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There and Back Again: Hippocampus and Retrosplenial
Cortex Track Homing Distance during Human Path
Integration
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Path integration, the updating of position and orientation during movement, often involves tracking a home location. Here, we examine
processes that could contribute to successful location tracking in humans. In particular, we investigate a homing vector model of path
integration, whereby a navigator continuously tracks a trajectory back to the home location. To examine this model, we developed a loop
task for fMRI, in which participants viewed movement that circled back to a home location in a sparse virtual environment. In support of
a homing vector system, hippocampus, retrosplenial cortex, and parahippocampal cortex were responsive to Euclidean distance from
home. These results provide the first evidence of a constantly maintained homing signal in the human brain. In addition, hippocampus,
retrosplenial cortex, and parahippocampal cortex, as well as medial prefrontal cortex, were recruited during successful path integration.
These findings suggest that dynamic processes recruit hippocampus, retrosplenial cortex, and parahippocampal cortex in support of
path integration, including a homing vector system that tracks movement relative to home.
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Introduction
Path integration is the constant updating of the navigator’s rep-
resentation of position and orientation during movement with-
out using landmarks (Mittelstaedt and Mittelstaedt, 1982; Byrne
et al., 2007) and often involves tracking a start or home location.
A continuous homing vector model could account for this track-

ing behavior. According to this model, the navigator maintains a
vector back to its home location at all times (Fujita et al., 1990;
Philbeck et al., 2001). The navigator does not necessarily encode
the trajectory of the traveled path but simply maintains informa-
tion relating their current position to the home location.

The goal of this study was to test the contributions of the
homing vector model to human path integration and to examine
the brain regions that support this process. We developed a loop
closure task, in which participants viewed movement in a virtual
environment and decided whether the traversed path returned to
the start location. Loop closure is a novel experimental approach
to understanding path integration, which removes potential con-
founding errors in controlling movement during navigation.
Loop closure is also a major challenge in robotics (Leonard and
Feder, 2000; Durrant-Whyte and Bailey, 2006), and a greater
understanding of human path integration could lend insight into
solving this problem.
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Significance Statement

Path integration is the continual updating of position and orientation during navigation. Animal studies have identified place cells
and grid cells as important for path integration, but underlying models of path integration in humans have rarely been studied.
The results of our novel loop closure task are the first to suggest that a homing vector tracks Euclidean distance from the home
location, supported by the hippocampus, retrosplenial cortex, and parahippocampal cortex. These findings suggest a potential
homing vector mechanism supporting path integration, which recruits hippocampus and retrosplenial cortex to track movement
relative to home. These results provide new avenues for computational and animal models by directing attention to homing vector
models of path integration, which differ from current movement-tracking models.
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In rodents, cellular representations that could contribute to
path integration include grid cells in entorhinal cortex (Fyhn
et al., 2004), place cells in hippocampus (O’Keefe and Nadel,
1978), and head-direction cells in postsubiculum (Taube et al.,
1990) and retrosplenial cortex (RSC) (Cho and Sharp, 2001).
These signals can be combined to update spatial position during
active navigation (Burgess et al., 2007; Hasselmo, 2009; Erdem
and Hasselmo, 2012). Lesions in hippocampus and entorhinal
cortex have been shown to cause impairments of path integration
in rodents (Whishaw et al., 1997; McNaughton et al., 2006; Brun
et al., 2008), although some studies have shown minimal path
integration impairments with lesions (Alyan and McNaughton,
1999; Kim et al., 2013). RSC has anatomical connections with
hippocampus and parahippocampal cortex (PHC) (Sugar et al.,
2011; Aggleton et al., 2012), as well as prefrontal cortex (PFC)
(Shibata et al., 2004), and lesions to RSC cause impairments in
path integration in rodents (Save et al., 2001). Together, these
findings suggest roles for hippocampus, PHC, and RSC in pro-
cessing path integration signals.

Human functional imaging studies demonstrate that several
brain regions contribute to path integration. Hippocampal activ-
ity predicts accuracy in a path integration task (Wolbers et al.,
2007), and in navigation in a sparse environment (Sherrill et al.,
2013). In addition, several studies have shown a relationship be-
tween hippocampal activation and distance to a goal location
(Spiers and Maguire, 2007; Morgan et al., 2011; Viard et al., 2011;
Sherrill et al., 2013; Howard et al., 2014). Both hippocampus and
PHC are involved in encoding and maintaining translational and
rotational information necessary for path integration (E.R.C. et
al., under review). Although previous neuroimaging studies have
shown that PHC is involved in landmark-based navigation (Jan-
zen and van Turennout, 2004; Epstein and Vass, 2013), PHC
activity has also been observed in navigation in landmark-free
environments (Sherrill et al., 2013). RSC may play a key role in
tracking movement by translating between egocentric (relative
to the navigator) and allocentric (independent of the navigator)
perspectives (Byrne et al., 2007), and could contribute to process-
ing heading direction (Baumann and Mattingley, 2010; Mar-
chette et al., 2014). Yet, neuroimaging studies have not

established the role of these regions in a homing vector model of
path integration.

To test the contributions of the hippocampus, PHC, and RSC
to location tracking, we developed an fMRI study in which
participants tracked their return to a home location during
movement along a loop trajectory in a sparse virtual environ-
ment. We used a model-based approach to examine changes in
fMRI BOLD signal consistent with a homing vector model (Fujita
et al., 1990; Philbeck et al., 2001), which tracks the Euclidean
(straight-line) distance between individual points on the loop
and the home location. Based on theoretical and animal models,
our hypothesis was that hippocampus, PHC, and RSC would
track Euclidean distance to the home location during navigation,
in support of the homing vector model.

Materials and Methods
Participants
Thirty-one participants were recruited for this study from the Boston
University community. All participants had no history of neurological
disorders. Written informed consent was obtained from each participant
before enrollment in accordance with the experimental protocol ap-
proved by both the Partners Human Research Committee and the Bos-
ton University Charles River Campus Institutional Review Board.

Two participants were eliminated from the final analysis due to exces-
sive motion during fMRI scanning, 3 participants were not scanned due
to claustrophobia, 1 participant was found to be ineligible after screen-
ing, and 1 participant fell asleep during the scan. Twenty-four partici-
pants were included in the final data analysis (mean � SD age 23.50 �
4.81 years; 11 males, 13 females).

Stimuli and tasks
Environment. The experiment used a virtual environment, developed
using POV-Ray version 3.6 (http://www.povray.org/), a 3D ray-tracing
modeling program. The environment consisted of a textured ground
plane with �150 textured poles, or “trees,” randomly placed in the scene
(Figure 1). The textured ground and trees in the environment provided
optic flow information during the video presentation of movement. The
trees were taller than the top of the screen so that height changes could
not be used as a cue to distance. The large number of trees and random
placement discouraged participants from using the scene arrangement as
a landmark, and each video had a different random arrangement of the

Figure 1. Experimental design. Left, Example view of the environment. Participants first viewed a video of motion along a loop trajectory in a sparse environment. During the response period,
they indicated whether the video ended in the same place in which it started (“same,” a match trial) or whether it ended in a different location (“different,” a mismatch trial). Right, Illustrations of
match and mismatch trials. Mismatches could either undershoot the home location or continue past home and go partway around another loop for an overshoot (red).
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trees. Movement in the videos never passed directly through a tree. We
emphasize that self-motion information used in this study stems purely
from visual motion, with no vestibular or proprioceptive input, due to
the constraints of fMRI scanning.

Videos of movement in the environment were presented as a series of
images rendered in POV-Ray, at a rate of 30 frames per seconds. The
scenes were presented to participants using E-Prime 2.0 (Psychology
Software Tools), which also recorded the exact timing of stimulus pre-
sentation and participants’ responses.

Trial procedure. Each trial began with a loop closure video, which
varied in duration (range �4 –25 s, average 11.5 s). A response screen
followed the loop closure video, and participants had up to 2 s to respond
whether the movement in the loop closure video ended in the home
location. A 6 s intertrial interval (ITI) began immediately when the re-
sponse was recorded; thus, the duration of the response was indicative of
participants’ reaction time.

Loop closure. Half of the videos ended in the home location (a full 360°
traversal of the loop; Fig. 1), which we refer to as a “match,” and half
ended at another point along the circle, which we refer to as a “mis-
match.” Half of the mismatches were undershoots, such that the move-
ment only traversed a portion of the circle (225° of the loop). The other
half of mismatches were overshoots, such that movement went past the
home location and continued partway around a second loop (495° of the
loop). Participants were given clear instructions that undershoots and
overshoots were considered mismatches, and that it was important to
determine whether the end point itself was the start location. Three dif-
ferent radii of curvature (2.0, 3.0, and 4.5 virtual units) and two different
travel speeds (1.5 and 2.0 virtual units/s) were used in the loop closure
task to decouple distance, time, and proportion of the circle traveled
during the task. Loops turned both to the right and to the left in equal
numbers; we combined over left and right turning direction for
analysis.

The design of the current study eliminates any potential activation due
to motor control or attentional deployment to controlling movement. It
also eliminates performance differences due to execution errors in move-
ment. Instead, the attention of the participant is focused on location
tracking during path integration.

Procedure
Prescan training. Participants were trained outside the scanner the day
before scanning. Participants were given a general description of move-
ment in the environment and shown a short example video. The practice
consisted of 24 trials, and the loops used in the practice, although similar
in design, were not the same as those used during scanning. Feedback was
provided during the practice; immediately after the response for each
trial, participants were presented with information about whether their
response was correct and a running average of the percentage correct. In
addition to the loop task, participants were trained on 4 other tasks
related to path integration (E.R.C. et al., under review). They were then
given task-specific instructions and practice for each of the tasks in turn.
After one time through all experimental tasks, participants were given the
opportunity to take a break and to ask questions about the tasks. Another
run through the set of 24 practice trials with feedback was given for the
experimental tasks. Finally, participants were given a practice run, simi-
lar to how runs would be presented in the scanner: no feedback and each
of the five tasks (the loop closure task, discussed here, and the four other
path integration tasks) (E.R.C. et al., under review) presented in blocks,
with 6 trials per block.

At the conclusion of the prescan training, participants completed
several behavioral spatial abilities tasks, which allowed us to examine
potential individual differences. These behavioral tasks included the
self-report questionnaire Santa Barbara Sense of Direction Scale (He-
garty et al., 2002), a questionnaire about frequency and manner of
personal video game use, the Road Map Test in which participants
report the direction of each turn in a route predrawn on a city map
(Money and Alexander, 1966; Zacks et al., 2000), and the Perspective-
Taking Spatial Orienting Test in which participants view a 2D array of
objects on a page and indicate directional relationships from imag-
ined viewpoints (Kozhevnikov and Hegarty, 2001).

Scanning procedure. While structural scans were acquired, partici-
pants were given a practice run with feedback using examples from
the training session, with 8 trials per task block. Each of the test runs
consisted of one block each of the experimental tasks (the loop closure
task and the 4 other tasks not presented here). Each block contained
6 trials of the loop closure task, with match and mismatch trials
counterbalanced across runs. The task order of each block was coun-
terbalanced across runs. There were six runs, randomized across
participants, for a total of 36 trials of loop closure. Because the ITI
began as soon as participants made their responses, the scan time for
each run varied but generally lasted �10 min.

Image acquisition
Images were acquired at the Athinoula A. Martinos Center for Biomed-
ical Imaging, Massachusetts General Hospital in Charlestown, MA using
a 3 tesla Siemens MAGNETOM TrioTim scanner with a 32-channel Tim
Matrix head coil. A high-resolution T1-weighted MP-RAGE structural
scan was acquired using Generalized Autocalibrating Partially Parallel
Acquisitions (TR � 2530 ms; TE � 3.31 ms; flip angle � 7°; slices � 176;
resolution � 1 mm isotropic). T2*-weighted BOLD images were ac-
quired using an EPI sequence (TR � 2000 ms; TE � 30 ms; flip angle �
85°; slices � 33, resolution � 3.44 mm isotropic, interslice gap of 0.5
mm). Functional image slices were aligned parallel to the long axis of the
hippocampus. fMRI signal dropout in anterior MTL prevented analysis
of entorhinal cortex activity in this study.

fMRI preprocessing
Functional imaging data were preprocessed and statistically analyzed
using the SPM8 software package (Statistical Parametric Mapping, Well-
come Department of Cognitive Neurology, London). All BOLD images
were first reoriented so the origin (i.e., coordinate x, y, z � [0, 0, 0]) was
at the anterior commissure. The images were then corrected for differ-
ences in slice timing and were realigned to the first image collected within
a series. Motion correction was conducted next and included realigning
and unwarping the BOLD images to the first image in the series to correct
for image distortions caused by susceptibility � movement interactions
(Andersson et al., 2001). Realignment was estimated using seventh de-
gree B-spline interpolation with no wrapping, whereas unwrap reslicing
was done using seventh degree B-spline interpolation with no wrapping.
The high-resolution structural image was then coregistered to the mean
BOLD image created during motion correction and segmented into
white and gray matter images. The bias-corrected structural image and
coregistered BOLD images were spatially normalized into standard MNI
space using the Diffeomorphic Anatomical Registration using Exponen-
tiated Lie algebra algorithm (Ashburner, 2007) for improved intersubject
registration. BOLD images were resampled during normalization to 2
mm 3 isotropic voxels and smoothed using a 6 mm FWHM Gaussian
kernel. The normalized structural images of all 24 participants were av-
eraged after normalization for displaying overlays of functional data.

Analysis
Behavioral performance analysis. Behavioral performance was analyzed us-
ing MATLAB (The MathWorks) and SPSS20 (IBM). Within-subjects
repeated-measures ANOVAs were used to assess potential differences in
accuracy and reaction time between the different sizes of loops and travel
speeds.

fMRI analysis. To model the data, separate regressors were created for
correct trials and incorrect trials. These served as the two primary regres-
sors. The other experimental tasks, the response period, and ITI were not
included in the model. The six motion parameters calculated during
motion correction were added to each model as additional covariates of
no interest, as were regressors removing signal intensity spikes (using
SPM8’s ART function developed by Mozes and Whitfield-Gabrieli
http://www.nitrc.org/projects/artifact_detect/).

Both whole-brain and a priori ROI analyses were performed. Based on
human and animal literature, we had strong a priori hypotheses that the
hippocampus contributes to path integration by supporting a homing
vector model (Wolbers et al., 2007; Morgan et al., 2011; Sherrill et al.,
2013; Howard et al., 2014), that the PHC contributes to path integration
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(Epstein and Vass, 2013; Sherrill et al., 2013), and that the RSC contrib-
utes to spatial orientation (Cho and Sharp, 2001; Baumann and Mattin-
gley, 2010; Marchette et al., 2014). We created an anatomical ROI mask
of the left and right hemisphere hippocampi and the entire left and right
parahippocampal gyri using the Wake Forest University Pick-Atlas au-
tomatic anatomical labeling (Maldjian et al., 2003) available for SPM.
The Wake Forest University Pick-Atlas does not have an anatomical ROI
for the RSC, so we created an ROI using the anatomical tracing program
ITK-SNAP (Yushkevich et al., 2006). Our RSC structural ROI was traced
along the anatomical boundaries and Brodmann areas outlined by Vann
et al. (2009) and Damasio, (2005), including the extreme posterior cin-
gulate and the most ventral and posterior areas of the precuneus, without
extending into the occipital-parietal sulcus. We combined the hip-
pocampal, parahippocampal gyrus, and RSC ROIs and resampled to the
appropriate image space in SPM. We applied a voxelwise statistical
threshold of p � 0.05 to the contrast maps. To correct for multiple
comparisons, we applied a cluster-extent threshold technique. The
3dClustSim program in the AFNI software package was used to conduct
a 10,000 iteration, 6 mm autocorrelation Monte Carlo simulation of the
ROI volume (5041 voxels); a minimum voxel extent of 113 was deter-
mined to maintain a family-wise error rate of p � 0.05.

For the whole-brain analysis, a voxelwise statistical threshold of p �
0.01 was applied to the whole-brain contrast maps. Similar to the ROI

analysis, 3dClustSim was used to conduct a 10,000 iteration, 6 mm au-
tocorrelation Monte Carlo simulation analysis on voxels within the
group functional brain space using the ResMS header file (167,038 total
voxels). From this simulation, a minimum voxel extent of 145 was deter-
mined to maintain a family-wise error rate of p � 0.01. In light of recent
suggestions that a more conservative threshold should be used for whole-
brain fMRI analyses (Woo et al., 2014), we also applied a more conser-
vative voxelwise threshold of p � 0.001 with a cluster extent of 35 voxels
(cluster corrected to p � 0.05) to our dataset. We used Damasio, (2005)
and Pruessner et al. (2000, 2002) as references for localization.

Parametric analysis of homing vector. A model-based approach was
taken to test the hypothesis that hippocampal, parahippocampal, and
retrosplenial activation tracks Euclidean distance from the home loca-
tion during successful path integration, using a within-subject paramet-
ric analysis on the entire length of the loop task. The loops were divided
into 1 s intervals, with a parametric modulator corresponding to each
time point along the loop (Spiers and Maguire, 2007; Sherrill et al., 2013)
(Fig. 2A). We used stick functions (onsets with zero duration) to sample
at each second of each trial, sampling over the entire course of the loop
video. The primary parametric modulator was the Euclidean distance to
the home location at each time point (chord length in virtual units),
which we refer to as a “homing vector.” Euclidean distance from the
home location varied during the course of the trial: the distance increased

Figure 2. Design of the parametric analysis. A, Sticks (onsets with 0 duration) were placed at each second during the loop task, sampling over the entire course of the trial. In this example, the
loop is 6.25 s long. The homing vector model tracked the length of the chord of the loop between the current location and the home location, equivalent to the Euclidean distance to home. We refer
to this length as the homing vector. B, Comparison of the Euclidean distance homing vector model and the degrees-from-home model in a single trial example. C, We used three loop sizes (radius
2.0, 3.0, and 4.5 virtual units [vu]) and two travel speeds (1.5 and 2.0 virtual units/s). Left, The relationship between the homing vector length ( y-axis) and the arc length traveled around the loop
(x-axis) during the trial. The homing vector increased during initial movement, peaked halfway around the loop, then decreased back to zero, with an additional increase again for overshoot trials.
The three curves represent the three loop sizes used. Right, The relationship between the homing vector model (x-axis) and the alternative degrees-from-home model ( y-axis). The three loop sizes
are shown in ascending order of radii. The homing vector length when at the 180 degree point varies substantially between the three radii, at 4, 6, or 9 virtual units away from home.
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as the loop moved further from home, cresting halfway around the loop,
and then decreased again as the loop returned to the home location (e.g.,
1.47, 2.73, 3.61, …, 1.98, 0.56). For overshoot trials, this distance begins
to increase again after passing the home location. Figure 2C (left) illus-
trates the relationship between the homing vector and the total arc length
traveled during the trial. Correct and incorrect trials were modeled sep-
arately to account for more variance, but only correct trials were exam-
ined in our subsequent t test. If a participant was correct on all 36 trials,
a total of 431 time points over all the trials would be included in the
correct trials parametric modulator.

This model-based approach tests the hypothesis that the hippocam-
pus, RSC, and PHC track Euclidean distance from a home location dur-
ing path integration; however, it is possible that an alternative model that
follows a similar trajectory could provide a better fit for the data. Thus, in
addition to the homing vector analysis, we also created an alternative
parametric modulator to test a model corresponding to the degrees of arc
from the home location at each time point. Critically, by including three
loop sizes in our design, this analysis tests for the possibility that brain
regions could be responsive to the 180 degree point of the circle (furthest
point from home), rather than Euclidean distance from home per se.

Figure 2B illustrates the similarities and differences between the two
models for a single loop trial. The degrees-from-home model follows a
linear increase and decrease with a maximum at the 180 degree mark
because degrees accumulate linearly based on travel speed. In contrast,
chord length is related to a sine function, and so the homing vector model
arcs. Yet, when looking across the loop sizes, Figure 2C (right) illustrates
that, at the 180 degree point, the three loop sizes are quite different in
terms of the Euclidean distance from home (homing vector) model, but
they are equal in the model using degrees of arc from home. For example,
for the 2 unit radius loop, the furthest distance from home is 4 units;
however, 4 units away from home on the 3 unit radius loop occurs at �90
degrees from home and at only �55 degrees from home on the 4.5 unit
radius loop. Conversely, the Euclidean distance at 180 degrees from
home differs substantially for the three loop sizes, at 4, 6, and 9 units for
the 2, 3, and 4.5 unit radii loops, respectively. Accordingly, the regressor
for degrees of arc to home was the number of degrees in the arc that the
point was from the home location (e.g., 42.97, 85.94, 128.92, …, 59.21,
16.24). A correlation between the 431 possible time points for all of the
trials using the different parameters indicated that degrees of arc from
home was correlated with homing vector length (r(429) � 0.840, p �
0.001) because they both broadly increase and decrease at the same rate.
Thus, these two alternative models are qualitatively similar and have
shared variance; but by contrasting the models, we can determine which
model is a better quantitative fit for the data. In contrast with simple
localization, the model comparison approach indicates that one model
describes the data better than an alternative, providing greater explana-
tory power behind how a cognitive process is implemented in the brain
areas of interest (O’Doherty et al., 2007). This approach has been used to
study a variety of cognitive processes in learning, memory, and percep-
tion, and provides a means for testing models where shared variance is
expected (Ribas-Fernandes et al., 2011; Simon and Daw, 2011; Harvey et
al., 2013; Davis et al., 2014; Barendregt et al., 2015).

To compare these two models, we first created separate models in SPM
for the Euclidean distance (homing vector) and degrees-from-home
parametric modulators. We created separate models, rather than follow
the conventional approach of putting both within the same GLM because
the GLM approach removes potentially important shared variance,
thereby reducing power to detect regions that support either the homing
vector or degrees-from-home model. Thus, to effectively compare the
models, it is important to include the shared variance in both models.
The two models we created included separate regressors for both correct
trials and incorrect trials to account for variance attributed to incorrect
trials, and also included the motion and signal intensity spike regressors
described earlier. The parameter estimates for the parametric modula-
tion for only correct trials from each model were loaded into a one-
sample t test against 0 to test whether the models significantly described
the data. We conducted ROI and whole-brain analyses on both the hom-
ing vector and degrees of arc models, using the ROI, voxelwise thresh-
olds, and cluster extents described earlier. For visualization purposes,

parameter estimates were extracted from 5 mm spheres (excluding any
voxels with signal dropout) centered on peak coordinates to illustrate the
relationship between signal and Euclidean distance from home.

After determining whether the two models significantly described
the loop closure data, we next compared the two models. Because the
SPMs were created separately, we normalized each parameter esti-
mate (�) into a t-statistic by dividing them by the SE of the � value, to
ensure that they were comparable. The SE was computed from the
ResMS file (ResMS), the covariance matrix value for that � value
(Bcov), and the number of time points that were part of the � (N):
beta_norm � �/(sqrt(ResMS � Bcov)/sqrt(N)). We contrasted the
t-statistics for the different models in SPM8 by conducting a paired t
test between the two SPMs.

Analysis of successful navigation. We next examined brain regions that
contributed to successful path integration by contrasting BOLD activa-
tion in correct trials and incorrect trials, using a boxcar function to model
the entire trial duration. The model was analyzed using a standard GLM
approach whereby participant-specific parameter estimates pertaining to
each regressor were calculated. This model included separate regressors
for correct trials and incorrect trials, as well as the motion and signal
intensity spike regressors described above. These parameters were con-
volved with the canonical hemodynamic response function in SPM8.
The t-contrast between correct trials and incorrect trials was constructed
for each participant. Group-averaged statistical parametric maps (SPMs)
were created by entering the Correct � Incorrect contrast images from
each participant into a one-sample t test using participant as a random
factor. We conducted ROI and whole-brain analysis, using the ROI,
voxelwise thresholds, and cluster extents described above.

Results
Behavioral results
Mean proportion correct in the loop task was 0.588 (SD � 0.110),
which was significantly greater than chance (chance � 0.500; one-
sample t test, t(23) �3.924, p�0.001). Participants were significantly
more accurate for trials in which the loop did not end at the home
location (“mismatch”) than for trials that ended at the home loca-
tion (“match”) (paired t test, t(23) � �4.485, p � 0.001), but were
not faster in their responses (t(23) � 1.069, p � 0.296). A 3 � 2 (loop
radius size, speed) repeated-measures ANOVA found that there
were no main effects or interactions of movement speed or loop
radius of curvature on proportion correct (all p � 0.2), suggesting
that participants were not better at one type of loop. An additional
3 � 3 (loop radius size, match status) repeated-measures ANOVA
found that there was a main effect of match status (overshoot, un-
dershoot, or return to home) on proportion correct (F(2,46) � 7.725,
p � 0.001), with nonmatches having a greater proportion correct
than matches, but no differences in proportion correct between un-
dershoots and overshoots (p � 0.989, Bonferroni corrected), in
agreement with the paired t tests. There was no main effect of loop
size (p � 0.794) and no interaction between loop size and match
status (p � 0.373). Together, these findings indicate that analyses
using only correct trials, or those comparing correct trials with in-
correct trials, were not disproportionately driven by one speed or
one loop size. Performance in the loop task did not correlate with any
of the spatial abilities tests (all p � 0.2).

Mean response time was 891.79 ms (SD � 116.56). There was
no difference in reaction time between correct and incorrect trials
(t(23) � �0.757, p � 0.457). Participants responded faster to
mismatch trials that overshot the home location than for under-
shoots (t(23) � �7.748, p � 0.001), suggesting that they were
aware of the overshoot, but there was no difference in accuracy
between overshoot and undershoot trials (t(23) � �0.996, p �
0.330). An additional 3 � 3 (loop radius size, match status)
repeated-measures ANOVA showed no main effect of loop ra-
dius size (p � 0.777) or interaction (p � 0.143). However, the
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ANOVA did find a main effect of match status (F(2,46) � 34.721,
p � 0.001), with overshoots (mean � 769.43 ms) response time
significantly faster than matches (mean � 903.97 ms; p � 0.001,
Bonferroni corrected) and undershoots (p � 0.001, Bonferroni
corrected). In addition, response times for match trials were
faster than for undershoots (mean � 1000.52 ms; p � 0.016,
Bonferroni corrected). This result confirms that participants

were prepared to respond for the overshoots and were likely
slower for the undershoot trials because they were not prepared
for the trial to end early. A 3 � 2 (loop radius size, speed)
repeated-measures ANOVA found that there were no main ef-
fects or interactions of movement speed or loop radius of curva-
ture on reaction time (all p � 0.15), suggesting that participants
were not better at one type of loop.

Figure 3. Results of the parametric analysis, using the homing vector model. Top, Whole-brain and ROI results of the homing vector model of path integration, indicating brain areas that had an
increase in activation with increased Euclidean distance from the home location. Hippocampus and retrosplenial cortex had significant activation at both the ROI level and the whole-brain level,
which is shown here. Parahippocampal cortex results were significant at the ROI level only; a masked ROI was used to illustrate these results (*). Whole-brain results are at voxelwise threshold of p �
0.01, cluster corrected for multiple comparisons to p � 0.01 (cluster extent 145 voxels). ROI results are at voxelwise threshold of p � 0.05, cluster corrected to p � 0.05 (cluster extent 113 voxels).
Bottom, To illustrate that signal increased and decreased with Euclidean distance from home, the parameter estimate of the homing vector model is shown relative to the arc length traveled
(compare with Fig. 2) for the peak voxel of left hippocampus and left retrosplenial cortex. These figures were derived by multiplying the parameter estimate extracted from 5 mm spheres (excluding
voxels with signal dropout) centered on peak coordinates for the homing vector regressor by the distance from home corresponding to each time point. This illustration is thus predictive based on
the parameter estimate, which is derived by the best estimation of the model using those parameters. Mean values were computed from all of the correct trials from all subjects in a given loop radius
size/speed condition. Error bars indicate SE, as computed based on the total number of correct trials included in each mean.
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Brain regions coding for a homing vector
Euclidean distance from the home location varied during the
course of each trial: the distance increased as the loop moved
further from home, cresting halfway around the loop (corre-
sponding to 180 degrees), and then decreased again as the move-
ment returned home (Fig. 2A). Because this variable tracks the
home location at all times, we refer to it as the “homing vector”
(Fujita et al., 1990; Philbeck et al., 2001). The task used three sizes
of loop and two movement speeds to provide a variety of homing
vector lengths and to dissociate homing vector distance from
other factors such as arc length traveled (Fig. 2C, left) and degrees
from home (Fig. 2C, right). Here we report the MNI coordinates,
cluster size (k), t value, and uncorrected p value for the peak voxel
in each significant cluster within our ROI. We used a parametric
analysis (see Materials and Methods) to test the hypothesis that
activation would increase in this ROI with increasing Euclidean
distance from home, that is, increasing length of the homing
vector. In line with this prediction, we found significantly greater
activation with increasing Euclidean distance from the home lo-
cation in the following a priori ROI regions: right hippocampus
head (x, y, z: 28, �18, �18; k � 367; t(23) � 3.37, p � 0.0013), left
hippocampus head, body, and tail (x, y, z: �26, �16, �16; k �
686; t(23) � 4.32; p � 0.0001), left PHC bordering the subiculum
region (x, y, z: �20, �20, �22; k � 686; t(23) � 3.28; p � 0.0016),
and left RSC (x, y, z: �6, �56, 18; k � 273; t(23) � 4.99; p �
0.00002) (Figure 3), supporting our hypothesis that the hip-
pocampus, PHC, and RSC track Euclidean distance to the home
location, consistent with the homing vector model.

A whole-brain analysis at a threshold of p � 0.01 examining
areas responsive to increasing Euclidean distance demonstrated
activation in bilateral hippocampus and bilateral RSC, as well as
bilateral angular gyrus, bilateral precuneus, and bilateral superior
temporal gyrus and sulcus (for complete results, see Fig. 3; Table
1). We also examined our results at a more conservative voxelwise
threshold of p � 0.001 (Woo et al., 2014) for the primary analysis
of regions showing increasing activity with distance from the
home location. Using this more conservative threshold, activity
was localized to the left hippocampus and bilateral RSC extend-
ing to precuneus (with greater activation on the left), as well as
bilateral angular gyrus, bilateral middle temporal gyrus, and right
temporal pole.

An alternative explanation is that these areas track the distance
from home in terms of degrees of arc. In other words, these areas
could be sensitive to being 180 degrees away from the goal, rather
than tracking distance per se. To test this hypothesis, we created a
model with degrees of arc from the goal as the parametric mod-
ulator (for illustrations of the two models, see Fig. 2B,C, right).
This analysis demonstrated that some of the brain regions that
respond to the degrees-from-home model were consistent with
those found for the homing vector (Euclidean distance) model:
the ROI analysis found activation in bilateral hippocampus and
left RSC, and the p � 0.01 whole-brain level found activation in
the left RSC and left hippocampus. Yet, at the more conservative
p � 0.001 level, none of the a priori regions was related to the
degrees-from-home model, with activations at this level instead
centered on superior temporal gyrus and sulcus, angular gyrus,
precentral gyrus, and mPFC.

Contrasting these two models in our a priori ROI showed that
bilateral RSC, bilateral hippocampus head, left hippocampal tail,
and bilateral PHC (left PHC proper and bilaterally more anteri-
orly near the border with the subiculum) had greater activation
(p � 0.05) for the Euclidean distance homing vector model than
for the degrees-from-home model, suggesting that these regions
are sensitive to Euclidean distance rather than the portion of the
loop that has been traversed (Fig. 4). The left PHC (p � 0.001)
extending into collateral sulcus and bilateral RSC (left p � 0.005,
right p � 0.01) results held at the whole-brain level. Additional
areas that showed greater consistency with the homing vector
model than the degrees-from-home model at the whole brain
(p � 0.01) included bilateral angular gyrus, left superior parietal
lobule, and left lateral occipital gyrus. The opposite contrast
(whole brain, p � 0.01) showed that bilateral lingual gyrus, left
calcarine sulcus, and bilateral anterior insula/Sylvian fissure were
more consistent with the degrees-from-home model than the
Euclidean distance homing vector model.

Together, these results suggest that hippocampus, PHC, and
RSC are sensitive to Euclidean distance, consistent with the hom-
ing vector model. In addition, the results suggest the homing
vector model tended to describe the data better in these regions
than the alternative degrees-from-home model. It is worth not-
ing that the statistical thresholds for this advantage ranged from
p � 0.05 to p � 0.001. Figure 2B, C illustrates the differences
between these two alternative models, which is elaborated in Ma-
terials and Methods. Although the Euclidean distance and
degrees-from-home models are broadly correlated because they
both increase to the 180 degree mark, the three loop sizes help
separate out the effects of the two models. The finding of greater
correspondence with Euclidean distance rather than the 180
degree mark suggests that activations in hippocampus, PHC,
and RSC are likely tied to Euclidean distance rather than de-
grees of arc.

Successful path integration
We contrasted brain activity for correct trials compared with
incorrect trials on a within-subject basis to determine brain re-
gions that are involved when successfully performing the loop
closure task (Fig. 5). Univariate analysis of the a priori ROI found
significantly more left RSC activation (x, y, z: �2, �44, 20; k �
116; t(23) � 3.19; p � 0.002), right hippocampal activation (x, y, z:
24, �32, �6; k � 237; t(23) � 2.19; p � 0.019), and right PHC
activation (x, y, z: 20, �30, �18; k � 237; t(23) � 2.48; p � 0.010)
in correct trials than in incorrect trials. Whole-brain analysis at
the p � 0.01 threshold found activation in bilateral RSC, bilateral
medial PFC (mPFC), left anterior cingulate, bilateral poster-

Table 1. Whole-brain results for the Euclidean distance to the home location, areas
showing parametrically increasing activity with increased distance from homea

Left Right

Brain region t MNI x, y, z t MNI x, y, z

Regions with increasing activity
Inferior frontal gyrus 3.99 �42, 34, �4
Sylvian fissure 3.50 �44, �10, 14 4.19 38, �12, 20
Precentral gyrus 3.44 56, �2, 8
Pallidum 3.04 �24, �10, �4
Amygdala 3.28 26, 0, �24
Hippocampus (head) 4.32* �26, �16, �16 3.37 28, �18, �18
Hippocampus (tail) 3.92 �22, �40, 4 3.22 30, �38, 0
Retrosplenial cortex 4.99* �6, �56, 18 3.74 10, �54, 24
Temporal pole 4.06 �44, 16, �38 4.04* 42, 16, �44
Superior temporal gyrus 3.44 �48, �8, �4 3.89 58, �24, 8
Superior temporal sulcus 4.41* �58, �36, �2 3.61 62, �24, �2
Middle temporal gyrus 6.18* �60, 4, �20 6.45* 60, 8, �32
Precuneus 4.57* �4, �58, 28 3.42 6, �58, 32
Angular gyrus 5.86* �38, �60, 24 4.30* 54, �62, 26
Calcarine sulcus 3.76 �24, �76, 4 3.42 24, �76, 6

aWhole-brain results are at voxelwise threshold of p � 0.01, cluster corrected for multiple comparisons to p � 0.01
(cluster extent 145 voxels).

*p � 0.001.

15448 • J. Neurosci., November 18, 2015 • 35(46):15442–15452 Chrastil et al. • Location Tracking in Human Path Integration



ior cingulate, bilateral angular gyrus, bilateral fusiform gyrus,
and bilateral precuneus. At the more conservative whole-brain
threshold of p � 0.001, we found activation in the left border
of posterior cingulate and RSC, bilateral mPFC, bilateral pre-
cuneus, left angular gyrus, left middle frontal gyrus, right fusi-
form gyrus, right calcarine sulcus, and right lateral occipital
gyrus. Complete results are listed in Table 2.

Discussion
Our primary finding is that the hippocampus, RSC, and PHC
track Euclidean distance from the home location, supporting a
homing vector model of path integration. In addition, the results
suggest that a homing vector model tended to describe the data
better in these brain regions than an alternative model tracking
the degrees from the home location. In addition, we found that
the hippocampus, RSC, and PHC, as well as mPFC, were signifi-
cantly more active in successful path integration trials than in
unsuccessful trials. These findings provide insight into the dy-
namic processes required for path integration in humans.

Hippocampus, RSC, and PHC track Euclidean distance to a
home location
Our results demonstrate a role for the hippocampus in coding
Euclidean distance from a home location. In goal-oriented navi-
gational tasks, Sherrill et al. (2013) found increased activation in
the posterior hippocampus with increasing proximity to a goal,
and Viard et al. (2011) found that anterior hippocampus was
more active during test when the goal was closer to the start
location. In contrast, Howard et al. (2014) found increasing
Euclidean distance from a target (goal) was associated with
increased anterior hippocampal activation, but posterior hip-
pocampus activation was associated with increased path length.
Likewise, Morgan et al. (2011) found evidence suggesting that
anterior hippocampal activity increases with distance. Spiers and
Maguire (2007) similarly found increased activation with greater
distance from a goal in right subiculum/entorhinal cortex. What
these tasks have in common is a design in which the navigator
traveled to a known goal location, and in some cases, including

our own previous work (Sherrill et al.,
2013), navigators saw an overhead map of
the environment before moving, which
allows the navigator to anchors to either
the initial start point or to the final goal
location. In the present experiment, par-
ticipants traveled an unknown distance
along a loop and could only construct a
“map” of the loop online during the
movement. In this design, there is only
one anchor point (the start location),
which provides support for the hypothesis
that the hippocampus is coding Euclidean
distance to the home position. It should
be noted that these results are compati-
ble with previous studies suggesting that
the hippocampus more generally codes
path information, and is also consistent
with the idea that it plays a role in track-
ing distance to a known goal. Finally,
although we focus primarily on distance
to home here, direction and facing ori-
entation are also important factors for
homing behavior (Chadwick et al.,
2015).

This study is the one of the first to im-
plicate RSC in online tracking of Euclidean distance. Viard et al.
(2011) found increasing RSC activity with proximity to a goal, in
contrast to our findings that RSC activity was greatest when fur-
thest from home. Because navigators in our task could only an-
chor to the home location, task and goal structure could again
explain these differences, but together these findings suggest that
RSC contributes to an online system that tracks Euclidean dis-
tance during path integration. RSC activity has also been ob-
served during navigation in sparse environments (Sherrill et al.,
2013), and it is also sensitive to heading direction in both humans
and animals (Chen et al., 1994; Marchette et al., 2014). RSC has
also been found to support representations of stable landmarks in
an environment (Auger et al., 2012; Auger and Maguire, 2013).
Although the importance of RSC to spatial navigation has been
widely acknowledged, our findings suggest a novel role for RSC as
part of the ongoing computation of a homing vector. Finally, we
note that the greater sensitivity for the homing vector model than
the degrees-from-home model in RSC and hippocampus was
found at statistical thresholds of p � 0.01 and p � 0.05, respec-
tively, but the results supporting a homing vector model more
generally held at the strict p � 0.001 level for both RSC and the
hippocampus.

A third area that tracked Euclidean distance from the home
location and was also more active during successful trials than
unsuccessful trials was localized to the border between the
PHC and subiculum in the ROI analysis. The PHC is known
to be involved in landmark navigation (Janzen and van
Turennout, 2004; Brown et al., 2010; Epstein and Vass, 2013)
and view-based place recognition (Epstein and Kanwisher,
1998). However, the present experiment had no landmarks,
and we note that the localization of our PHC results is anterior
to and does not overlap with the PPA areas reported in scene
and navigation literature (Epstein and Kanwisher, 1998). Al-
though it is possible that some participants attempted to use
the arrangement of trees at the home location, this strategy
proved difficult due to the large number of trees and quick
initial movement away from home. In support of the idea that

Figure 4. Results for the model comparison contrast of Euclidean distance homing vector model greater than the degrees-from-
home model. A masked ROI was used to illustrate these results. ROI results are at a voxelwise threshold of p � 0.05, cluster
corrected to p � 0.05; cluster extent 113 voxels.
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the PHC supports path integration, other studies from our
laboratory have observed PHC activation during a navigation
task in a sparse, landmark-free environment (Sherrill et al.,
2013). Based on the results reported here, we suggest that the
PHC could combine path integration signals to form a repre-
sentation of “place,” which is used during the approach to
home. Given that the peak of this area is on the border of the
subiculum, a follow-up high-resolution study would be help-
ful in defining whether the PHC and subiculum both contrib-
ute to path integration.

Regions supporting successful path integration
Our analysis of successful versus unsuccessful loop closure trials
demonstrated differences within the RSC, hippocampus, PHC,
and mPFC, and these results are consistent with earlier studies
demonstrating activation in these areas during successful path
integration in different tasks (Wolbers et al., 2007; Sherrill et al.,
2013). Anatomically, it is interesting to note that, although there
are strong connections from the anterior hippocampus to the
mPFC, most of the hippocampal inputs to the RSC arise from the
caudal hippocampus (Aggleton et al., 2012). In addition, recip-
rocal connections from the mPFC to the hippocampus are very
sparse, with information from the mPFC reaching the hippocam-
pus via the RSC or nucleus reuniens of the thalamus (Aggleton,
2014; Miller et al., 2014; Ito et al., 2015). In our study, two of these
areas, the RSC and mPFC, met the more stringent statistical
threshold suggested by Woo et al. (2014), and are discussed here
first, followed by a discussion of the role of the hippocampus and
PHC in successful path integration.

Computational models predict that information about the
direction and speed of movement stemming from head-direction
cells in RSC could update grid cell responses, which subsequently
update hippocampal place cells and the representation of posi-
tion in the environment (Burgess et al., 2007; Hasselmo, 2009;
Erdem and Hasselmo, 2012). Such updating of path integration
signals can be used to form a metric map of the environment, also
known as survey knowledge (Chrastil, 2013). In support of these
computational models, RSC has anatomical connections with the
hippocampus and PHC (Sugar et al., 2011; Aggleton et al., 2012),
as well as PFC (Shibata et al., 2004). The activations in hippocam-
pus, RSC, PHC, and mPFC observed during location tracking in
the present experiment, as well as with activations during dis-
tance and rotation estimations in a related study (E.R.C. et al.,
under review), are consistent with these models. The mPFC result

Figure 5. Results for activity greater for correct trials than incorrect trials. Top, Whole-brain activity for correct trials contrasted with incorrect trials, which included retrosplenial cortex, medial
PFC, and cingulate. Bottom, ROI for correct trials contrasted against incorrect trials. Hippocampal and parahippocampal results were significant at the ROI level only; a masked ROI was used to
illustrate these results (*). Whole-brain results are at voxelwise threshold of p � 0.01, cluster corrected for multiple comparisons to p � 0.01 (cluster extent 145 voxels). ROI results are at a voxelwise
threshold of p � 0.05, cluster corrected to p � 0.05 (cluster extent 113 voxels). For illustration purposes, the parameter estimates for the peak voxels were extracted from 5 mm spheres (excluding
voxels with signal dropout) centered on peak coordinates within the ROI are shown. Error bars indicate SEM.

Table 2. Whole-brain results for activations in the loop task for the contrast of
correct trials > incorrect trialsa

Left Right

Brain region t MNI x, y, z t MNI x, y, z

Correct � incorrect
Superior frontal gyrus 3.63* �2, 48, 22 4.06* 2, 48, 24
Anterior cingulate 3.64 �6, 24, 20
Middle frontal gyrus 4.70* �42, 14, 36 3.69 36, 8, 44
Posterior cingulate 3.59 �4, �24, 36 3.23 2, �12, 32
Superior temporal sulcus 4.41 �64, �36, �6 5.67* 60, �38, �6
Retrosplenial cortex 4.45* �10, �44, 22 3.14 2, �44, 18
Precuneus 4.45* �12, �60, 38 3.75* 2, �58, 40
Supramarginal gyrus 4.52 �40, �62, 42
Angular gyrus 5.82* �48, �56, 30 3.42 54, �58, 32
Superior parietal lobule 3.64 20, �72, 42
Lingual gyrus 3.91 �6, �92, �6 4.53 8, �86, �6
Fusiform gyrus 4.40 �18, �82, �8 4.50 10, �74, �12
Lateral occipital gyrus 4.98* 34, �78, �4
Calcarine sulcus 3.58 �8, �96, 0 4.68* 10, �92, 2
Cuneus 3.77 10, �90, 14

aWhole-brain results are at voxelwise threshold of p � 0.01, cluster corrected for multiple comparisons to p � 0.01
(cluster extent 145 voxels).

*p � 0.001.
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is consistent with studies suggesting it plays a role in metric nav-
igation (Spiers and Maguire, 2007; Viard et al., 2011; Sherrill et
al., 2013; Arnold et al., 2014).

The results from the hippocampus and PHC are consistent
with the animal literature on their role in path integration
(O’Keefe and Nadel, 1978; Whishaw et al., 1997; Save et al., 2001;
Fyhn et al., 2004; McNaughton et al., 2006). Human and animal
studies of hippocampal lesions have generated conflicting results,
with some studies showing no impairments in path integration
with hippocampal lesions (Alyan and McNaughton, 1999;
Shrager et al., 2008) and others finding impairments that de-
pended on specific aspects of the lesions (Worsley et al., 2001;
Philbeck et al., 2004; Kim et al., 2013; Yamamoto et al., 2014),
leaving open the possibility of more general distance and path
coding functions for the hippocampus (Johnson and Redish,
2007; Pfeiffer and Foster, 2013). In addition, our analysis at the
more stringent level indicates a prominent role for RSC and
mPFC in successful encoding, suggesting that these regions could
support path integration after hippocampal damage.

Finally, we should note that there are other possible models
for path integration, including a configural model, whereby the
navigator encodes the entire outbound journey (or current allo-
centric location) and only computes the return trajectory at the
end of the outbound path (Fujita et al., 1993; Loomis et al., 1993).
Behavioral evidence suggests that humans are capable of both
homing vector and configural strategies (Wiener et al., 2011), and
we emphasize that the neural mechanisms of the homing vector
described here are not necessarily reflective of conscious strate-
gies, but rather of brain processes for successful path integration.
The presence of both homing vector and configural systems
could resolve some of the conflicting results from hippocampal
lesion studies; patients with hippocampal lesions may not be able
to access the homing vector system, which we have demonstrated
relies on the hippocampus, but could rely on a configural system
to complete certain path integration tasks. Interestingly, rodent
models that integrate movement to simulate the neural firing
properties of grid cells and place cells based on path information
may fall more in line with a movement tracking configural model
than with a homing vector model (Gothard et al., 1996; Johnson
and Redish, 2007), indicating that the hippocampus may sub-
serve multiple aspects of spatial navigation.

This experiment probed the neural underpinnings of path
integration in humans using a novel loop closure task. The results
suggest that hippocampus, RSC, and PHC support a homing
vector model that tracks the Euclidean distance to the home lo-
cation. These findings present promising new directions for path
integration research in both humans and animals by suggesting
that tracking position relative to home is possible via vector
coding.
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