, given the autocorrelogram count and the number of
spikes. The thick black line represents the possible underlying rate
with the highest theta index found in this region: these autocorre-
lograms do not exclude this rhythmic underlying rate, and thus
the theta index of this trace is the upper bound of the 95% confi-
dence intervals for the theta index. Actual theta index (TI) and
the range of values found in the regions are indicated.
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212
ffiffiffiffiffiffiffiffi
12s
p

2s
� �

cos 2pftð Þ14scos pftð Þ1222
ffiffiffiffiffiffiffiffi
12s
p

23s

4
(2)

The above function approaches cosð2pftÞ as s ! 01. In this
function, 12s is the ratio in the heights of the secondary peaks
to the primary peaks, that is, when s50:5, the secondary peaks
are exactly half of the height of the primary peaks. Addition-
ally, it maintains a constant range of ½21 1�. The magnitude
of the rhythmic modulation is approximated as the initial mag-
nitude of the rhythmic component: a5 12bð Þr. a can vary
between 0 and 1, with 0 meaning no rhythmicity and 1 mean-
ing maximally rhythmic. To accelerate computation, a discreet
approximation was used with a step size of 0.001 s, and inte-
grals were approximated as a left Riemann sum.

The initial guess for the parameters was found using a particle
swarm algorithm (Eberhard et al., 2001; Chen, 2014) seeking
the maximum log likelihood LLA using 75 bots searching and
initially uniformly randomly distributed across the space s5

21 1½ �; b5 0 1½ �; c5 21 1½ �; f 5 1 13½ �; s5 0 1½ �; r5½0; 1�. The
peak log likelihood was then converged upon using MATLAB’s
mle function. MATLAB’s mle function also generates confidence
intervals (here always 95%) from the estimated Fisher informa-
tion at the solution arrived upon. To find confidence intervals
on the magnitude of the rhythmicity, we then refit the model
with all parameters but a fixed, replacing r with a

12b.
This technique artificially treats each lag as an independent

observation from a distribution, which artificially inflates the
number of degrees of freedom for real cells as the same spike
may appear in multiple lag windows. Thus, likelihoods dis-
cussed here are only estimated likelihoods (L). Treating each
lag as an independent observation greatly speeds up computa-
tion and allows us to analyze rhythmicity without making
assumptions about cell types and modeling the rate over
slower time scales. Usually a single lag window contains few
(<5) spikes, and so this lack of independence does not spread
far through the data. In cases where the number of lag win-
dows a single spike appears in is commonly >1, this may
have a number of effects; particularly, confidence intervals
estimated from the Fisher information will likely be smaller
than if a full distribution were used. Addressing these con-
cerns is a valuable avenue for future research.

Because nonrhythmic and nonskipping represent special cases
of this distribution (with r50 and s50 respectively), we then
also fit the data as above with r or s fixed to 0, and calculated the
log-likelihood of each of these distributions as LL0R and LL0S . To
test for significant rhythmicity, we performed a likelihood-ratio
(LR) test by calculating the v2 statistic as 22LL0R12LLA, which
under the arrhythmic null hypothesis should be distributed on
v2

622. Similarly, to test for significant skipping, we can calculate
the v2 statistic as 22LL0S12LLA, which under the no-skipping
hypothesis should be distributed on v2

625.
To demonstrate this technique, we generated 50,000 sets of

lags from 50,000 randomly selected sets of parameters for the
distribution described in Eq. (1). The session duration (T , s)
was chosen from a log10 scaled uniform distribution between

600 and 3600 s, the peak firing rate (kM ) was chosen from a
log10 scaled uniform distribution between 0.05 and 40 Hz,
and the in window multiplier (M ) was chosen from a uni-
form between 1 and 5. The number of spikes m was then
chosen as a Poisson with rate kT , and each of the ith spikes
was chosen to have ni lags following it from a Poisson with
rate kM30:6. Thus, the total number of marginalized lags
(n) followed a Poisson distribution with rate 0:6k2TM , the
expected lag count (EðnÞ). A random set of n lags was then
generated from the distribution in Eq. (1) and a parameter
set chosen randomly from the following uniform distribu-
tions: the overall falloff s (log 10ðsecÞÞ between 21 and 1, the
baseline b (unitless) between 0 and 1, the rhythmic falloff c
(log 10ðsecÞÞ between 21 and 1, the frequency f (Hz) between
0.5 and 15, the skipping score s (unitless) between 0 and 1,
and the rhythmicity r (unitless) between 0 and 1. It should
be noted that these scores were selected to show a range of
values, and that the analysis may return estimators for some
of these parameters outside of these bounds.

To test if the overall dataset had changed between 2 separate
datasets, we concatenated the sets of lags x1;1 . . . x1;m1

; x2;1; . . . ;
x2;m2

; fit, and calculated the log-likelihood of the joint data
LLJ . We then calculated the v2-statistic, comparing this to
each dataset fit separately: 22LLj12LLA112LLA2, where LLA1;
LLA2 are the log-likelihoods of independent fits of the first and
second data sets under our model respectively. Under the null
hypothesis that the data sets came from the same distribution,
this is distributed on v2

6. We performed post-hoc LR tests for
individual parameter differences by fitting each set of the data
with a shared parameter. For example, if comparing the overall
falloff s, the model was f x; s; b1; c1; f1; s1; r1ð Þ if the lag x
comes from the first cell, and f x; s; b2; c2; f2; s2; r2ð Þ if x comes
from the second cell. We then compared this to the separate
fits using the v2-statistic 22LL0s12LLA112LLA2ð Þ, where
LL0s is the log-likelihood of the fit with a shared s parameter.
Under the null hypothesis that the cells share the parameter s,
this is distributed on v2

1. To demonstrate this, we took 25
random parameter sets as described above with a > 0:75, s
> log 10ð0:3Þ; c > log 10ð0:3Þ; 5 � f � 11; and s � 0:25, a
duration of 30 min, an in window multiplier M as above, and
the total number of lags in the autocorrelation �1,000. We
then shifted the 6 parameters of the model by 15 steps and
simulated two rhythmicity sets under the resulting parameter
sets resulting in 4,500 (25*15*6*2) simulations and fit each of
these separately. We then performed pair wise comparisons along
each axis, resulting in 67,500 comparisons (25*15^2*6) and
post-hoc tests (Supporting Information Fig. S6).

RESULTS

Challenges Facing Traditional Methods

Canonical examination of theta modulation of firing has
depended on the autocorrelation of the binned spike times
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(Macadar et al., 1970; Vinogradova et al., 1980; King et al.,
1998; Yartsev et al., 2011; Brandon et al., 2013; Yartsev and
Ulanovsky, 2013; Ray et al., 2014). An intuitive interpretation
of this signal, and the way it is frequently discussed in the liter-
ature, is as the counts of spikes that occur in a lag bin follow-
ing another spike. Figure 1a, row 1 shows a typical example of
a spike-time autocorrelogram for a theta modulated grid cell
recorded in our lab. Like many rat grid cells, it is moderately
theta rhythmic and has a number of features that are useful for
demonstrating properties of the theta index. Because the cell is
a grid cell, there is an overall falloff of the spike count at fur-
ther lags due to the increased probability that the animal has
left the field. The magnitude of the oscillation also decreases,
presumably due to the variability in the frequency of the theta
modulation (Vinogradova et al., 1980). Likewise, there is a
baseline rate; the troughs of the autocorrelation never go to 0.
Finally, the rate of decrease in the size of the peaks is not
smooth; the first peak falls off more quickly than the second
peak, which falls off less quickly than the third peak. This may
suggest a weak cycle-skipping property (Brandon et al., 2013).

The shape of the autocorrelogram is typically analyzed in a
scale-free manner, using spectral properties (i.e., theta index) or
an alternative fit (see Brandon et al., 2013). However, there is
a significant issue with using the shape of the autocorrelogram
as an intermediate step; the autocorrelogram becomes extraor-
dinarily variable at relatively low firing rates. If we approximate
each bin of the autocorrelogram as a Poisson random count,
we can solve analytically for the 95% confidence interval for an
autocorrelogram generated by an underlying rate profile. For a
given mean rate k; peak rate Mk, session duration T , bin
width d, and fraction of the peak rate at the lag K, the number
of counts is distributed on PoisðdMKTk2Þ, where Pois is the
cumulative Poisson distribution. Thus, as a fraction of the
expected peak count, the autocorrelogram will fall between
(Pois21 p

2 ; dMK
�

Tk2Þ=dMTk2; Pois21 12
p
2 ; dMKTk2

� �
=dM

Tk2Þ; and is thus a function of the number of spikes and the
relative rate. In Figure 1d, we generated a rhythmic ground
truth rate as a fraction of the peak rate, and examined the
95% confidence intervals as a function of peak rate. The aver-
age rate was assumed to be 1/3 of the peak rate, and the dura-
tion of the sample was 30 min. The color bands show the
region that we can say with 95% confidence the approximated
autocorrelogram would fall within given the rate profile and
the average rate. Note that as the firing rate decreases, there is
a sharp increase in the uncertainty of the shape. If the firing
rate decreases following a spike, the uncertainty will be greater
at larger lags. This has important implications if we are then to
do analysis on this shape as any measure of rhythmicity that
depends on the spike-time autocorrelogram is negatively biased
by the spike rate, the session duration, or by the rate of falloff
in the autocorrelogram, even if the cell is known a priori to be
rhythmic.

In the most common measure of theta modulation, the theta
index, the Fourier transform of the autocorrelogram after sub-
tracting the mean is taken, and the peak-squared amplitude in
the range between 5 and 11 Hz is chosen as the frequency of
the modulation. The theta index is then calculated as the ratio

between the mean squared amplitude in the 2 Hz window cen-
tered on this peak, and the mean squared amplitude in a larger
window, here between 0 and 50 Hz (as shown in Fig. 1b). The
latter window has also been varied (0–125 or 2–125 Hz), and
can dramatically alter the results (Barry et al., 2012). The rejec-
tion region for the null hypothesis, that the cell is not rhyth-
mic, has either been determined at an arbitrary cutoff (usually
theta index>5) or by generating a null distribution of theta
indices after shuffling the data by some window, in this case,
610 s (Fig. 1c). There are a number of spectral problems that
further bias this score negatively. Because the window has so
few samples (usually 100 or 120), there is spectral bleed out,
as can be seen in Figures 1a–c, row 2 for a perfectly sinusoi-
dally modulated cell. In the case of a pure 8 Hz sinusoid 100
samples at 100 Hz, this results in 30% of the total power fall-
ing in the tails outside of the window. This substantially
reduces the theta index as compared with a theoretical theta
index with all of the power in the window (18 vs. 25). The
spread of spectral power can exacerbate other spectral effects by
bleeding power in and out of the theta window, biasing the
score towards 1. The slow falloff due to exiting the field adds a
large amount of low power structure, which often bleeds into
the theta frequency range, as can be seen in Figures 1a–c, row
3 for a cell with a linearly decreasing rate. Non-sinusoidal
structure adds large harmonics to the frequency domain, as can
be seen in Figures 1a–c, row 4 for a pacemaker cell, whose
score is substantially lowered by the higher harmonics. This
structure outside of the theta range also bleeds back into the
theta window. Finally, other common structures in the rhyth-
micity, such as theta cycle skipping, disrupt the ability of the
theta index to accurately predict the frequency of the modula-
tion and add power outside of the peak range. This can be
seen for the theta cycle skipping cell in Figures 1a–c, row 5,
where there is more power in the half frequency range of the
spectra. This low frequency peak is analyzed by the theta index,
despite the obvious theta rhythmic component.

The net result of these problems is that the theta index is
substantially biased by many factors, including the peak firing
rate and the time spent in the field. We illustrate that by using
simulated spatial cells. All of the simulated cells in Figures 1e–
g have the same amount of theta rhythmicity: they all fire
phase locked to a simulated theta local field potential. In Fig-
ure 1e, we simulated 1,000 grid cells with random spacing and
orientation that fired locked to the peak of simulated theta
with varying peak firing rates, and then we calculated their
theta indices. There is a strong correlation (q 5 0.71, P 5 9.6e-
155) between the peak firing rate and the theta index, illustrat-
ing the bias of the theta index by firing rate as demonstrated
previously. Example cells from the simulated data are shown.
Additionally, we simulated 5,000 three-dimensional place cells
with random diameter (mean 100 cm) and field center, with
varying peak firing rate and varying mean velocity of move-
ment. Figure 1f,g shows these data, with the color of each dot
indicating the theta index, and Figure 1g shows the average
theta index for the data in 10 speed and rate bins. Sample cells
are indicated. Note that at high speeds, the slope of the
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autocorrelogram is steeper, and that the highest theta indices
are concentrated at high firing rates and low speeds. This can
be seen by a significant negative slope of the theta index with
increased running speed and decreased firing rate, as well as a
significant interaction between running speed and firing rate
(GLM speed, firing rate, interaction, P 5 3.9e-73,�0,1.5e-19).
Subtle features of movement behaviors, such as not stopping or
changing direction abruptly, or neuronal properties, such as
spike-frequency adaptation, may increase these effects. How-
ever, it is clear from these simulations that factors outside of
the actual rhythmicity of the neuron bias the theta index.

In real data, if we approximate each small time bin in the
autocorrelogram as a Poisson count, we can compute a confi-
dence interval for the underlying “rate profile.” The region of
shapes that fall within this range can act as confidence intervals
for the theta modulation. If the region excludes highly theta
rhythmic signals, it is unlikely that the cell has rhythmicity,
rather than we are just unable to detect the rhythmicity. By cal-
culating the theta indices for these profiles, and finding the
most and least rhythmic shapes in these regions, we can pro-
duce a confidence interval for the theta index for each cell. Fig-
ure 2 shows these confidence ranges and the shapes with lowest
and highest theta indices which fall within these bounds for 4
bat grid cells from the Ulanovsky laboratory (left) and 4 rat
(right) grid cells recorded in our laboratory (For all 25 bat grid
cells and 25 rat grid cells, see Supporting Information Figs. S1
and S2). It is worth noting that, due to the wide confidence
intervals around the autocorrelation, none of the confidence
regions around the bat grid cell autocorrelograms exclude very
high theta indices (minimum 17).

The relative width of the confidence intervals around the
histogram bars depends on the actual number of spikes
counted in that bin. The expected number of observations in a
particular bin depends on the product of the trial duration
ðT Þ, the overall mean firing rate (k) and the average rate in
that bin. The mean firing rates in a bin can be thought of as
Kk, where K is some multiplier of the average firing rate. Usu-
ally, within the autocorrelogram window K is greater than 1,
because the animal is likely to be in a firing field when the cell
is firing. Thus, the relative width of the confidence interval
depends on T Kk2: the number of observed lags varies quad-
ratically with the firing rate, and linearly with the session dura-
tion and the multiplier K. Thus, if two cells have the same
rhythmic rate multipliers K, but one has 1/10 the rate of the
other, the session would have to be 100 times as long to have
the same reliability in the shape of the autocorrelogram.

Altogether, a more statistically rigorous method of analyzing
theta rhythmicity is needed. The theta index cannot be used as
a ground truth for how rhythmic cells actually are in the verifi-
cation of its own efficacy, and thus a systematic exploration of
simulated data for which the ground truth rhythmicity is
known should be performed. Here, we bypass the use of the
spike-time autocorrelogram, and instead estimate the likelihood
of the timing of a spike which follows another spike using a
parametric model. Using this parametric model, we can gener-
ate data for which we know the actual rhythmicity irrespective

of the other factors that may affect the theta index, allowing us
to examine how the actual rhythmicity and the other factors
affect the theta index.

A Parametric Model of the Distribution of Lags

To reduce the biases of the spike-time autocorrelogram, we
generated a new technique using a parametric model of the dis-
tribution of lags [Eq. (1), Table 1, Fig. 1a, and Dynamic Fig.
1]. We found all of the lags in 0.6-second windows following
each spike, and treated them as independent values from our
rhythmicity distribution. Table 1 shows and explains each
parameter, and a diagram of the parameters is in Figure 3. To
get an intuitive sense of how each parameter affects the shape of
the distribution, we encourage the reader to experiment with
Dynamic Figure 1, available at http://bit.ly/1tJurco. In brief, the
distribution models the falloff of firing and the falloff in ampli-
tude of the rhythm as exponentials (Vinogradova et al., 1980), a
baseline rate, and the rhythmic modulation as the shifted sum
of two cosines, one at half frequency to allow theta cycle skip-
ping. The rhythmicity magnitude, a, is the initial amplitude of
the rhythmic component and is what we will use as a metric of
rhythmicity. We implemented this in MATLAB, and it is avail-
able at https://github.com/jrclimer/mle_rhythmicity.

To compare this technique to the theta index, we simulated
50,000 sets of lags from a range of values under the rhythmic-
ity distribution. We then refit these data to the distribution
and then analyzed the data using the theta index. Figure 4a
shows the amplitude values, and Figure 4b shows the theta
index values. The x-axis has the baseline amplitude of the
rhythmicity, and the y-axes show six different ground truth
parameters of the distribution. Note that there is very little
bias on the estimated amplitude (â; Fig. 4a) by the average fir-
ing rate �R ; the peak firing rate max Rð Þ, the duration of the
session (T Þ, the expected number of lags within the window
(EðnÞ), the distribution falloff rate (s), the baseline rate (b),
the falloff rate of the amplitude (c), the frequency (f ), or the
skipping (s); whereas all of these affect the theta index (Fig.
4b). The maximum (white), median (gray), and minimum
(black) values are indicated for the average rate, peak rate as
the average rate in the autocorrelogram window, session dura-
tion, and lag count for the 25 bat grid cells. Note that, for the
theta index, the highest firing rate cell borders the edges where
the theta index is always small, and that a change in the session
duration has a weak effect on the theta index.

We can quantify these effects using a general linear model
(Table 2). To make the slopes comparable, we normalized the
theta indices of the simulated cells to their 95th percentile
(12.1). Because the relationships between the average and peak
firing rate, the session duration, and the expected lag count, we
only used the expected lag counts EðnÞ and the other model
parameters s; b; c; f ; s; and a. All factors, with the excep-
tion of the baseline rhythmicity, rhythm decay, and skipping
score, had a significant effect on the MLE approach (Table 2,
P< 0.05). The skipping score and rhythm decay do not affect
our estimates of rhythmic strength, and the effects of the
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baseline b on rhythm strength are encapsulated by the effects
of the rhythmicity magnitude a. In contrast, the theta index
was significantly affected by all of the factors examined (Table
2, P< 0.05). The MLE approach yielded a higher slope on the
baseline rhythmicity (0.63 vs. 0.49) and smaller amplitude
slopes for interactions with all parameters. These differences
were all highly significant (Wald tests, P 5�0).

We can also fit our data with a single exponential decay to a
baseline, instead of to an exponential decay with the rhythmic
component (Fig. 3). By comparing the log likelihood values
from this fit versus the full fit, we can determine if significant
evidence exists for the rhythmic model over the arrhythmic
model using a likelihood ratio (LR) test. We can do a similar
test with s, the skipping score. In Figure 4c, we show the
results of LR-tests for the presence of rhythmicity, and in Fig-
ure 4d, we show the results of the significance of the shuffled
theta index. It is important to note that the specific method of
determining the significance of the theta index may change the
specific percentage values, and because we only simulated
within the autocorrelogram window, we used a smaller shuf-
fling window (61/(peak frequency – 1) s). This may cause the
detection rates to be higher here than with larger shuffling win-
dows (e.g., 10 s, see methods). All of these simulations have
some rhythmicity a priori, although the magnitude of this
rhythmicity ranges from nearly none to an initial rhythmic
amplitude spanning the autocorrelogram. Note that, unlike the
estimation of the amplitude, detection of rhythmicity by the
MLE approach is also always affected by the expected number

of observed lags in both the theta index and our method.
Again, the peak, median and minimum average rates, peak
rates, session duration, and spike counts for bat cells are
indicated.

Some restrictions apply to the MLE approach. For very
small lag counts, it over-fits small numbers of lags with high
rhythmicity: it is relatively easy to pick a frequency of oscilla-
tion for which a handful of spikes fall at the peaks of the oscil-
lation. These values have very wide confidence intervals about
the estimation for a. Thus, we recommend that the value of a
should only be used if at least 100 lags are present in the auto-
correlogram window (At >95 lags, estimated a is less than 1
standard deviation from the expected average for a < 0:5). In
contrast the theta index is always biased by the number of lags
and at the same number of lags, the theta index is always low
in the region where the MLE approach is affected (At <95
lags, mean theta index is 2.360.04 standard error for a > 0:5).
The median number of lags for the rat grid cells examined is
2,042. Because of the artificial independence assumption for
lags, the confidence intervals on our lag distributions are likely
smaller than if the full distribution were described and a bias
may be induced in some of the parameters. Additionally, the
frequency of the underlying rhythmicity affects analysis by
both techniques. The highest theta indices are restricted to a
narrow frequency range around 8 Hz, and detection of rhyth-
micity by the theta index is highly reduced outside of the 5–11
Hz range. In contrast, the frequency of the underlying rhyth-
micity has a smaller effect on the amplitude estimation and sig-
nificance as determined by the MLE approach, but detection
breaks down at very low frequencies (<1 Hz). Other factors
have effects on the approaches as well. These effects are neither
necessarily independent nor additive, and thus, any single sub-
plot in Figure 4 cannot be thought to be completely predictive
of detection ability in a dataset.

To examine the effects of parameters on rhythmicity detec-
tion, we can generate a logistic generalized linear model (Table

TABLE 1.

Parameters of the Parametric Rhythmicity Model [Eq. (1)], Their

Range, and Their Description

Parameter Range Description

s ð21;1Þ The log10 of the time constant for the

overall decay [log10 (sec)].

c 21;1ð Þ The log10 of the time constant for the

decay of the rhythmicity amplitude

[log10 (sec)].

b ½0; 1� The baseline probability. If 1, the rhyth-

micity distribution is uniform across

the window.

f ½1; 13� The frequency of the rhythmic modula-

tion (Hz).

s ½0; 1� The skipping index. If 0, no skipping, if

1, no secondary peaks.

r ½0; 1� Rhythmic modulation component. If 0,

no rhythmic modulation, if 1, maxi-

mally rhythmic (given b).

a ½0; 1� rð12bÞ. The rhythmicity magnitude.

The initial relative amplitude of the

rhythmic modulation (before

normalization).

These values are estimated by and included in the output of our mle_rhythmic-
ity function in stats.phat or stats.a.

FIGURE 3. Diagram of the parametric rhythmicity distribu-
tion, described in Eq. (1). The gray dashed line shows the baseline
(b), and the red line shows the falloff, an exponential with rate
determined by 10s. The blue dotted lines show the envelope of the
rhythmic modulation, which starts at a 5 (1 2 b)r, and falls off
with the product of the overall falloff and an exponential with rate
10c. In s 5 0, the rhythm fills this space (solid purple line). If s > 0,
then a second sinusoid at half frequency is added (thick black line).
The amplitude of the oscillations and midline are shifted so the
oscillation always fills the space between the decays (dotted blue
lines) and so if s and c are large, the secondary peaks are (1 2 s)
the height of the primary peaks. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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3). Higher b values from the logistic fit indicate a sharper tran-
sition in the probability of detection along that parameter; thus,
higher b values reflect an effect of a parameter over less of the
space. The MLE approach yields significantly higher b values
for many of the parameters (Table 3, P< 0.05) and detected
rhythmicity in significantly more of the sessions (54% vs. 41%,
binomial test, P 5 0). Thus, the MLE approach is significantly
more sensitive (more simulated cells were significant) to rhyth-
micity than the theta index under the examined conditions.

We ran our technique on the same cells shown in Figure 2
(Fig. 5, see also Supporting Information Figs. S4 and S5). Again,
we were unable to detect significant rhythmicity in any of the bat

grid cells; although, we were able to detect rhythmicity in all of
the rat grid cells examined. For many of the bat grid cells, the
confidence bounds surrounding our estimate spanned the entire
range, indicating that more lags would be required to make an
accurate determination about the magnitude of rhythmic modu-
lation of the cells. The best fits of the bat cells contained slow
frequency components, but this may not have been significant
due to the fast falloff relative to the rhythmic component or the
short window size. Although more of the bat grid cells fall within
the detection region for the MLE approach, most of the cells do
not (Fig. 4c). To demonstrate this, we simulated autocorrelo-
grams with the session duration, mean and peak firing rates

FIGURE 4. Examination of the MLE approach versus the
theta index for a simulated dataset a.) Mean of the maximum like-
lihood estimator for amplitude of rhythmicity (â) for 50,000 cells
as a function of the ground truth amplitude (x-axis, a), versus sev-
eral parameters (y-axis): the average spike rate [R (Hz), log axis],
the peak spike rate [max (R; Hz), log axis], the session duration
[T (min), log axis], the expected number of spikes in the window
[E(n), log axis], the overall falloff rate (s), the baseline (b), the fre-
quency (f ), the rhythmicity fall off (c), and the amount of skip-

ping (s). Maximum is 1. Arrows indicate the highest (white),
median (gray), and minimum (black) values of bat grid cells. b.)
As a, but for the theta index. Maximum is the 95th percentile of
scores, or 12. c.) As a–b, but showing the rate of detection of sig-
nificant rhythmicity using the MLE method. Maximum is 100%.
d.) As a–c, but showing the rate of detection of significant rhyth-
micity using the theta index. Maximum is 100%. [Color figure
can be viewed in the online issue, which is available at wileyonli-
nelibrary.com.]
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matching the 25 bat grid cells (Supporting Information Fig. S3).
For each bat cell, 50 autocorrelograms were generated in 6 bins
of the ground truth amplitude and the distributions of values
above. We then used the theta index and MLE approaches to
detect rhythmicity in these simulations. None of the cells reached
95% detection rates, even when the ground truth amplitude was
near 1. In less than half (10/25 for MLE, 9/10 for theta index)
of the cells, detection rates ever exceeded 50%. Although many
factors may affect rhythmicity detection as discussed above, it is
likely that rhythmicity similar to the rhythmicity of rat grid cells
would go undetected in most of the bat cells (Mean amplitude
for rat grid cells: 0.60). The highest firing rate handful of neu-
rons may imply that rhythmicity is weaker, different (i.e. in a
very low frequency), or nonexistent in the bat entorhinal cortex;
however, we do not have sufficient evidence to distinguish these
from difficulty in detection.

A notable advantage of the MLE approach is that each lag is
a separate observation. In contrast to other techniques which
“collapse” each spike into a single observation per session (i.e.,
the theta index of a cell in a particular session), this allows for
statistical comparison of a single cell across two sessions using
LR-tests comparing the separate fits to those with overlapping
parameter estimates. To demonstrate this capability, we took
25 parameter sets that would be favorable for such analysis,
shifted each of the parameters over a range in 15 steps, and
pairwise compared the results within the same initial parameter
tests to show the sensitivity of these tests. The results of this
analysis are shown in Supporting Information Figure S6.
Under these conditions, the detection of parameter differences
is highly sensitive and specific.

DISCUSSION

Recent recordings from the bat entorhinal cortex (Yartsev
et al., 2011) and hippocampus (Yartsev and Ulanovsky, 2013)

have shown rate maps which bear spatial structure through grid
firing in entorhinal cortex and place fields in hippocampus, but
researchers were unable to identify a robust theta rhythmic
component in the local field potential or spiking of these neu-
rons. Such findings have been presented as causal disproof of
models of spatial firing that rely on theta rhythmic processes.
On the other hand, evidence suggesting that theta frequency
dynamics carry spatial information (O’Keefe and Recce, 1993;
Burgess et al., 1994; Skaggs et al., 1996; Hafting et al., 2008;
Huxter et al., 2008; Climer et al., 2013), that theta phase regu-
lates information flow in the hippocampus (Colgin et al., 2009;
Belluscio et al., 2012; Newman et al., 2013), and that theta
phase regulates hippocampal plasticity (H€olscher et al., 1997;
Hyman et al., 2003) support the distinct hypotheses in which
theta rhythmic processes are critical to episodic memory and
spatial navigation. Some of these processes may be supported
by non-rhythmic or very slow oscillations, as in coordination
during up and down states during sleep (e.g. Hahn et al.,
2012); however, proposed mechanisms of synchronous commu-
nication through neural rhythms (Gutkin et al., 2005; Ermentr-
out et al., 2008; Uhlhaas et al., 2009; Zhou et al., 2013) and
theta generation (Dragoi et al., 1999; Buzs�aki, 2002; Buzs�aki
et al., 2012; Spaak et al., 2012) are distinct from those underly-
ing the periodic depolarizations of neurons in these states (San-
chez-Vives and McCormick, 2000; Bazhenov et al., 2002;
Sanchez-vives et al., 2010; Mattia and Sanchez-Vives, 2012),
and the experimental distinction between the two in the hippo-
campal circuit is a valuable experimental pursuit.

It has been proposed that the traditional method of meas-
uring theta rhythmicity, the theta index, may be substantially
biased by factors such as firing rate (Barry et al., 2012). To this
end, we have completed an in-depth analysis of how properties
of simulated spatial cells including firing rate (Figs. 1d,e) and
movement speed (Fig. 1f ) affect the theta index. To combat
these issues, we have developed a novel technique using MLE
of the distribution of lags to examine rhythmicity, which is
more sensitive and robust than the theta index (Figs. 3–5). To
verify this technique and to compare with the theta index, we

TABLE 2.

General Linear Model Fit of the Fit Amplitude (â) or the Theta Index (TI)

Parameter bâ Pâ R2
â bTI PTI R2

TI Djbj
% Difference

(TI – MLE)

Constant b0 0.23 �0 – 25.1e–3 0.33 – 20.22 2191%

Expected lag count EðnÞ 21.8e–7 6.8e–153 9.9e–3 3.3e–7 �0 0.032 1.5e–7 58.7%

Overall decay s 20.018 2.3e–22 1.4e–3 0.12 �0 0.054 0.10 147%

Baseline b 4.4e–3 0.38 0.099 0.082 1.6e–51 0.026 0.077 179%

Rhythm decay c 22.1e–4 0.91 9.7e–8 0.049 3.3e–128 9.0e–3 0.049 198%

Rhythm freq. f 3.5e–3 6.5e–40 2.4e–3 0.016 �0 0.047 0.012 128%

Skipping s 1.2e–4 0.97 1.1e–5 20.029 6.0e–13 6.7e–4 0.029 198%

Ground truth amplitude a 0.63 �0 0.23 0.49 �0 0.097 20.13 223.5%

The slope for the fit amplitude (bâ ) and the theta index (bTI ) versus each interaction and their significance (Pâ and PTI , respectively) are indicated. Râ2 and R2
TI

show the fraction of the variance explained by each interaction alone on the fit amplitude and theta index, respectively. The difference in the slope magnitude

(Djbj) and the percentage difference (100 2 jbTI j2jbâ jð Þ
jbTI j1jbâ j) are also indicated. These differences are all highly significant (Wald tests, P� 0).
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simulated and analyzed 50,000 sets of lags with a wide range
of properties. Estimated rhythmicity amplitude from the MLE
approach was much less biased than the theta index by nearly
all features (Fig. 3, Table 2), and rhythmicity detection was
more sensitive (Figs. 4c,d, Table 3).

Although providing a notable improvement over the theta
index, the advantages of the MLE approach are not without
caveats. At very low (<100) lag counts, the method overesti-
mates the amplitude of rhythmicity. As implemented here, it
assumes lags are independent, which we know they are not in
real data where spikes may appear in multiple lag windows.
This increases the degrees of freedom for the dataset analyzed
relative to the actual degrees of freedom in the data, which
may affect our measures and inappropriately narrow confidence
intervals estimated from the Fisher information at high firing
rates. Ameliorating these issues would provide notable improve-
ments to rhythmicity measuring techniques.

Since the theta index is a measure on the spike-time auto-
correlogram, we have examined the autocorrelograms of the
bat grid cells in terms of the expected variability given the
actual autocorrelogram counts and numbers of spikes, and we
argue that the bat grid cells’ autocorrelograms do not contain
enough spikes to conclusively determine that they are not
rhythmic by the theta index or the MLE approach (Figs. 2, 4,
and 5, Supporting Information Figs. S1, S3, and S4). Because
of their low firing rates, a low amount of data exists in the lag
window. However, we do not rule out the possibility that no
theta rhythmic phenomena exist in the bat hippocampal cir-
cuit. Indeed, it is unlikely that cells firing with the low rates
seen in the crawling bat could reliably carry temporal informa-
tion as seen in the rodent. Whether the bat hippocampal cir-
cuit uses timed activity and processes in memory and spatial
navigation as seen in other mammals (O’Keefe and Recce,
1993; Tesche and Karhu, 2000; Hyman et al., 2003; Hafting
et al., 2008; Davidson et al., 2009; Addante et al., 2011;
Watrous et al., 2011; Climer et al., 2013) remains an open
question.

The higher peak firing rates and larger field size seen in
place cells in the flying bat (mean peak firing rate �9 Hz, see
Yartsev and Ulanovsky, 2013 Fig. 4e) would be much better
suited for such analysis (Fig. 4). These cells also do not show
theta rhythmicity via the theta index. However, firing rate is
not the only property of cells that biases the theta index and
alters detection rates. The autocorrelograms of bat place cells
have a very fast falloff (see Yartsev and Ulanovsky, 2013 Fig. 4,
Supporting Information S18 and S21), and thus traditional
methods may be ill suited for examination of rhythmicity in
these cells (Fig. 4b, s). This falloff may be caused by the fast
movement speed of the animals (Fig. 1f ), although this may
also be caused by intrinsic firing properties that repress long
periods of firing. In vitro recordings of bat stellate cells have
revealed resonance frequencies at much lower frequencies
(�1.67 Hz) than the canonical theta range in rats (�8 Hz;
Heys et al., 2013). Rhythmicity at these frequencies would be
impossible to detect with the theta index (Fig. 4c) and would
require very long, sustained periods of activity in order to be
detected by any technique. It would be highly beneficial to
examine the bat place cell dataset with the MLE approach or
alternate techniques, using a wider examination window to
detect whether these slower rhythms exist. Given their

TABLE 3.

Logistic Fit of the Probability of Detecting Rhythmicity

Parameter bMLE PMLE bTI PTI PD

Constant b0 21.7 3.1e–249 22.0 �0 1.7e–11

Expected lag count EðnÞ 4.9e–5 �0 3.8e–6 �0 �0

Overall decay s 0.24 9.8e–37 0.12 7.2e–13 5.5e–11

Baseline b 20.48 3.6e–21 20.35 4.3e–14 6.5e–3

Rhythm decay c 0.30 8.6e–55 0.22 7.2e–38 2.0e–5

Rhythm freq. f 0.064 7.4e–124 0.082 5.4e–250 8.3e–13

Skipping s 5.1e–3 0.90 0.33 4.7e–21 �0

Ground truth amplitude a 3.3 �0 3.1 �0 6.4e–4

bNLE shows the b values for the fits for the MLE approach, pMLE indicated the
significance of each b value for the MLE fit, bTI shows the b values for the
theta index, and PD shows the significance of the Wald test for the difference
between the bs.

FIGURE 5. MLE method results for bat (left) and rat (right)
grid cells analyzed in Figure 2. The dark black line shows the
approximated histogram from the best fit, the gray dotted line
shows the best fit without rhythmicity. Amplitude of the oscilla-
tion (â) and 95% confidence intervals are indicated. P-values are
the results of the LR test for the full fit (black line) over the non-
rhythmic fit (dashed line).

470 CLIMER ET AL.

Hippocampus



consistently high firing rates and strong rhythmicity in the
rodent, GABAergic interneurons may also provide a better
platform for examining if a theta-like process exists in the bat
brain.

In specific reference to models of grid cells, although several
challenges face variants of theta-dependent models (e.g., oscilla-
tory interference, see Remme et al., 2010; Zilli, 2012; Domni-
soru et al., 2013 for discussion) they are not mutually-exclusive
of other models, and computational models that use multiple
mechanisms for generating grid cell firing can capture many
features of grid cell activity (Zilli, 2012; Schmidt-Hieber and
H€ausser, 2013; Bush and Burgess, 2014). It is possible that cer-
tain behaviors and mechanisms underlying grid cell behaviors,
particularly those of temporal coding, are not present or have
become vestigial in the hippocampal circuit of other mammals.

Other aspects, which are not examined here, of rhythmicity
may make it difficult to observe. Because we know that these
processes are history dependent, the variance of the true distri-
bution may be higher than expected for a consistent Poisson in
each bin (e.g., Fenton and Muller, 1998). This would decrease
our confidence of the underlying rates, and thus decrease our
confidence in the strength of the rhythmicity, widening the
confidence intervals about the autocorrelogram and making it
more difficult to examine rhythmicity via the theta index.
Unexplained variance in the counts may be explained by fur-
ther conditionalization of the distribution of lags by other fea-
tures that impact spiking and rhythmicity, such as the
frequency of the ongoing LFP oscillation. Theta frequency is
variable. In rodents, it is heavily modulated by speed (Richard
et al., 2013; Long et al., 2014) and behavior (Belchior et al.,
2014), and in both rodents and humans it is modulated by
novelty (Sambeth et al., 2009; Park et al., 2014). MLE can
provide a framework for examining if significant variance can
be explained by this conditionalization of the underlying fre-
quency on any number of factors.

When performing extracellular recordings in vivo, it is neces-
sary to estimate intrinsic properties of neurons based on much
noisier and poorly understood extracellular potentials. In the
face of this challenge, researchers have typically extrapolated
analysis on the discrete events of action potentials to determine
properties of individual neurons and the larger network. As in
any statistical analysis, these tools use data replete with noise to
estimate an underlying property of the neuron. As a result, we
often try to use tools that average hundreds or thousands of
spikes, such as rate maps, with the assumption that with
enough data such measures can approximate underlying contin-
uous features of cells. All of these assumptions can break down
at lower spike numbers. MLE of parametric distributions pro-
vides a powerful alternative approach. By treating each spike as
an observation from a distribution, we can find the distribution
that was most likely to have generated our data. Because these
techniques treat each spike as an observation, we can examine
if significant changes exist in the rhythmicity of a single cell in
two experimental conditions using LR tests (Supporting Infor-
mation Fig. S6). When any statistical analysis fails to reject a
null hypothesis, particularly with a small number of observa-

tions, researchers should be cautious in how they interpret their
null result: the absence of evidence is not necessarily evidence
of absence.
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