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THE FAR SIDE By GARY LARSON

/ ' j-bm & Chwomicle Fastares, 1264

“Qhhhhhhh ... Look at that, Schuster . . .
Dags are sa cute when they try to comprahend
quanium mechanic.’”




‘ Introduction

= When things are:
0 Fast — Special Relativity
0 Big — General Relativity

0 Small — Quantum Mechanics

m “I think I can safely say that nobody understand

quantum mechanics.” — Richard Feynman'

m Scientists can make extremely accurate predictions
with quantum mechanics without understanding
exactly how it works.
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Diagram Source (upper right): D. C. Giancoli, Physics for Scientists and Engineers, Volume | (Prentice Hall, Upper Saddle River, 2000).



Electromagnetic Waves

THE ELECTROMAGNETIC SPECTRUM
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Diagram Source (upper right): Molecular Expressions Optical Microscopy Primer, http://micro.magnet.fsu.edu/primer/index.html|



http://micro.magnet.fsu.edu/primer/index.html

‘ Standing Waves

m Definition: The resultant |
of two wave trains of the
same wavelength,
frequency, and amplitude
traveling in opposite

directions through the S

same medium

| Incident wave

m The wave doesn’t appear [z jicced ware
to travel but it has points |Kesultant wave}
that oscillate in a fixed
pattern

Instead of continuing
past the barner, the
wave is reflected.

With reflection of a
wave on a string,
there is a 1807 change
in phase, flipping the
reflected wave over

so that it interfaras
constructively with

the incident wave.

Diagram Source: HyperPhysics Concepts, http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html



http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html

Ultraviolet Catastrophe

Electromagnetic waves
carry energy and if you
heat up the walls of an
oven there will be EM

waves in the oven.

Number of modes
per unit frequency
per unit volume
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For higher frequencies
you can fit more modes
into the cavity. For
double the frequency,
four imes as many
modes.

Standing waves exist inside the oven and so there are
some integral number of peaks and troughs inside.

Classically each mode has the same average energy. As the
frequency increases the number of modes increases and
the total energy inside the oven approaches infinity!

Diagram Source (upper right): HyperPhysics Concepts, http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html



http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html

Radiated Intensity

Ultraviolet Catastrophe

In 1900 Max Planck
solves the problem!

But...

He assumed that the
walls could only emit
and absorb energy in
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Diagrams Source: HyperPhysics Concepts, http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html



http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html

‘ Photoelectric Effect
1

1887 — Heinrich Hertz notices — meV2 =hf =W
that when light shines on certain
metals, electrons are emitted.

As the frequency of the

AS the lntenSIty Of the lnCIdent 1ncldent hght is increased
energy is increased more electrons the electrons emitted
are emitted. have a greater velocity.
E photon = hv
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1776V s50nm  y  _296x10° mis v
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/ 400 nm
© 316V Kol In 1905 Einstein explains the photoelectric
no R % . effect using the idea that light is composed
electrons ‘ ¢ .
’ 4 of many tiny packets (now called photons).

Potassium - 2.0 eV needed to ejact elactron
Photoelectric effect

Diagram Source (lower left): HyperPhysics Concepts, http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html

Einstein wins the Nobel Prize in 1921.



http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html

Double Slit Experiment

Thomas Young

Thomas Young's Double Slit Experiment
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Diagram Source (left): Molecular Expressions Optical Microscopy Primer, http://micro.magnet.fsu.edu/primer/index.html

Diagram Source (right): P. M. Fishbane, S. Gasiorowicz, and S.T. Thornton, Physics for Scientists and Engineers, Volume | (Prentice Hall, Upper Saddle

River, 1996).


http://micro.magnet.fsu.edu/primer/index.html

Double Slit Experiment

Young's Exp€l
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Diagram Source: Wikipedia, www.wikipedia.com



‘ De Broghe Wavelength

~ Oh heJI r Jbuuf
aff fﬁafud? mn;

T e
Ph:‘f‘an .7 Or ]

Prince Louis de Broglie Fad] (O P hf’Tﬂh ? ‘ f,
Or Vi 5] bl g jz---.
[ 4 ‘-"':"I"... d}.",///' 4

In 1923 Prince Louis de Broglie
suggests that matter has wave
properties.

Louis de Broglie wins the Nobel
Prize in physics in 1929.
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‘ Wave functions

| ‘ The probability of finding an electron at time t, in a volume element is:
— 2 13>
‘1//(!’ , t)( d°r

When the system is measured the wave function collapses to a value.
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Diagram Source (lower right): Wikipedia, www.wikipedia.com



‘ Uncertainty Relations

1 2 One can try to determine the
F=_ mV2 — p_ position of an electron with light.
2 2m Light with a short wavelength
2 D Ap P Ap reduces the uncertainty in position
AE = _
2m m But...
AE =V Ap > v h Short wavelength light has a high
AX frequency and therefore more
1 7 energy. This light will increases the
Werner Heisenber AE>| — | — uncertainty in the electron’s
: At )\ 2 momentum.

AxAp, > AEAL >
2 2




‘ Quantum Tunneling

The quantum mechanical wave function
is able to “tunnel” through a potential
energy barrier.
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Diagram Source (upper right): HyperPhysics Concepts, http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html



http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html

‘ Applications

Ammonia Molecule Scanning Tunneling Microscope (STM)

f

Nitrogen

The Making of the Circular Corral
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Quantum Corral A scanning tunneling microscope

detects the tunneling current
between a positively charged tip and
surface. The microscope can use
this information to construct an
image of the surface or the
microscope can be used to move
individual atoms.

Diagram Source (lower left): IBM STM Image Gallery http://www.almaden.ibm.com/vis/stm/gallery.html



http://www.almaden.ibm.com/vis/stm/gallery.html

‘ Conclusion

The Microscopic World is an Interesting Place!
Physics 1s Fun!
Have a Great Summer!

Good Luck Next Year!
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