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Predictive learning by a burst-dependent learning rule 

G. William Chapman, Michael E. Hasselmo 
Center for Systems Neuroscience, Boston University, Boston, MA, USA  

A B S T R A C T   

Humans and other animals are able to quickly generalize latent dynamics of spatiotemporal sequences, often from a minimal number of previous experiences. 
Additionally, internal representations of external stimuli must remain stable, even in the presence of sensory noise, in order to be useful for informing behavior. In 
contrast, typical machine learning approaches require many thousands of samples, and generalize poorly to unexperienced examples, or fail completely to predict at 
long timescales. Here, we propose a novel neural network module which incorporates hierarchy and recurrent feedback terms, constituting a simplified model of 
neocortical microcircuits. This microcircuit predicts spatiotemporal trajectories at the input layer using a temporal error minimization algorithm. We show that this 
module is able to predict with higher accuracy into the future compared to traditional models. Investigating this model we find that successive predictive models 
learn representations which are increasingly removed from the raw sensory space, namely as successive temporal derivatives of the positional information. Next, we 
introduce a spiking neural network model which implements the rate-model through the use of a recently proposed biological learning rule utilizing dual- 
compartment neurons. We show that this network performs well on the same tasks as the mean-field models, by developing intrinsic dynamics that follow the 
dynamics of the external stimulus, while coordinating transmission of higher-order dynamics. Taken as a whole, these findings suggest that hierarchical temporal 
abstraction of sequences, rather than feed-forward reconstruction, may be responsible for the ability of neural systems to quickly adapt to novel situations.   

1. Introduction 

Neocortical circuits mediate a broad variety of cognitive functions, 
including the extraction of rules in different behavioral tasks (Bhandari 
and Badre, 2018; Zhu et al., 2018; Hasselmo and Stern, 2018; Wallis 
et al., 2001; Buschman et al., 2012). One aspect of the extraction of rules 
involves the tracking of dynamics of sensory stimuli (Yoo et al., 2020) 
and self-location as an agent navigates in an environment (McNaughton 
et al., 2006; Byrne et al., 2007; Hasselmo, 2005; Bicanski and Burgess, 
2018). A number of different cortical regions are implicated in these 
types of functions, including parietal cortex (Byrne et al., 2007; Bicanski 
and Burgess, 2018), retrosplenial cortex (Alexander et al., 2020), ento
rhinal cortex (Brandon et al., 2013), and prefrontal cortex. Simulta
neously, anatomical evidence suggests that there may be common 
features of cortical circuitry throughout different cortical regions 
(Douglas et al., 1989; Bastos et al., 2012; Mountcastle, 1997; Rockland, 
2010). Given the distributed nature of tracking, as well as this 
anatomical consistency across cortical circuits, we hypothesize that 
particular aspects of cortical organization may be responsible for 
building accurate internal representations of these external stimuli. 
Here, we work towards building a model of cortical microcircuits which 
replicates this ability to predictively code for trajectories of stimuli. 

Previous Work There have been many models of prediction of time 
series, both from a machine learning perspective and a neurally inspired 
framework. While our goal is to create a biologically realistic model of 

prediction, we discuss machine learning (ML) approaches as well. These 
ML approaches serve as a baseline to which we can compare our model’s 
performance, but also as extremely abstracted and mathematically 
optimized models of neural systems (Rumelhart and McLelland, 1986). 
The most common form of ML sequence prediction is sequence-to- 
sequence modeling, which utilizes backpropagation of errors through 
time (BPTT) (Williams and Zipser, 1989). While this approach has high 
success in areas such as natural language processing (Sutskever et al., 
2014), they are essentially recurrent autoencoders, and typically fail 
when external teaching signals are inconsistent or sparse (Bengio et al., 
1994). Alternative approaches based on echo-state (known as FORCE 
training) (Sussillo and Abbott, 2009), or liquid-state (Boerlin et al., 
2013), networks are able to mimic external dynamics autonomously 
after a brief training period. FORCE and related methods however rely 
on a specific connectivity in which a decoded state is optimized by an 
external teacher and fed back into the network (Nicola and Clopath, 
2017; Denève et al., 2017), and can not learn when the external teaching 
signal appears stochastically (see supplemental materials). In contrast, 
animals must perform in an environment where external stimuli may 
appear and disappear at random intervals, and building incorrect in
ternal models of position is not sufficient for driving behavior. Prompted 
by this discrepancy, we consider three core aspects in which neural 
systems are thought to be organized, and consider how they may be 
essential for sequence prediction. 

Hierarchy Proposals of cortical function have used hierarchical 
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representations of information across different regions. These include 
many examples of function. For example, in progressing from caudal to 
rostral regions in the visual system different cortical regions mediate a 
hierarchical transition of coding level (Gilbert and Li, 2013; DiCarlo 
et al., 2012) of individual points of an image with the extraction of edges 
(V1), to the coding of higher order features such as movement (MT), 
color (V4) and ultimately the identity of an object such as a face (IT) 
(Desimone and Schein, 1987; Hasselmo et al., 1989; DiCarlo et al., 
2012). Another example concerns position information in which the 
elements of self-movement can be extracted separately in terms of po
sition (O’Keefe and Dostrovsky, 1971; O’Keefe and Burgess, 2005), or 
separately as velocity (Kropff et al., 2015; Hinman et al., 2016) or as 
acceleration (Kropff et al., 2021). This also applies to higher level 
cognitive control modeled on reinforcement learning in which sub- 
policies in posterior frontal cortex are controlled by higher level hier
archical control policies in more anterior regions (Koechlin and Sum
merfield, 2007; Badre and Frank, 2012; Badre and D’Esposito, 2009). In 
modeling, these types of hierarchical representations are used in hier
archical reinforcement learning (Sutton et al., 1999) and in hierarchical 
Bayesian coding (Kingma and Welling, 2019). Here we build on the idea 
of hierarchical representations of cortical regions to form a predictive 
representation of dynamics, where the higher cortical regions track 
successively derived features. 

Supervised vs Predictive Coding Previous approaches tend to rely 
on supervised learning, in which a whole or portion of a sequence is 
provided at one ‘end’ of a network, and a prediction is formed at the 
other end of the network, which is then used to update synaptic weights. 
In contrast, a number of cortical models involve generative-predictive 
coding (Rao and Ballard, 1999). In this framework, a given cortical re
gion receives a feedforward (eg: sensory) signal, and a feedback signal 
consisting of the expected feedforward signal. Each region then calcu
lates the difference between the feedforward (true) and feedback (ex
pected) activity, which is then passed to the next cortical region (Bastos 
et al., 2012). In the example of early visual cortex, these feedback signals 
may be a line segment, while feedforward signals then carry the spatial 
error, giving rise to the end-stopping phenomenon and other experi
mental findings (Lotter et al., 2020). While these forms of predictive 
coding hypothesize that the feedforward activity represents prediction 
errors, other studies have hypothesized that there is no such explicit 
computation of error. These alternative forms of predictive coding pose 
a feedforward signal which is, in each cortical region, simply a trans
formed version of it’s own input, and feedback signals represent some 
latent feature which may be informative for improving these lower-level 
predictions (O’Reilly et al., 2021). A common aspect to both the feed
forward error and feedforward prediction frameworks is that recon
struction or prediction of the external stimulus occurs at the lowest 
cortical regions. This is similar to Helmholtz Machines, in which 
external stimuli drive the formation of self organizing maps, and feed
back weights create generative biases that can reconstruct stimuli from 
scratch or distorted signals (Dayan et al., 1995). More recent work has 
also begun to investigate how the lower-level reconstruction approach 
can improve or simplify temporal prediction in machine-learning con
texts (Gregor et al., 2014; Sutskever et al., 2009). In addition to hierar
chical prediction, explicit prediction over time has also been shown to 
create compressed representations of stimuli, whereas non-predictive 
autoencoders do not (Recanatesi et al., 2021). Inspired by the success 
of hierarchical predictive coding, in both biological plausibility and 
successful stimulus prediction, we look for a model which incorporates a 
predictive and generative framework. Specifically, we expect that some 
temporal features of stimuli, such as temporal derivatives, may be 
derived in a hierarchy, thus forming the basis for a temporally changing 
context which can improve lower-level predictions. 

Learning Rules Most of the articles cited up until this point rely 
either on some form of backpropagation through time (BPTT), or an 
abstracted form of statistical optimization (eg: (Bastos et al., 2012)). 
However backpropagation is biologically implausible, in its generally 

presented form. There have been several proposed learning rules which 
approximate backpropagation in a more biologically plausible form, 
such as Contrastive Hebbian Learning (O’Reilly, 1997), Feedback 
Alignment (Lillicrap et al., 2016), or burst propagation networks 
(Payeur et al., 2021). However, these studies tend to focus on supervised 
learning problems, in which a series of feedforward regions attempt to 
match a given input to a desired output label. Even if the architecture of 
the network is modified such that reconstruction is performed at the 
lowest level, BPTT is not guaranteed to converge on optimal weights (as 
we show in our section ‘Intermediate Models’ below). In contrast, a 
more biologically plausible and local learning rule may converge on 
more optimal weights, despite being worse for generating universal 
function approximations, if it is more suited towards directly mini
mizing temporal error. We therefore propose to investigate a learning 
rule which incorporates both feedforward and feedback weights to 
minimize errors over time, and then connect it to a spike-based learning 
rule from experimental and computational literature (Payeur et al., 
2021). 

Scope of Work In the current work we focus on training networks to 
predict deterministic dynamical systems for long periods after stimulus 
has stopped being presented. We begin by illustrating how training by 
backpropagation through time fails in the presence of unreliable 
external input. We then present three sequential modifications to the 
baseline architecture, each of which is based on the biological principles 
discussed above. We then present a final modification in the introduc
tion of a local learning rule, inspired by theories of error-driven learning 
in neocortex. We show that this biologically inspired “predictive mod
ule” performs significantly better at predicting dynamics over long 
timescales. Investigating the learned representations in the predictive 
module, we find that successive modules learn to encode successive 
temporal derivatives. Finally, in the third portion of the results section, 
we present a spiking adaptation of the predictive module. This spiking 
model utilizes a set of biologically plausible learning rules, and performs 
with similar accuracy and feature learning as the continuous 
approximation. 

2. Methods 

2.1. Task 

In order to test the degree to which our models can predict under
lying dynamics of an external stimulus, we utilize the commonly used 
sum of sinusoids task (Fig. 1A) which evolves according to Eq. 1 (Dug
gins and Eliasmith, 2022; Sussillo and Abbott, 2009), with two modifi
cations. First, in comparison to earlier papers, we generate the task in a 
procedural manner, where the relative phase and frequency of the un
derlying task change on each presentation (see supplementary materials 
Table 5 for parameter ranges). By altering these parameters on each 
trial, we test the ability of the networks to learn general dynamics, rather 
than forecasting from previously seen histories. Secondly, we utilize a 
paradigm known as teacher forcing in which, over the course of training, 
the interval at which the network observed the ground-truth stimulus 
decreases. This frequency of observation of ground-truth, termed 
‘teaching ratio’, is decreased over training according to a hyperbolic 
schedule (Fig. 1E). On frames where the network is able to observe the 
ground-truth, the stimulus is presented to the lowest level of the network 
(Fig. 1B, top). On frames where the network is not able to view the 
stimulus (“rollout”), the lowest region is instead presented with a 
decoded input from the previous time-step’s activity (Fig. 1B, Middle), 
or no input at all (Fig. 1B, Bottom). During the initial phases of learning, 
having a high teaching ratio ensures that the ground truth and input 
follow similar statistical distributions, and is necessary to ensure 
learning during early phases of training. As training progresses, pre
dictions a few time steps out are likely to follow the same distribution as 
the ground truth, as the network predicts each next-frame with high 
accuracy. On any given trial, the network is guaranteed to receive the 
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true stimulus input for the first half (150) of frames, in order to allow 
appropriate historical observations to propagate through the network. 
On each epoch, we test the network on an unseen set of trials, and 
measure performance using the teaching ratio according to the schedule 
described above (henceforth the ’local ratio’), and also using a teaching 
ratio of zero (Fig. 1C). This allows investigation of how the networks 
learn to respond to the task which they are being trained to (local 
teaching ratio), while simultaneously investigating how they respond to 
long periods without external feedback. 

P(t) = a1sin(f1t+ϕ1)+ a2sin(f2t+ϕ2) (1)  

2.2. Simulation tools and model training 

In the following sections we introduce a number of models which 
progress from a simple baseline model to a final novel architecture and 
learning rule. In each section equations which model the dynamics and 
weight updates are introduced, and parameters and initial distributions 
are as described in tables. All models, with the exception of the spiking 
model, are implemented in PyTorch (Paszke et al., 2019), and evolve 
according to a simple forward Euler method, utilizing a timestep of 1. In 
all cases, error is calculated as the sum of mean-square errors across the 
entirety of a trial. All models before the predictive module are optimized 
by backpropagation through time (BPTT), using the ADAM optimizer 
(Kingma and Dhariwal, 2018). In the predictive module section we 
replace BPTT with a novel learning rule which utilizes only local vari
ables, and update weights in the same manner and frequency that ac
tivities are updated. Hyperparameter optimizations are found in Table 4 

and were chosen by an exhaustive grid search, representing 36–48 
configurations for each model. For each hyperparameter configuration, 
five separate randomly models were run and their minimum local error 
or validation error were averaged together. The minimum error for each 
models best hyperparameter configuration are given in Table 4 The 
spiking model was implemented in BindsNET (Hazan et al., 2018), a 
spiking neural network simulator built in Python, and utilize a timestep 
of 0.1 ms, and is described in more depth in the corresponding section 
below. 

2.3. Baseline model 

As a comparison for our biologically-inspired network described 
later, we implement a standard sequence-to-sequence model. This 
baseline model consists of a linear encoder, a number of hidden Elman 
RNN layers, and a linear decoding layer. The activity of each layer, 
denoted ‘R(t)’ evolved according to the equation: 

R0(t) = tanh(WI0I(t) + b0)

Ri(t) = tanh(WiiRi(t − 1) + W(i− 1)iRi− 1(t) + bi)

RN(t) = W(i− 1)iRN− 1(t) + bN

(2)  

Where subscripts denote either layer or weight (PrePost). On each time- 
step, the external input I is either the ground-truth stimulus (Fig. 1B, 
top), or previous decoded output (Fig. 1B, middle), according to the 
teaching ratio (Fig. 1C and Fig. 1E). We also investigated the perfor
mance of a similar architecture but instead utilizing LSTM units. 

Fig. 1. Overall setup for training of 
models. A Example of the task used, 
showing the simulated trajectory as a 
function of time. Trajectories as para
metrically generated according to Eq. 1. B 
Different approaches to time-series pre
diction. (Top) During a teaching frame, a 
network receives the ground truth posi
tion, and estimates the next frame. No in
formation about the decoded prediction is 
returned to the network. (Middle) On a 
rollout frame, the network does not 
receive the ground truth, and instead re
ceives its previous decoded prediction. 
(Bottom) In alternative frameworks, used 
later in the paper, a network may evolve 
autonomously, receiving neither the 
ground truth nor the decoded prediction. C 
Example of a target signal (top), and the 
corresponding external signal to the net
works. (Middle) Throughout training, the 
network is presented with a training signal 
which is equal to the target signal for the 
first half of the trial, but randomly set to 
zero during the probabilistic rollout period 
(p = 0.50 in example). On frames where 
the external signal is zero, the network 
evolves according to the corresponding 
rules from B. (Bottom) Throughout 
training an additional ‘validation’ signal is 
presented, in which the rollout teacher 
ratio is set to zero, but no learning occurs; 
this shows how the network would 
perform at the fully autonomous task at 
any point in training. D Example of a trial 

for a backpropagation through time (BPTT) network partly through training. During the full teaching period the network closely matches the target signal (green). 
During probabilistic rollout (blue), the network continues to closely approximate the target signal; the validation configuration (orange) diverges from the target. 
Note that while we use a signal frozen example in this and future traces, the actual signal given to the network is randomly generated on each trial. E The teacher 
ratio decreases over the course of training. Dashed lines indicate points where examples are drawn from in sub.sequent figures.   
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2.4. Intermediate models 

We next introduce a series of intermediate models, each of which 
incorporates one of the principles outline in the introduction. The pur
pose of these models is to introduce aspects of the final proposed model, 
while allowing investigation into how each of these architectural or 
dynamical principles influence the ability of a standard learning rule 
(BPTT) to learn in the presence of our task. For each of these changes, we 
provide a biological rationale, and a normative explanation for how the 
change may improve performance. 

Recurrence & Readout Layer Compared to the feed-forward net
works of the baseline approach, cortical regions tend to be bidirection
ally connected. For this reason our first intermediate model utilizes a 
series of stacked Elman RNN layers but adds an additional weight from 
each layer back to its preceding layer (Fig. 2 A, top). Next, we address 
the issue of where signals are reconstructed. In a hierarchical circuit the 
further we move up a hierarchy, the less information about the external 
stimulus is directly available. A common approach in machine learning 
settings is to introduce a ‘U’ like structure or provide skip connections, 
which bypass intermediate transformations and provide direct routes for 
lower-level information to be integrated into higher-level (deeper) re
gions. Here, we take a slightly different approach, inspired by biological 
models of predictive coding. Instead of providing skip connections that 
bring low-level information to higher regions, we provide backwards- 
projections, such that the representation from a deeper region in
fluences the activity of earlier layers. This achieves the same result that 
less processed and more processed information integrate in a given 
layer, but creates several patterns of activity that have been observed in 
neural data (Lotter et al., 2020) and satisfies the general framework of 
predictive coding in which deeper layers represent some information not 
present in earlier layers and project that backwards (Rao and Ballard, 
1999). The result is a stacked hierarchy of RNN cells, but reconstruction 
now occurs at the lowest level of the model (Fig. 2 A, bottom). Mathe
matically, both of these scenarios can be expressed as: 

R0(t + 1) = tanh(W00R0(t) + W10R1(t) + WI0I(t) + b0 )

Ri(t + 1) = tanh
(
WiiRi(t) + W(i− 1)iRi− 1(t) + W(i+1)iRi+1(t) + bi

)

RN(t + 1) = tanh
(
WNNRN(t) + W(N− 1)NRN− 1(t) + bN

)

Rout(t + 1) = WX− outRX(t + 1) + bout

(3)  

Where “X” denotes either the bottom-most or top-post layer, depending 
on the condition, and Rout consists only of a single unit. In order for each 
layer to update synchronously, inputs to all layers are collected before 
any layer’s activity is updated. This results in a 1-frame delay between 
each layer (2 frames from bottom layer to top layer, 4 frames for bottom 
layer activity to propagate all the way to the deepest layer and then back 
to the lowest layer). 

Leaky Integrator Units From a biological perspective, the activity of 
a population of neurons can not change instantaneously, and is often 
modeled as a leaky-integrator (LI), in which the potential of a single unit 

decays to zero in the absence of any input, according to the equation: 

τ dvL

dt
= − vL(t) +

∑

N∈A
WNLRN(t)

RL(t) = tanh(vL(t))

(4)  

Where τ represents a slow-leak time constant (set to 10 frames), v rep
resents the ’membrane potential’, r represents the outgoing activity, and 
A is the set of all other layers which project to layer L, again following 
the same bidirectional connectivity pattern from above. Leaky in
tegrators have also been shown to be useful in generation of complex 
trajectories by providing a temporal reservoir of past activity (see sup
plemental material). Functionally, LI units act as a low-pass filter, which 
can filter out transiently absent inputs to a certain degree, and may be 
useful in smoothing out small errors in rollout dynamics. An additional 

Fig. 2. Intermediate models, showing stepwise 
changes towards biologically inspired architec
ture. A Stacked RNN: In the baseline model ac
tivity entered a stack of Simple RNNs at the base 
and propagates to a top layer where readout 
occurred. In the stacked RNN case, there are 
bidirectional connections between each hidden 
layer, and readout occurs either at the top layer 
(top) or input layer (bottom). B Leaky integrators 
(LI): Instantaneous responses in the simple RNNs 
are now replaced with leaky integrators which 
have a finite-time response to inputs. Here we 
show the impulse response of a single (blue) LI, 

two LIs in series (orange) and three LIs in series (green). Each successive layer introduces an additional delay (offset) and smoothing of the input. C We now introduce 
separate feedforward (FF) and feedback (FB) pathways. Each colored block represents a set of leaky integrators, now arranged in a manner similar to neocortical 
motifs (see text), allowing separate feedforward (black) and feedback (red) pathways. Feedback connections project to L2/3 and L5/6 of lower regions.   

Fig. 3. Architecture of the final predictive module. A The structure of each 
module, where rates (‘R’) of each submodule represent the firing rate of a given 
population of neurons, and weights are labeled according to their source and 
target submodules. Units are coloured by their laminar location, also denoted 
by subscript (G) ranular, (S) uperficial, (I) nfragranular, and D (istal). Weights 
are coloured by according to their primary function in the feedforward (cyan), 
feedback (maroon) or local (black) pathways. B Zooming out to show con
nectivity among multiple predictive modules. For the lowest module feedfor
ward activity comes from the external stimulus P(t), while for higher regions it 
comes from lower level superficial neural activity (RS of A). For the highest 
level, feedback activity comes from an OU process representing background 
fluctuations, while lower regions receive it from higher level infragranular 
activity (RI of A). 
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consequence of the low-pass function is that input to a given unit has a 
delay before causing maximal changes in a downstream unit (Fig. 2 B). 
This delay means that in our stacked RNN setting, changes that occur in 
a given layer and propagate into hidden layers and back have a 2τΔN 
delay before they can be fully propagated and integrated into the layer. 
Therefore in order for a signal to be useful by the time it propagates 
back, there must be some explicit bias towards prediction at each syn
aptic step. 

Separate Feedforward and Feedback Pathways For the final in
termediate model, we increase the connective complexity within each 
region. In neocortex there is a distinct laminar organization in which 
there is a separate feedforward pathway (lower regions → granular → 
superficial → higher regions) and feedback pathway (higher regions → 
infragranular → lower regions) (Haeusler and Maass, 2007). Compared 
to a simple stacked approach, this branching connectivity allows infra
granular neurons to integrate feedforward and feedback signals before 
passing them back down the cortical hierarchy, and has been suggested 
to be important for predictive coding approaches (Lotter et al., 2017). 
When combined with leaky-integrator units, this integration of paths 
also occurs over time, since feedback pathways represent older repre
sentations than feedforward ones. In order to test whether this separa
tion of pathways can be utilized for prediction of external stimuli we 
modify the previous intermediate stacked model such that each region 
contains these separate sub-modules. The overall connectivity pattern is 
in Table 1, or illustrated in Fig. 2 C, and each sub-module continues to 
follow the dynamics of Eq. 4. 

2.5. Predictive module 

The goal here is to introduce a learning rule which can effectively 
utilize the separate feedback pathway to self-supervise learning in lower 
cortical regions. In order to reach this we perform three key 
modifications. 

Dual-Compartment Units Results from the intermediate models 
(see results) indicate that in the BPTT approach having a branching 
feedback pathway decreases the accuracy of backpropogation based 
credit assignment. However, several lines of research have suggested 
that the feedback component of cortical microcircuits is critical for 
guiding learning in biological systems (Magee and Grienberger, 2020; 
Larkum, 2013; Greedy et al., 2022). A common thread in each of these 
approaches is that the feedback pathway terminates on the distal den
drites of pyramidal neurons, and provides a mechanism through which 
to gate traditional Hebbian-like learning on the feedforward path syn
apses. Thus, in order to implement a similar rule, we modify the su
perficial and deep units of our model to implement a mean-rate version 
of the dual-compartment spiking pyramidal model. Each pyramidal 
neuron now contains an additional term in their dynamics: 

DL(t) = tanh(
∑

WIDL RI(t))

τ dvL

dt
= − vL(t) + DL(t) +

∑

N∈A
WNLRN(t)

RL(t) = tanh(vL(t))

(5)  

Here, the first term indicates the distal dendritic potential for a given 
unit, which follows its own activation function based on the sum of 
feedback activities RI The second term specifies that the ‘soma’ of the 
dual compartment model follows the same leaky-integrator dynamics of 
Eq. 4, but also receives a 1:1 input from its own distal component, 
representing passive intracellular coupling of these compartments. 

Learning Rule Previous models of biological learning have sug
gested that the distal dendritic potentials (DL) can guide learning by 
changing either burst rate (Payeur et al., 2021) or intracellular calcium 
levels (Bittner et al., 2017; Larkum, 2013). We will model the burst- 
based rule explicitly in the spiking model, but for the rate model 
implement this simply as a unit-by-unit gating of learning rate. Each unit 
then attempts to modify the temporal error in membrane potential 
(Epost(t)) by modifying the weight in proportion to the amount of pre
synaptic and postsynaptic activity. We then identify the overall goal of 
the network, which is to minimize temporal discrepancies in the sum of 
inputs. Given the temporal error, and a feedback signal for guiding 
learning, we propose a three-factor learning rule: 

Epost(t) = (vL(t) − vL(t − 1))
ΔWPrePost = ηrpre(t) ⊗ DL(t) ⊙ Epost(t)

(6)  

Where ⊙ represents the Hadamard product, ⊗ the outer product, and η is 
a learning-rate (set at 0.01). Here EL(t) represents the overall objective 
of the network, which is to minimize the first order temporal error in 
unit potential, which appears as Epost(t) in the weight update. The outer 
product of the presynaptic and postsynaptic terms is identical to the 
associative term found in many learning rules (Kohonen, 1982), but now 
contains an additional ‘pushing’ term in the minimization of temporal 
change (Greedy et al., 2022), and is further modulated by the degree of 
feedback prediction (DL(t)). Weights were initialized as shown in 
Table 2, and learning occurred on every time step, regardless of whether 
the frame was forced or rollout, with the exception of validation trials. 

Dynamic Vs Static Connections The learning rule proposed above 
is reliant on a feedback gating signal as well and has an explicit term to 
modify weights in order to minimize feedforward prediction errors (Brea 
et al., 2016), posing two issues. First, because the learning rule is locally 
greedy, there is a global minimum error of all synapses reach zero, 
resulting in a constant zero error-term. Secondly, the gating term is 
reliant on the distal compartment of pyramidal units, indicating that the 

Table 1 
Organization of connections in the laminar intermediate model. Weights are 
indicated as PrePos. G is “granular” (lamina 4), S is “superficial” (Lamina 2/3) 
and I is “infragranular” (Lamina 5/6). Interegional SG is the primary feedfor
ward pathway (projects to higher regions), while IS and II project from higher 
regions to lower ones, in accordance with general neuroanatomical studies.   

WPrePost   

Recur WGG    

WSS    

WII   

Intra WGS   

WSI   

Inter WSG    

WIS    

WII    

Table 2 
Initialization of weights in the predictive module. Weights are denoted as 
PreregionPreLamina-PostregionPostLamina, where X indicates a given region, 
and Y is X + 1; G is “granular” (lamina 4), S is “superficial” (Lamina 2/3) and I is 
“infragranular” (Lamina 5/6). Feedback weights (going from Y to X) indicate 
connections targeting the postsynaptic learning-gate, rather than the strong 
somatic potential.   

Connectionpre− post Updates? Initial Distribution 

Recur WXG− XG No 
Gauss

(
0,

1
2

̅̅̅̅
N

√

)

WXS− XS Yes 
Gauss

(
0,

1
2

̅̅̅̅
N

√

)

WXI− XI Yes 
Gauss

(
0,

1
2

̅̅̅̅
N

√

)

Intra WXG− XS Yes 
Unif

(
−

1
2

̅̅̅̅
N

√ ,
1

2
̅̅̅̅
N

√

)

WXS− XI Yes 
Unif

(
−

1
2

̅̅̅̅
N

√ ,
1

2
̅̅̅̅
N

√

)

Inter WXS− YG No 
Unif

(
−

1
2

̅̅̅̅
N

√ ,
1

2
̅̅̅̅
N

√

)

WYI− XS No 
Gauss

(
0,

1
2

̅̅̅̅
N

√

)

WYI− XI No 
Gauss

(
0,

1
2

̅̅̅̅
N

√

)
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rule can not apply to the granular units. However, experimental evi
dence has suggested that error-driven gating primarily occurs in the 
pyramidal neurons and other physiologically similar populations. We 
therefore implement the granular layer as a reservoir, and do not update 
the weights terminating onto these layers (see Table 2). When combined 
with random initial conditions (see below) the reservoir dynamics allow 
the granular layers to avoid the global minimum of zero activity, and 
push other layers from the same region. Additionally, we leave the 
feedback weights, terminating on the distal compartments at their initial 
conditions, as the calcium or burst-dependent inspiration for the gating 
term is not valid for these synapses. Pragmatically, this means the pre
dictive module implements a form of feedback alignment (Lillicrap 
et al., 2016). Overall, it is only the feedforward synapses onto pyramidal 
units that are expected to undergo the error-driven learning we investi
gate here. 

Noise There are two sources of noise in the model we implement 
here. First, on each trial the activity of all units (and distal compart
ments) is randomly initialized. Secondly, for the upper-most module 
there is no higher level to provide feedback activity to the distal den
drites, and we replace this instead with a small Ornstein–Uhlenbeck 
(OU) process of mean zero, τ of 2 timesteps, and σ of 0.05. 

Readout Because the predictive module does not directly optimize 
for readout of the target signal by a readout weight, we instead optimize 
readout weights (W) for each layer of the predictive module by con
strained least-squares (‘Ridge’ in sklearn) such that the error term: 

E =
∑

(Y(t) − WR(t))2
+ λ

⃒
⃒
⃒

⃒
⃒
⃒W

⃒
⃒
⃒|

2
2 (7)  

was minimal, where Y(t) is the signal we are attempting to decode, and λ 
is a constant (0.01) which penalizes large readout weights. Weights were 
optimized by a 5-fold cross-validation from the full forcing period, and 
reused to create the decoded signal. 

2.6. Spiking model 

Next, we implemented a spiking neural network, trained to perform 
the same sum-of-sinusoids task set as above. As with the predictive 
module, the repeating anatomical connective motifs of this model are 
inspired by the canonical cortical microcircuit (Douglas et al., 1989). 
Now however, we introduce several additional components such as in
hibition and short-term potentiation, that are necessary for translation 
to a spiking setup. Each introduced set of parameters follows general 
findings from neuroanatomical studies. All spiking simulations are 
performed in BindsNET and utilize a simple forward method (timestep 

of 0.1 ms) to implement the dynamics described in the equations below. 
On each timestep all of the incoming activities to each neural population 
are collected before any updates are made. Each population of neurons 
then updates according to its local dynamics before weights are updated 
according to short-term or long-term updates. 

Overall structure As shown in 4A. Each region of the spiking model 
consisted of 3 lamina: granular, supragranular, and infragranular, 
similar to the predictive module. Now however, each of these three 
lamina contains a population of excitatory neurons, modeled as stellate 
cells for granular, and pyramidal neurons for supragranular and infra
granular, along with a loosely coupled population of parvalbumin (PV) 
interneurons. All excitatory populations consisted of 4000 units, and 
inhibitory populations consisted of 1000 units, reflecting proportions 
found in vivo. An incoming signal first passes through the granular layer, 
to supragranular, where it then diverges to the local infragranular 
neurons and the granular neurons of the next cortical region. Feedback 
activity travels from infragranular neurons to the distal dendrites of 
superficial and deep layers of the previous cortical region (Larkum, 
2013). Connection patterns were initialized based on experimental 
findings (Haeusler and Maass, 2007), summarized in Table 3. Connec
tion weights were uniformly distributed at +/- 10% of the mean weight 
given in the table, and 1-p of those weights, were set to zero. 

Short Term Plasticity Short term plasticity (STP) was modeled in all 
synapses according to the Markram Tsodyks model (Markram et al., 
1998), modeling depletion of neurotransmitters and presynaptic cal
cium potentiation: 

dR
dt

=
1 − R(t)

D
− u(t)R(t)δ(t − tspike)

du
dt

=
U − u

F
− f [1 − u(t)]δ(t − tspike)

(8)  

STP parameters for each type of connection are summarized in Sup
plementary Materials Table 8, and are chosen to match short-term 
facilitation (STF) or short-term depression (STD). The purpose of the 
STP dynamics are twofold. First, they regulate the overall level of ac
tivity in the network, even as long-term weights are modified by the 
learning rule described below. Secondly, they allow a filtering of quick 
(STD) or slower (STP) spiking activities, as described in-depth in (Naud 
and Sprekeler, 2018). This second attribute is important for the learning 
rule described below. 

Neural Dynamics As with other recent studies, pyramidal neurons 
were implemented with two compartments, representing the somatic 
and distal dendrites: 

Table 3 
Connectivity between lamina and regions in the spiking model. Weights were initialized to the mean weight given in this table, with probability p, then allowed to 
evolve. STP column refers to the parameters given in Table 8. For pre and post populations, E refers to excitatory population somatic compartments, I refers to 
inhibitory somatic compartments, and D refers to distal dendritic components (pyramidal neurons only). The final column indicates which STP dynamics are removed 
for the biological necessity experiments.  

Pre Post ||W|| (pA) p Delay (ms) STP LTP Remove STP 

L4E L4E 29 0.17 2 EE None N 
L4E L4I 60 0.19 1 EI None N 
L4I L4I − 41 0.5 1 II None N 
L4I L4E − 23 0.1 1 IE None N 

L2/3E L2/3E 45 0.26 2 EE BDP Y 
L2/3E L2/3I 50 0.21 1 EI None N 
L2/3I L2/3I − 36 0.25 1 II None N 
L2/3I L2/3E − 17 0.16 1 IE None N 
L5/6E L5/6E 45 0.09 2 EE BDP Y 
L5/6E L5/6I 24 0.1 1 EI None N 
L5/6I L5/6I − 32 0.6 1 II None N 
L5/6I L5/6E − 32 0.12 1 IE None N 
L4E L2/3E 60 0.28 2 EE BDP Y 

L2/3E L5/6E 37 0.55 2 EE BDP Y 
L5/6E L1D 15 .2 1 F None Y 
L5/6E L1I 15 .2 1 F None Y 

L1I L1D − 15 .2 1 D None Y  
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Cs
dVs

dt
=

Cs

τs
(Vs − EL) + gsf (Vd) + Is − ws

dws

dt
=

− ws

τs

(9)  

V⩾VTh→
{

V(t+) = Vreset
w(t+) = w(t− ) + b (10)  

Where f(Vd) is represents the voltage/calcium gated channels in the 
dendritic compartment 

f
(

Vd

)

=
1

1 + e− (Vd − Ed )/Dd
(11)  

gs is then the passive coupling parameter from the distal dendrites to the 
soma. 

And for the dendritic compartment 

Cd
dVd

dt
= −

Cd

τd
(Vd − EL) + gdf (Vd) + c(S(t)) + Id − wd

dws

dt
= −

wd

τd
+ aw(Vd − EL)

(12)  

Here, S(t) represents the backpropagating action potential from the so
matic compartment, which takes the form of a 2 ms long pulse, delayed 
by 0.5 ms from the time of the somatic spike(δ(t)): 

S
(

t
)

=

∫ t− 0.5

t− 2.5ms
δ
(

t
)

dt
(

max1
)

(13)  

This dual compartment approach allows separate control of firing rate 
and burst-rate, enabling multiplexing of feedforward and feedback ac
tivity. Similar to the DL term from the predictive module, the distal 
dendritic compartment is receives feedback activity, and is responsible 
for controlling the learning rate of the somatic compartment, through 
rules described below (Payeur et al., 2021). In order to maintain the 
overall level of bursting in these neurons, an additional somatostatin 
(SOM) population of neurons was added which receives the same 
feedback activity as the distal dendrites, and provides a level of 
normalization keeping the burst rate approximately linear to the overall 
level of feedback activity (Vercruysse et al., 2021). The spiking prop
erties of neurons in the network are illustrated in part B and C of Fig. 4. 
All other neurons were implemented with adaptive exponential inte
grate and fire models (see supplementary materials Section 6.3.1), with 
parameters to match their physiology (Naud et al., 2008). 

2.6.1. Inputs and readout 
Each compartment received a multi-component input current, con

sisting of an external stimulus-dependent component, a synaptic 
component, and a stochastic background noisy input. 

Ii = Iext
i + IBG

i + Isyn
i (14)  

The synaptic current Isyn is calculated as: 

Fig. 4. Spiking Model Architecture Each box represents a cortical region, and coloured blocks represent lamina (matching those in Fig. 3). L2/3, L4, and L5/6 each 
contain an excitatory population (Pyramidal and stellate, as triangles/circles), along with a loosely balanced inhibitory population (parvalbumin interneurons, 
squares). Layer L1 consists only of an inhibitory population of somatostatin neurons, and the distal dendrites of layer L2/3 and L5/6 pyramidal neurons. Feed-forward 
activity begins in layer L4, propagates to layer L2/3, and then diverges to intra-columnar L5/6, and inter-columnar L4. Feedback activity travels from L5/6 to inter- 
columnar L1, where it guides burst rate of upstream pyramidal neurons. B The full spiking model, where each grey block is as in A. External stimuli are encoded 
according to a Poisson process and randomly projected into L4 of the lowest cortical region. The activity of each region is then read out with an independently trained 
decoder. C Structure of the decoder in. For a given lamina we record the membrane potential from all excitatory neurons (i), from which we extract spike trains (ii). 
The spike train is convolved by an idealized postsynaptic potential(iii) to give an output signal (iv) which is read out by optimized weights (W) to give the reconstru. 
cted signal (v). 

G.W. Chapman and M.E. Hasselmo                                                                                                                                                                                                        



Neurobiology of Learning and Memory 205 (2023) 107826

8

dIsyn
ij

dt
= − Isyn

ij

/

τCij +WijRδj

(

t − dij

)

(15)  

Here, the spike train of presynaptic action potentials is delayed by a 
connection specific period dij before being modified by the short term 
plasticity term R and scaled by the synaptic weight matrix W. This 
modified impulse train is added at each point to a low-pass filter of the 
postsynaptic current, τ (5 ms for inhibitory connections and 1 ms for 
excitatory connections) allowing the postsynaptic synaptic potential 
(PSP) to follow the typical double-exponential pattern. The background 
input is necessary to keep units in the same lamina in a decorrelated 
state. This background was modeled separately for each compartment as 
an OU process, with parameters specific to each compartment type (see 
supplementary materials Table 9). The background input was separately 
modeled as an OU process for each compartment: 

d
dt

IBG
i =

μ − IBG
i

τOU + σ
̅̅̅̅̅̅̅̅̅̅̅̅
2/τOU

√
∊i (16)  

Finally, the external input was zero for all units, with the exception of 
granular units in the lowest cortical region. For this region we encoded 
the external position as a Poisson random variable and processed this in 
the same manner as other synaptic inputs: 

δ(t) ∼ Pois(P(t))

dIext

dt
= − Iext/τCij + WInput− 4δ(t)

(17)  

Where WInput− 4 is initialized according to the distribution patterns for 
intraregional weights onto the granular lamina in Table 3 

2.6.2. Learning rule 
We next translate the predictive module learning rule to a spiking 

version, which reflects the recently proposed Burst-propagation rule 
(Payeur et al., 2021). As with the predictive module, we are only 
modeling the ‘prediction-driven’ aspects of learning, that is the portions 
of learning which are driven by top-down expectations which travel 
along the activity of infragranular activity to distal dendrites. The 
feedback pathway (L5/6-to-Distal dendrites) remained static, and this 
model therefore implements a version of feedback alignment (Lillicrap 
et al., 2016). With these structural changes in place, we now replace the 
predictive-error-driven learning rule from above with a direct imple
mentation of Burst-Dependent Plasticity (BDP, Eq. 18) (Payeur et al., 

2021). 
Feedforward excitatory synaptic weights onto pyramidal neurons 

were updated using the recently proposed burst-propagation rule, 
implemented at every time step except for validation trials: (Payeur 
et al., 2021) 

dwij

dt
= η{[ Bi⏟⏞⏞⏟Burst?

− ( Pi⏟⏞⏞⏟P(Burst)
) Ei⏟⏞⏞⏟event?

] Ẽj
⏟⏞⏞⏟preeligibilitytrace

}

Ei(t) =
1

τavg

∫ ∞

0
Ei(t − τ)e− τ/τavg dτ

Bi(t) =
1

τavg

∫ ∞

0
Bi(t − τ)e− τ/τavg dτ

Pi(t) =
Bi(t)
Ei(t)

(18)  

Where Ei is 1 when the neuron emits either a single spike, or the second 
spike within a 16 ms window, and Bi is 1 only for the second spike during 
a 16 ms window. Thus Ei(t) and Bi(t) are time-weighted averages of the 
‘event’ and ‘burst’ rates. Pi(t) is therefore the probability that an event is 
the second spike of a burst. 

Interpretation Intuitively, this learning rule is a modified pre-post 
product rule, where postsynaptic term (typically a Boolean indicating 
a spike) is replaced by Bi − P̂iEi. This term means that weights will in
crease if the postsynaptic neuron fires the second spike of a burst, and 
decrease when the postsynaptic neuron fires a singlet or first spike of a 
burst. Because P̂ is primarily driven by the distal dendritic inputs (Naud 
and Sprekeler, 2018), this means that the feedback term is responsible 
for driving learning. We can directly compare this spike-based model to 
our gated-and-error-driven associative rule from the continuous model. 
Both equations contain a short-timescale representation of presynaptic 
activity, either as the low-passed activation (Rpre(t) in the PM), or as a 
synaptic spike-trace (Ej(t) in BDP). The feedback gating term from PM 
(D(t)) is analogous to the Burst Rate (B) in BDP. The most difficult 
analogy is how the error driven term from the predictive module 
(D(t) ∗ (v(t) − v(t − 1))) relates to the error-driven aspect of BDP 
(Bi − Pi ∗ Ei). However, one can see the mapping if we consider the BDP 
framework with a small population of neurons all of which have nearly- 
balanced distal dendritic inputs. This BDP error term can then be 
approximated as F(D(t), v(t)) − D(t)lowpass ∗ v(t)), where F incorporates 
the slight nonlinear effect of distal and basal potentials on burst prob
ability. This revised BDP now resembles the error term from the 

Table 4 
Summary of performance across all tested models, including hyperparameters searched. Each row shows a model class, as separated out in the methods section. The 
bolded parameters in the second column indicate the best hyperparameter set, chosen by minimum validation error. The best models for local error (LSTM) and 
validation error (predictive module) are identified by bolding of their MSE.  

Model Base Hyperparameters Min Train Error Min Val Error  

Units: 32, 64, 128   
Baseline RNN Depth: 1, 2, 3, 4 0.004 0.144  

Learning Rate: 10− 2,10− 3,10− 4    

Units: 32, 64, 128   
LSTM Depth: 1, 2, 3, 4 0.002 0.119  

Learning Rate: 10− 2,10− 3,10− 4    

Units: 32, 64, 128   
Stacked RNN Depth: 2, 3, 4 0.063 0.125 
10− 2,10− 3,10− 4 Learning Rate:    

Units: 32, 64, 128   
Leaky Integrator Depth: 2, 3, 4 0.060 0.082 
10− 2,10− 3,10− 4 Learning Rate:    

Units: 32, 64, 128   
Separate FF and FB Depth: 2, 3, 4 0.108 0.109 
10− 2,10− 3,10− 4 Learning Rate:    

Units: 32, 64, 128   
Predictive Module Depth: 2, 3, 4 0.008 0.027 
10− 2,10− 3,10− 4 Learning Rate:   
Spiking Model N/A 0.067 0.070  
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predictive module, by incorporating the difference between an instan
taneous and low-passed activity rate. 

Readouts were performed by convolution of the recorded spike-train 
of interest with a synaptic kernel (Fig. 4C). A linear readout for this 
convolved signal was then created by minimal least-squares linear 
weighting (supplementary materials equation. 21). We note that this 
readout term, and corresponding error terms, are never provided to the 
model, and are only used for interpreting the function of the network. 

3. Results & discussion 

3.1. Overall model comparisons 

We begin with a high level summary of means-square error perfor
mance across all models and identification of hyperparameters. Table 4 
shows a summary of best hyperparameter sets for each model type, 
identified by minimum validation (full rollout/autonomous) error at any 
point in training. Trends for each model-types best parameter set are 
described in their corresponding sections below. Overall, the LSTM and 
baseline Elman RNN models show the lowest local error, supporting the 
general claim that these machine learning models, which utilize back
propogation through time, are highly accurate at predicting dynamics in 
the short term. However, when evaluating the full rollout condition, the 
leaky-integrator approach outperforms the LSTM, and this performance 
is further improved by incorporating the novel learning rule of the 
predictive module. 

3.2. Baseline model 

This network initially learns to predict the next input with a high 
degree of accuracy, but fails to predict in an undriven state (Fig. 5 A). As 
training progresses, the network continues to learn short-term pre
dictions (Fig. 5 B, middle). During this stage of training the BPTT 
network has learned some of the longer term dynamics, and will poorly 
fit 1–2 cycles before decaying to a constant output (orange trace). At this 
point small sequences of frames without the ground truth tend to cause 
network activity to diverge from the target, but quickly return when the 
external stimulus is presented again. In the final stages of learning the 
BPTT network performs very similarly to the full-rollout case from 
partway through training. From these examples we conclude that while 
the baseline model is able to accurately act as a predictive autoencoder, 
the network is never able to predict beyond a handful of frames 
faithfully. 

3.3. Intermediate models 

Investigating the learning curves of the intermediate models gives us 
a high level understanding of what architectural changes the back
propogation approach is able to make use of. In the stacked RNN (Fig. 6) 
performance on both the teacher and full rollout conditions is signifi
cantly lower than the performance of the baseline RNN. This suggests 
that the reciprocal connections interfere with BPTT over long periods, 
consistent with the observation that the baseline model performed best 
with a lower number of layers. When utilizing the same bidirectional 
connectivity and reading out from the lowest layers (‘Bottom Readout 
RNN’) however, the short-term prediction increases significantly, 
though still higher than the baseline. The fully autonomous mode 
though now has a minimum error that is lower than the baseline, sug
gesting the the bottom readout approach allows useful information from 
the hidden layers to integrate into the primarily externally driven signal 
without disrupting the overall dynamics. 

Continuing to utilize a bottom-readout approach and replacing the 
RNN dynamics with a leaky integrator further decrease the validation- 
mode error (MSE 0.082), far below the minimum achieved in the 
baseline models (MSE 0.119). However, the speed with which teacher 
learning occurs is significantly lower, as indicated by the slower decent 
of the blue line in Fig. 6. When introducing separate pathways for 
feedforward and feedback information, performance was significantly 
worse for both the local forcing (MSE 0.108) and full rollout (MSE 
0.109) cases, where the system primarily learned only to replicate the 
first frequency component of the target signal. Similar to the initial 
findings of the top-readout stacked RNN, this suggests that the BP based 
method is not able to utilize the additional pathway. 

3.4. Predictive module 

Under the predictive module framework, the network is able to 
quickly learn to reproduce the next observed frame (Fig. 7 A, blue), but 
initially does not predict well without external drive. However, within 
the first 200 epochs, the network begins to faithfully predict trajectories 
in both the partially-driven and undriven states, with a slight under
shooting of local peaks in the undriven state. Over the course of training 
the partially-driven error continues to stay low, despite a decreasing rate 
of external stimulus, while autonomous error approaches similar per
formance (down to 0.027 minimum autonomous error, down from 
0.082 in the leaky-integrator intermediate model). In addition to 
investigating how well the predictive module network learned to predict 
long temporal delays, we were interested in what role each of those 
regions played in the overall learned representations. We attempted to 
decode not only the position, but also the temporal derivatives of this 
variable, utilizing three separate decoders for each module Each decoder 
was optimized by cross-validated least-squares minimization between 
the ground-truth signal and the supragranular activity on each trial 

Fig. 5. Performance of the baseline RNN A Performance over training for both 
the local training ratio (blue) and validation ratio of zero (orange) as teaching 
ratio decreases. Initially, local loss approaches zero and the model is able to 
very accurately predict the next input, given the ground truth. As training 
progresses, both the partially driven and rollout system approach the same 
performance. B Showing example outputs for the partially driven (blue), and 
full rollout (orange) systems compared to the target signal (green) at three 
points in training. (Top) Early in training, the network predicts the next input 
accurately, given the ground truth, but decays to zero when run in full rollout 
mode. (Middle) Midway through training, the network can predict a few 
timesteps into the future accruing noise (blue) and snap back to the correct 
trajectory when a teaching frame occurs. At this point, the full rollout config
uration will tend to maintain an output close to the last observed value. (Bot
tom) Late in training, the network is severely dampened, and will quickly create 
a constant-zero output, changing briefly when teaching frames occur (blue 
shifts away from orange for periods when teaching appears).. 
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(supplementary materials equation 21). We found that each module 
most strongly represented increasing temporal derivatives of position (i. 
e. distance, velocity and acceleration). This suggests that the later 
modules are encoding temporal derivatives of lower-level variables, 
which in turn provide contextual information to lower regions, further 
increasing predictive power. The multiple transformations between 
each module’s output and the feedback signal allows for learned co
efficients and non-linearities in how that feedback signal affects the 
current prediction. 

In order to test how this model generalizes to more complex tasks we 
next tested the model on the Lorenz equations, a set of deterministic 
differential equations known for their sensitivity to initial conditions. As 
with the sum of sinusoids task, decoding is performed by training on the 

forced (first half) of a trial, and using the learned weights to decode for 
the second half of the trial. We find, that by the end of training the 
network is able to accurately recreate the general attractor dynamics of 
the task (Fig. 8A, bottom). This matches the qualitative results of other 
methods which aim to fit dynamics rather than explicit input values 
(Sussillo and Abbott, 2009). Consistent with the nature of the task, the 
exact trajectories diverge when the internal representation is near the 
origin and partial derivatives are highly variant between close locations. 
At the midpoint in training (Fig. 8A, middle) the autonomous trajectory 
similarly matches the general dynamics of the task, but tends to visit 
locations that the underlying dynamics do not (Fig. 8B, middle). How
ever when partial teacher forcing is present, the external stimulus is 
sufficient to keep the decoded position near the ground truth. For the 

Fig. 6. Intermediate Models, showing stepwise 
changes in overall performance. Top Left Beginning 
with a stacked bidirectionally connected RNN, but 
reconstructing from the ‘top’ layer, BPTT is unable to 
converge even for largely externally driven (early 
blue) cases. Top Right Continuing with a stacked 
RNN, but now reconstructing from the activity of the 
lowest layer, the network is more closely able to 
match the performance of the baseline model. This 
suggests that having sensory-driven feedforward in
puts is critical to utilizing the hidden representations 
derived by other regions. Bottom Left By replacing 
the RNN dynamics with leaky integrators both the 
probabilistic and full rollout conditions improve. The 
training performance (blue) still does not perform as 
well as baseline models, but the full rollout condition 
(orange) now more closely matches the external dy
namics. Bottom Right The introduction of separate 
feedforward and feedback pathways, while anatomi
cally realistic, decreases performance for both 

training and validation forcing.   

Fig. 7. Performance of the predictive module approach. A Overall performance over training. The training-forcing condition (blue) quickly approaches performance 
similar to the backprop-based methods, showing that the lowest region quickly encodes the next-frame location. Compared to the baseline and intermediate models 
however, the validation (fully autonomous) mode also increases in accuracy quickly, showing that the network is learning to follow the external dynamics, rather 
than a weighted history of recent activity. B Example traces at early, mid, and late stages of training. In the early condition (top) the conditions match closely, though 
the autonomous mode has a tendency to undershoot local peaks. By mid training (middle) the autonomous mode now closely follows the ground truth. In late 
training (bottom) the predictions continue to match the target. C Decoding additional signals from each region of the model. (Left) Brown, yellow, and pink boxes 
indicate separate decoders trained for position, acceleration, and velocity for each of the regions, for a total of nine separately trained decoders. D Right Shows the 
accuracy for each of these decoders over the course of training. The lowest region most strongly codes for position (brown), with decreasing accuracy for decoding 
higher derivatives. The intermediate region can most strongly decode velocity (yellow), while the highest has the strongest tuning for acceleration (pink). 
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fully trained model (epoch 950) we attempted to decode temporal de
rivatives of the internal position generated by the position decoding of 
the lowest region. Consistent with the above results, we found that the 
velocity strongly represented in the second region but not the first or 
third. The third region did not strongly encode position, speed, or ac
celeration terms (MSE greater than 0.14 in all cases). 

3.5. Spiking model 

As shown in Fig. 9, the spiking network showed similar capabilities 
for function to the predictive module presented in Fig. 7. The spiking 
network is able to accurately predict at long time-scales. The L2/3 
neurons in region 1 (bottom) most accurately encodes position, the L2/3 
neurons in region 2 (middle) most accurately encode velocity, and the 
L2/3 neurons in region 3 (top) encode acceleration (Fig. 9). Thus, the 
region most directly connected to the external input mimics the dy
namics of spatiotemporal patterns, while the more distal regions 
generate abstracted signals which can help guide lower-level activity, 
but do not directly mimic the inputs. 

3.6. Necessity of biological components 

As discussed above, there are a variety of biologically inspired 
components of this model which are expected to be necessary for the 
overall function of the proposed learning rule (Naud and Sprekeler, 
2018). Given the success of the full spiking model, we next set to verify 
that the biological mechanisms are necessary for learning the task, by 
running two simplified versions and evaluating their performance. 
Fig. 10 shows the results of these experiments. 

Dual Compartment Neurons The dual compartment model of py
ramidal neurons is based on previous implementations (Naud and 
Sprekeler, 2018), where they show that inputs onto the basal and distal 
compartments allows independent control of the firing rate and burst 
probability of these units. As the burst-dependent learning rule relies on 
the difference in short-term and longer-term burst rate (supplementary 
materials equation 18) we expect that this independent control of 
compartments is necessary for driving successful learning. Fig. 10A 
shows the response of the dual compartment neuron in response to 
current injections on the basal and distal compartments, and demon
strates that varying these two values results in independently varying 

Fig. 8. Predictive Module activity on a more 
complicated task. Performance of the predictive 
module approach. A Showing decoded position along 
the first dimension at various points in training. At all 
points the local forcing ratio closely (blue) closely 
matches the ground truth (orange). Early in training 
the autonomous dynamics quickly diverge from 
ground truth, are lower magnitude. In mid training 
(middle) the autonomous teacher-forcing (blue) will 
tend to diverge from ground-truth, but comes back 
when a sample is presented. The autonomous trajec
tory appears to match the general switching behavior 
of the Lorenz equations. Later in training (bottom) the 
autonomous mode stays close to ground truth for long 
periods before diverging due to chaotic behavior. 
However, the general behavior still matches the dual- 
mode oscillations of the ground truth. B Showing the 
first two dimensions at various points in training, only 

for the second half of the trial. During early training (top) the autonomous trajectory is off center and lower magnitude than ground truth and semi-forcing case. 
During mid training (middle) the fully autonomous trajectory fills regions that the ground truth does not. Later in training (bottom) the autonomous trajectory more 
fully matches the 2D regions that the ground truth visits.   

Fig. 9. Summary of spiking model decodability. (Left) 
Showing the readout architecture, identical to the 
setup for the predictive module. (Right) Showing 
decodability of position and temporal derivatives over 
training in superficial pyramidal neurons after 
convolving by a postsynaptic readout kernel (see 
methods). The optimized decoders show that the 
lowest region again encodes position, with velocity 
being most strongly encoded in the second region, and 
region 3 most strongly encoding acceleration terms.   
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firing rate and burst rates. The remaining two columns show the 
response of the same model, but receiving all input on the basal 
compartment (middle column) or a single compartment adaptive 
exponential model (right column) utilizing the same current sweeps. In 
contrast to the separate basal and distal inputs, both the fully somatic 
input and single compartment neuron respond only to the total input 
current, indicating that firing rate and burst rate can no longer be 
controlled by separate input streams. This suggests that the BDP learning 
rule will not be able to utilize separate feedforward and feedback signals 
and will therefore not converge (see ”Learning Capabilities” below). 

Short-Term Plasticity In the second modification we verify that 
short-term plasticity mechanisms are necessary for learning in the hi
erarchical circuit. The STP parameter sets are chosen such that synapses 
onto feedforward pathways are depressive, thereby filtering for single 
events rather than bursts, and feedback synapses are facilitating, 
therefore filtering for burst rather than single spikes (Markram et al., 
1998). We verify this by utilizing a single cortical column module and 
injecting a slowly varying current into the feedforward pathway and a 
quickly varying input into the feedback pathway, and attempting to 
decode these variables from the firing rate and burst rate of the super
ficial pyramidal neurons, utilizing the same synaptic read out and cross- 
validation approaches as in Fig. 4. Fig. 10B shows the results of this 
experiment for the full model and a reduced model in which the short- 
term plasticity mechanisms have been removed from the relevant syn
apses (see Table 3). In the full model the two input streams are able to be 
decoded from the appropriate firing and burst rates, while this is not the 
case in the reduced model, confirming the role of STP for filtering the 
two input streams. Because each module is unable to signal separate FF 
and FB signals without the STP dynamics, we see that the BDP fails when 

trained in the absence of these mechanisms (see next section). 
Learning Capabilities The previous two manipulations show that 

the biological components are necessary for separately controlling (Dual 
Compartment Neurons) or transmitting (Short-Term plasticity) feed
forward and feedback signals. This suggests that the burst-dependent 
plasticity trained network will not correctly update synaptic weights 
in the absence of either of these mechanisms, which we explicitly test in 
Fig. 10C. Here the full model (left column), single compartment modi
fication (middle column) and reduced STP model (right column) are 
trained on the same task and under the same teacher scheduling con
ditions as presented above, and the final performance of each model is 
plotted. The poor performance of both modified networks confirms that 
dual compartment units as well as appropriate STP mechanisms are 
necessary for learning to perform the task. 

4. Conclusions 

We examined how an architecture inspired by connective motifs 
from the neocortex might predict the spatiotemporal dynamics of 
external stimuli. Using a continuous firing rate approximation, we found 
that incorporating a leak-term with a hierarchical network in which 
reconstruction occurs at the input layers (Fig. 6D) significantly improves 
long-term prediction compared to standard backpropagation ap
proaches. By then incorporating a laminar structure, in which deeper 
regions gate learning in lower regions, we were able to further increase 
these predictions (Fig. 7). Investigating the activity patterns in various 
layers of this network, we found that successive regions were predicting 
temporal derivatives of activity in their inputs, such that deeper layers 
represent further temporal derivatives of the external stimulus. This 

Fig. 10. Necessity of biological aspects. A Showing the event rate (top) and burst probability (bottom) of various pyramidal neuron models in response to current 
pulse inputs. (Left Column) In the full dual-compartment model, burst rate is primarily driven by the amount of current form the feedback pathway (darkness of lines, 
ranging from 0 picoamps (lightest) to 800 picoamps (darkest)). (Middle Column) When the feedforward and feedback pulse both converge on the somatic 
compartment the event and burst responses are driven only by total input levels (indicated by overlapping lines). (Right Column) In a single compartment adaptive 
exponential pyramidal neuron the responses are again tuned only to the total input current. B Showing the efficacy of short-term plasticity rules. For a single cortical 
column with the full STP rules (Left) we were able to decode the feedforward input from superficial firing rates (Bottom) and the feedback input from burst rates 
(Top). When STP rules are removed (Right) from inter-regional connections (Table 3) the decodability from the left column is lost. C Showing the final behavior of 
(Left) Fully intact model (Middle) Single compartment modification (Right) Reduced STP dynamics models. Both manipulations fail to follow the external dynamics 
of the stimulus, confirming the necessity of both mechanisms to drive the burst-dep.endent learning. 
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finding highlights general patterns of cortical hierarchy which suggest 
that low-level sensory cortices give rise to higher level cortex which 
provides less physically grounded representations. 

Utilizing a spiking model based on previous work (Naud and 
Sprekeler, 2018; Payeur et al., 2021), we showed that a biologically 
plausible learning rule can likewise result in a network that develops 
intrinsic connectivity that enables prediction of external stimuli, 
without an extrinsic teaching signal. Instead, the dynamics within each 
cortical region appear to follow the temporal derivative of their inputs, 
and must align the dynamics with more abstracted activity from higher 
cortical regions. 

Previous work has investigated how reservoir networks may learn to 
predict complex time series (Denève et al., 2017) with external negative 
feedback systems, or by optimized networks (Sussillo and Abbott, 2009) 
akin to the sequence-to-sequence approach (Boerlin et al., 2013). 
However, the present work focused on how a potential interaction of 
multiple cortical regions forming a hierarchy might develop a repre
sentation of network dynamics. The arrangement of a hierarchical sys
tem not only resulted in an improved performance, but also resulted in a 
structured organization of temporal information along the hierarchy. 
Essential to this performance was feedback along the hierarchy, which 
allowed higher order information to be integrated in superficial neurons 
of lower cortical regions (Haeusler and Maass, 2007). The different roles 
of somatostatin and parvalbumin allowed activity to continue stably 
when external input is absent, as proposed in recent work (Hertäg and 
Sprekeler, 2020). 

Future Directions There were several purposeful simplifications in 
this study, that can be expanded upon in future studies. Because the 
focus here was on translating biologically inspired learning rules to a 
self-supervised temporal prediction setting, we utilized a low- 
dimensional and deterministic stimulus. Without additional architec
tural changes, such as convolution or topologically organized connec
tions which are essential for receptive field generation (Gilbert and Li, 
2013), the degree to which this network can be scaled up to behaviorally 
relevant tasks such as object recognition are limited. We also imple
mented long-term plasticity only on a minority of connections. This is 
done in order to stay within the realm of self-supervised signals, but 
neglects the potentiation of inhibitory synapses (Vogels et al., 2011) and 
granular-terminating connections which may be important for the for
mation of purely associative subnetworks. Despite these simplifications, 
the current model shows how a neural system can utilize a hierarchical 
organization to closely track the dynamics of external stimuli. Future 
studies may investigate uses of this model in more complex scenarios, 
which may lead to predictions about the functional phenotypes of cells 
that arise throughout the cortex. 
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