
Particle image velocimetry experiments on a macro-scale model
for bacterial flagellar bundling

Min Jun Kim, Mun Ju Kim, James. C. Bird, Jinil Park, Thomas. R. Powers, Kenneth S. Breuer

Abstract Escherichia coli (E. coli) and other bacteria are
propelled through water by several helical flagella, which are
rotated by motors embedded at random points on the cell
wall. Depending on the handedness and rotation sense, the
motion of the flagella induces a flow field that causes them to
wrap around each other and form a bundle. Our objective is
to understand and model the mechanics of this process.
Full-scale flagella are 10 lm in length, 20 nm in diameter,
and turn at a rate of 100 Hz. To accurately simulate bundling
at a more easily observable scale, we built a scale model in
which 20-cm-long helices are rotated in 100,000 cp silicone
oil (Poly-di-methyl-siloxane). The highly viscous oil
ensures an appropriately low Reynolds number. We devel-
oped a macro-scale particle image velocimetry (PIV) system
to measure the full-field velocity distribution for rotating
rigid helices and rotating flexible helices. In the latter case,
the helices were made from epoxy-filled plastic tubing to
give approximately the same ratio of elastic to viscous
stresses as in the full-scale flagella. Comparison between PIV
measurements and slender-body calculations shows good
agreement for the case of rigid helices. For the flexible
helices, we find that the flow field generated by a bundle in
the steady state is well approximated by the flow generated
by a single rigid helix with twice the filament radius.

1
Introduction
Bacteria such as Escherichia coli (E. coli) use rotating
helical flagella to swim. The body of E. coli is rod-shaped,

about 1 lm in diameter by 2 lm long, and, typically, has
several flagella. Each flagellum has a rotary motor which
can turn at approximatly 100 Hz, either clockwise or
counter clockwise. The motor is embedded in the cell wall,
and drives a short flexible hook connected to the helical
filament, which is about 20 nm in diameter and approxi-
mately 10 lm long (Berg 1993). Recently, Turner et al.
(2000) succeeded in fluorescently labeling the filaments,
allowing detailed visualization of the flagellar motion in
real time. When all the flagella turn counterclockwise
(when viewed from outside the cell body), they form a
bundle that pushes the body forward in a run. When one
or more of the motors reverses, the corresponding
filaments unwind from the bundle, and the cell body
moves erratically, or tumbles. Tumbles involve polymor-
phic transformations of the left-handed normal helices to
the right-handed semi-coiled state, and then to the right-
handed curly-1 state. The first transition reorients the cell
body, and, once the motors reverse again, the curly-1 state
transforms directly into the normal state, and the cell
regains its initial speed once the complete bundle reforms
(Turner et al. 2000). Tumbles and runs alternate, causing
the cell to execute a three-dimensional random walk (Berg
1993). In the presence of a gradient of desirable chemicals
(such as sugar), the cell reduces its likelihood of tumbling
when it swims up the gradient, leading to a drift toward
higher concentrations. The random motion of the cells
may be exploited: it has recently been shown that a
suspension of motile bacteria enhances fluid mixing in
films (Wu and Libchaber 2000) and microchannels (Kim
and Breuer 2004).

Because bacteria are so small, high-resolution micros-
copy methods are necessary for experimental studies.
Direct visualization of the individual flagellar filaments in
a rotating bundle is a daunting challenge, due to their
20-nm diameter. Also, micro-PIV approaches are currently
incapable of resolving the flow pattern near the flagella,
due to optical resolution and seeding limitations. To study
the bundling process in more detail, Kim et al. (2003)
developed a macro-scale model consisting of stepper-
motor-driven polymer helices rotated in a high-viscosity
silicone oil, and successfully simulated flagellar bundling
for the counterclockwise rotation of left-handed helices
(see also Jarosch 1989). By varying the motor speed and
helix stiffness, they also showed that the motor period
controls the initial rate of bundling. In this paper, we
extend this work and use particle image velocimetry (PIV)
to measure the flow induced by rotating helices. In Sect. 2,
we describe our experimental setup. In Sect. 3, we present
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the results. First, we show that the PIV measurements of
the flow induced by rigid rotating helices agree qualita-
tively with the predictions of slender-body theory. Then,
we turn to flexible helices and present our main result: the
rotational component of the flow due to the fully devel-
oped bundle is close to the flow generated by a single
rotating rigid helix. Sect. 4 is the conclusion.

2
Experimental Setup
E. coli usually has several filaments per cell, but for sim-
plicity, we consider the case with only two filaments. To
accurately simulate the system at a more easily observable
scale, the flagellar length was scaled up to approximately
10,000 times its normal value, resulting in flagella that
were about 20 cm in length. Two series of experiments
were performed. The first used rigid helices, made from
copper tubing (4-mm diameter) bent around an aluminum
mandril to match the shape of the full-scale flagella. The
second series of measurements used flexible helices made
from thin plastic tubing (4-mm diameter). The tubing was
filled with epoxy to achieve the desired bending stiffness.
To match the shape of the full-scale flagella, each flexible
helix was wrapped around a cylindrical mandril during the
curing process (Kim et al. 2003). The helical pitch (P) was
6.6 cm and the helix radius (R) was 1.27 cm. Reynolds
number similarity was achieved (approximately) by
rotating the helices at a low speed (about 0.25 Hz instead
of 100 Hz) in high viscosity (100,000 cp) silicone oil (Poly-
di-methyl-siloxane). A second important non-dimensional
parameter that must be preserved in the scale test is the
ratio of viscous to elastic stresses, M=lxL4/EI, where l is
the viscosity, x is the rotation speed, L is the axial length
of the helices, and EI is the bending stiffness. For bacteria,
we estimate M�150, while in our scale model, M�140 for
the flexible helices (Kim et al. 2003).

A pair of model flagella were placed into a rectangular
tank (42·42·32 cm) of silicone oil and attached to a pair
of synchronized stepper motors. Starting from a parallel
position, they were rotated at the same speed. The rotation
leads to flow, which, in the case of flexible helices, causes
bundling for sufficiently large M (Kim et al. 2003). Black
plates were also installed on the tank walls to minimize
reflections from the laser flashes.

To measure the velocity, we seeded the oil with 23-lm-
diameter silver-coated glass spheres (of density 1.6 g/cm3),
and illuminated a plane in the tank with two pulses of a
sheet of laser light in rapid succession. The velocity field
was then computed using standard techniques (Raffel et al.
1998). We used chaotic mixing to disperse the tracer
particles in the highly viscous silicone oil. The tank was
mounted on a motorized turntable and rotated counter-
clockwise (when viewed from above) at 3 rpm, while a
fixed impeller with a nearly vertical shaft rotated clockwise
(when viewed from above) at 33 rpm (Fountain et al.
2000). The anchor shape of the impeller was chosen for its
suitability for mixing highly viscous liquids. From time to
time, we manually varied the angle of the shaft of the
impeller with the vertical from 0� to 20�. The primary
difficulties were clumping of the powder of tracer particles
and the slow rate of dispersion. To minimize clumping,

a small amount of tracer particles (5 g) was measured and
uniformly scattered on the top of the silicone oil. Addi-
tional tracer particles were added periodically to the sili-
cone oil until the volume fraction of the tracer particles
reached 0.04%. It took 14 hours to complete the seeding of
particles in the silicone oil tank.

The PIV system consisted of a Q-switched twin Nd:YAG
laser (Quantel, Les Ulis Cedex, France), which provided
frequency-doubled (k=532 nm) pulsed emissions of up to
150 mJ/pulse, and a pulse duration of approximately 5 ns.
The time delay Dt between the two successive pulses was
chosen to be 10 ms. A combination of a cylindrical lens
and a spherical lens collimated the laser light to a sheet of
approximately 1-mm thickness at the measurement re-
gions. Images were captured from two vantage points. In
the first view, the laser sheet was aligned with the axes of
the helices and images were taken from the front of the
tank. In the second view, the laser sheet was perpendicular
to the axes of the helices, and images were taken from
below, via a mirror inclined at 45�. A full-frame interline-
transfer 1,300·1,030·12-bit cooled CCD camera (IDT,
Tallahassee, FL, USA) was used for recording the particle
images. The CCD chip has an image plane measuring
8.7·6.9 mm (horizontal·vertical), and each pixel is square
with side length dr=6.7 lm. The field-of-view of PIV
images was set as 165·130.7 mm (lx·ly) for the flow
measurement. A Nikon 24-mm manual lens with f #=2.8
was attached to the CCD camera with magnification
Mo=0.053. Commercial software (IDT ProVision, Talla-
hassee, FL, USA) was used for the image recording, time
synchronization control between the laser, and the CCD
camera, and subsequent data processing. The velocity
vectors were calculated using a 32·32- pixel interrogation
window with adjacent windows overlapping by 50%.

The experimental uncertainties in the velocity field are
determined by the accuracy of the measurement of particle
displacements. The root-mean-square (rms) error in the
velocity measurement is given by:

ru ¼
rDx

MoDt
ð1Þ

where the image magnification Mo=0.053 and rDx is the
rms error of the displacement on the pixel plane. We take
the rms error rDx to be 4% of the recorded image diameter
(Adrian 1997):

rDx ¼ 0:04 d2
e þ d2

r

� �1=2 ð2Þ

where de is the optical diameter of the image prior to being
recorded on the pixel plane, and dr=6.7 lm represents the
resolution of the recording medium, and is taken to be
equivalent to the pixel size. Assuming that the particle
image is diffraction-limited and its image intensity is
Gaussian, the diameter de of the diffracted particle image
(Raffel et al. 1998), obeys the following:

d2
e ¼ M2

od2
p þ 2:44 1þMoð Þf #k

� �2 ð3Þ

where, for the current case, the tracer particle diameter
dp=23 lm, the f-number of the imaging lens f #=2.8, and
the laser wavelength k=532 nm. Thus, the recorded image
diameter (de

2+dr
2)1/2 is calculated to be 7.8 lm—a little
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more than 1 pixel. Raffel et al. (1998) estimated an ideal
particle image diameter, for minimum uncertainties, as
�1.5 pixels by using double-exposed PIV recording data.
Substituting Eq. 3 into Eq. 2 gives rDx=0.31 lm, and,
subsequently, the rms velocity measurement error as
ru=0.59 mm/s. Thus, the minimum resolvable velocity
fluctuation is acceptably small in comparison with the
typical velocity of 1 cm/s. More accurate results would be
possible with a greater time delay between pulses.
However, this was not possible with the current
synchronization system used at the time. In addition, the
highly three-dimensional nature of the flow required a
relatively short Dt so that the particles remained within the
laser sheet between images.

3
Results and discussions

3.1
Validation
We tested our PIV system by measuring the flow induced
by a cylinder with radius 12.7 mm, rotating at the center of
the silicone oil tank. The analytic solution for the
azimuthal velocity, vh, induced by a cylinder of radius R,
rotating at the center of a circular tank of radius rR, is
given by:

vh

xR
¼ 1

r2 � 1ð Þ
r2

r=Rð Þ � r=Rð Þ
� �

ð4Þ

where x is the rotational speed (Landau and Lifshitz
1987). Although the cross-section of our tank is square,
not circular, the solution shown in Eq. 4 accounts for the
effects of the walls accurately enough. Figure 1, shows a
comparison of the analytic solution and the velocity

measured at several locations in the tank for x=0.2 Hz.
The measured velocity field was confirmed to be
rotationally symmetric, and very closely agreed with the
analytic approximation given in Eq. 4 in the region near
the cylinder (R<r<110 mm).

3.2
Rigid helices
The rigid helices were rotated at 0.25 Hz and image pairs
were acquired at 2 Hz, resulting in eight velocity fields per
rotation. Four cycles were recorded, and the resulting 32
velocity fields were checked for consistency position by
position. Any vectors that statistically deviated from the
others (typically due to a high error in the cross-correla-
tion) were eliminated from the ensemble and then an
average was taken over each interrogation window. In two
regions of the flow—near the shadows of the helices and
near the bright spots caused by reflected laser light from
the surface of the helices—spatial averaging was used to
smooth the velocity vectors.

For perfectly aligned rigid helices exactly in phase, the
velocity fields should be periodic. Figure 2 shows the z
components of four different instantaneous velocity fields,
captured at the same phase angle, and viewed from below.
The figure also shows a raw sample image and a sketch of
the orientation of the laser sheet relative to the helices.
Note the shadow cast by the helix, originating at the point
at which the helix cuts through the laser sheet. The velocity
fields are calculated using a standard cross-correlation
technique without any type of vector validation or
smoothing applied to the field. The velocity measurements
in Fig. 3 are not identical and exhibit a standard deviation
(averaged over the entire field) of 0.09 cm/s, compared to
the maximum velocity of about 2 cm/s. However, the
similarities between each realization are strong. The
ensemble average of the four instantaneous velocity fields
in Fig. 2 is shown in Fig. 3, and compared with results
from a numerical slender-body calculation run at the same
conditions and geometry (Kim and Powers 2004). The
agreement is good, both quantitatively and qualitatively,
except in the region where the shadow appears in the
physical image and hinders the PIV processing. The PIV
field shows a maximum velocity, which is about 9%
smaller than that of the simulation. This discrepancy is
slightly higher, but still comparable to that of the
validation flow. In order to minimize the shadow effects on
the PIV data, a larger interrogation cell (36·36 pixels) was
needed in this region. In the case of flexible helices, the
shadow effects were less severe since the flexible helices
are translucent, and, thus, scatter less light than the solid
copper helices.

Figure 4 shows a comparison between a PIV
measurement and the corresponding numerical simulation
for the vertical plane; the rotating speed is 0.25 Hz. This
view shows the bands of positive and negative velocity
generated by the helix pair rotation. Both figures show
qualitative agreement in pattern. However, the velocity
magnitudes are not quite matched between the simulation
and the experiment. The maximum velocity in the side
view PIV field is as much as 14% lower than the
corresponding maximum in the simulation. The greater

Fig. 1. Comparison between PIV measurements and analytical
results for PIV validation. The solid line is the analytic solution
for a cylinder of radius 12.7 mm rotating inside a concentric
cylinder of radius 210 mm. The symbols are obtained from PIV
measurements of the flow induced by a cylinder rotating in the
square tank. The small dots are measurements taken at several
radii, r, and angles, h, while the squares are from measurements
along a radial line with fixed h
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discrepancy between experiment and simulation for the
side view is expected because, in the side view, each helix
pierces the sheet of light several times, leading to more
shadows than the bottom view, where each helix only
pierces the sheet of light once.

3.3
Flexible Helices
The flexible helices generate a more complex flow field
since they deflect more and more as the experiment
progresses. Furthermore, small changes in the initial
orientation of the flagella mean that, although the overall
characteristics of the flow and the bundling are quite
similar, the flows are not exactly repeatable and, thus,
ensemble averaging is impossible. However, ensemble
results from the previous section indicate that the
instantaneous flow field is a reliable measurement and that
averaging does not significantly improve our
understanding of the velocity field structure. Figure 5
shows the velocity field in the x–z plane (bottom view)
during several stages of the bundling process. The

positions of the helices are clearly seen in the particle
images (top panels) at three different times during the
bundling. Since the motors run at a common constant
velocity (0.25 Hz) and do not slip, the phase difference
between the motor shafts is constant. When the motors
turn counterclockwise, the helices rotate about each other,
eventually entangling in a bundle, which persists
indefinitely, as long as the motor speeds are sufficiently
low.

The flow fields of Fig. 5 are complex and difficult to
interpret. Furthermore, we cannot use numerical
simulations as a guide to understanding the flow, since
simulations for flexible helices are currently not available.
However, we can use the PIV flows to answer a simple but
important question: is the flow field of the fully developed
steady-state bundle similar to the flow induced by a single
rigid helix? To make a quantitative comparison, we
averaged the azimuthal velocity (in the plane bisecting the
two initial helix axes) over circles of constant radius, r, for
the PIV measurements of the flow generated by the flexible
helices, and for the slender-body theory simulation of the

Fig. 2. PIV results of four separate measurements at the same
periodic position for rigid helices rotating at 0.25 Hz. The view is
looking up the helices towards the motors (which are at y=4P,
where P is the helical pitch), and the color coding represents the z

component of velocity in cm/s in the plane at y=2P. Note that the
helices can be discerned in the velocity field plots. The panels on
the far left show the helices and tracer particles (top) and the
sense of rotation and orientation of the light sheet (bottom)
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flow generated by a single rigid helix. We used helices with
thicknesses of 4 mm and 8 mm in the simulations; the
double thickness was chosen because, when the flexible
helices entangle, the helix thickness is effectively doubled.
Figure 6 shows the results and indicates excellent
agreement between measurement and simulation. The
lower of the two curves is the velocity due to a single rigid
helix, and PIV data taken at two speeds is shown. The
agreement is excellent both inside and outside the helix
ring. There is some discrepancy in the immediate vicinity
of the helix ring (r/R=1). PIV measurements in this region

are difficult due to reflections and shadows near the solid
surface. In addition, the numerical simulation is also not
completely reliable close to the solid surface, since the
singular solutions of slender-body theory lead to diverging
velocities at points just inside the surface. (Note that the
lines drawn through the numerical results in Fig. 6 are to
guide the eye; the sharp cusp at the maximum would be
smoothed out if we calculated more points in this region.)
Thus, the discrepancy is likely due to errors in both the
theory and the measurement. The upper curve shows
azimuthally averaged PIV data of the velocity due to a

Fig. 3. Comparison of the z
component of the velocity in the
horizontal plane y=2P
measured by PIV (left) and
computed numerically (right).
The PIV results are the average
of the four figures in Fig. 2. The
units for the colored bars is cm/s

Fig. 4. Side view of flow
induced by the rotation of two
rigid helices. Upper left: raw
image. Upper right: orientation
of the sheet of laser light for the
side view. Lower left: PIV
measurement of the x
component velocity when the
rotation speed is 0.25 Hz.
Lower right: corresponding
numerical result. The units for
the colored bars is cm/s
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helix bundle formed from two flexible helices (Fig. 6).
These measurements are compared with the numerical
solution of the flow due to a single rigid helix with a
thickness double that of the baseline case (8 mm instead of
4 mm). As before, the agreement is remarkable, with the
exception of the region near the helix body where the
measurements indicate a lower and more smoothly
varying velocity distribution to that predicted by the
simulation.

The data suggest that the geometric complexities of
the bundle do not contributed significantly to the overall
flow, and that the flow of the steady-state two-helix
bundle is, thus, closely approximated by the flow of a
single rigid helix with twice the thickness. Note that there
is a measurable difference between the flow in the

single-thickness and double-thickness simulations,
indicating a weak but significant dependence of the flow
on thickness. This dependence implies that, since our
helices do not have exact geometric similarity to the
full-scale flagella, there is a small but significant
discrepancy between the model flows and the
flagella-generated flows. Since the flow in slender-body
theory depends logarithmically on the aspect ratio (see
e.g. Kim and Powers (2004) and references therein), this
discrepancy should get smaller as the aspect ratio of
the model helix increases. However, for a given material,
the bending stiffness of a helix decreases rapidly as the
thickness decreases. Thus, faced with a compromise, we
chose to match M accurately and the aspect ratio only
roughly.

Fig. 5. Raw image and
corresponding PIV
measurements of velocity due
to a bundling flexible helix pair
(y=2P, rotated at 0.25 Hz)
shown at 5 s (left), 25 s
(middle), and 45 s (right) dur-
ing the bundling process and
viewed from below. The units
for the colored bars is cm/s
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4
Conclusions
In this paper, we have presented PIV measurements of an
extremely complex three-dimensional flow at a very low
Reynolds number. The flow field is carefully constructed to
match both the Reynolds number and the ratio of elastic
and viscous stresses so that comparisons can be made with
the flows generated by flagellated bacteria swimming
through water at the micron scale. The velocity fields
around rigid helices are compared with results from
slender-body computations, and are found to agree
qualitatively at the level of vector fields and quantitatively
for the average azimuthal velocity, validating the
technique. For the case of flexible helices, the deformation
of the helices significantly complicates the flow field, and,
since numerical computations, though feasible, have not
yet been produced, no direct comparisons are possible.
However, the measured rotational flow induced by the
bundle in the steady state agrees well with calculated flow
induced by a single rigid helix with twice the radius.

The highly three-dimensional nature of the flow also
complicates the accuracy of the velocity measurements.
The time separation between images was perhaps shorter
than was desired for optimal PIV accuracy, but was
restricted both by the specifics of the current
synchronization system and by the need to keep particles
inside the laser sheet between image pairs. These
compromises likely added to the discrepancies between
the measurements and their corresponding simulations.
Nevertheless, these results do help considerably in our
understanding of the microhydrodynamics of bacterial

motion, and we hope to extend them with fully
three-dimensional PIV measurements in the future. In
addition, we plan to take measurements over a wider range
of values of M, and using a constant torque motor instead
of the constant velocity motor used in the present work.
Both of these extensions will aid in a more detailed
understanding of the hydrodynamics of bacterial flagellar
bundling.
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