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Abstract

We report the influence of the nature of boundaries on the dynamics of wetting. We review

some work recently published and highlight new experimental observations. Our paper begins

with the spreading of drops on substrates and demonstrates how the exponents of the spreading

laws are affected either by the surface chemistry or by the droplet shape. We then discuss the

imbibition of completely and partially wetting fluids into channels and over microtextured

surfaces. Starting with the one-dimensional imbibition of completely wetting liquids in tubes

and surface textures, we show that (i) shape variations of channels change the power-law

response of the imbibition and (ii) the geometrical parameters of a surface roughness change the

spreading behavior. For partially wetting fluids, we observe directionally dependent spreading:

polygonal wetted domains can be obtained. We conclude with a tabular summary of our

findings, allowing us to draw connections between the different systems investigated, and shed

light on open questions that remain to be addressed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When a liquid makes contact with any surface, the contact line

moves until the liquid/solid/vapor system reaches equilibrium

state. The dynamics on how the liquid reaches its equilibrium

are not trivial and vary with surface chemistry, surface

topography, and liquid properties [1–4]. In this contribution,

we focus on systems where the dominant driving force results

from the reduction of surface energy, i.e. the capillary force.

Specifically, we report on the wetting dynamics for different

liquid–solid systems.

For ideal surfaces (i.e. smooth and chemically homoge-

neous), a minimization of the variation of the total surface

energy needed to move the contact line a distance dx (see

figure 1(a)) leads to the familiar Young’s relation that defines

the equilibrium contact angle θeq formed between the drop and

the substrate: cos θeq = �γsv − γs�)/γ [3]. In this relation, γsv,

γs� and γ denote, respectively, the solid/vapor, solid/liquid and

liquid/vapor surface tensions (i.e. energy per unit surface area).

Therefore if one of the phases is air, there are two ways to vary

3 Present address: Department of Mechanical and Aerospace Engineering,

Princeton University, Princeton, NJ 08544, USA.

θeq; either by changing the surface tension of the liquid, γ , or

by modifying the surface chemistry.

Only ideal surfaces are smooth and it is well known

that both surface chemistry and surface roughness affect

the dynamics of wetting [6]. Understanding the influence

on dynamics of wetting of surface chemistry or surface

topography alone, or surface chemistry together with surface

roughness, can yield new understanding and potential

applications involving wetting, both statics and dynamics, for

a large variety of situations, both in nature and in industry.

In the laboratory, we used soft-lithography methods to

design and manufacture topographically patterned, but chem-

ically homogeneous, surfaces made of polydimethysiloxane

(PDMS) [7]. Without further surface treatment, PDMS is

hydrophobic so that a water droplet partially wets the surface

with an equilibrium contact angle θeq ≈ 90◦ (see figure 1(b)).

We manufactured surface textures that consist of micron-size

cylindrical posts arranged on a square lattice with post radii

and heights, R and H , and lattice distances d (figure 1(c)).

Figure 1(d) shows an example of the well known ‘fakir’

effect: the increase in surface area resulting from the addition

of surface roughness to a smooth PDMS substrate makes it

0953-8984/09/464127+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK1
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Figure 1. (a) Partial wetting of an ethanol droplet on a smooth
PDMS substrate. Inset: close-up of the contact line the drop makes
with the substrate showing Young’s construction. (b) A drop of water
deposited on smooth hydrophobic PDMS makes an equilibrium
contact angle close to θeq ≈ 90◦. (c) Micropatterned surface made of
PDMS and schematic depicting the topographical features. (d) A
drop of water deposited on a rough PDMS (superhydrophobic)
substrate (as shown in (c)) adopts a nearly spherical shape,
θeq ≈ 150◦. The pictures of drops are adapted from [5].

superhydrophobic, θeq ≈ 150◦. In this ‘fakir’ state, a drop

of water adopts a nearly spherical shape and easily rolls off the

substrate [6, 8]. In contrast, complete wetting, i.e. θeq ≈ 0◦,

can be achieved by using a droplet of oil that completely wets

a smooth PDMS substrate.

Here we discuss the influence of boundary conditions

on the dynamics of wetting of drops on smooth surfaces,

and moving liquid fronts in smooth tubes and microtextured

substrates. We begin in section 2 by describing the dependence

of the spreading dynamics of drops on θeq and on the shape of

the drop; our focus is on short times where we find a dominant

influence of inertia. Next, we discuss one-dimensional

viscous imbibition of completely wetting fluids in tubes and

microtextured surfaces (sections 3). We show that variations

in the tube cross-sectional area affect the long-time imbibition

dynamics. In the case of surface roughness, we discuss the role

of the topographic features on the motion of the liquid front in

the porosity. In section 4, we demonstrate that directionally

dependent spreading can be achieved during the imbibition of

partially wetting fluids on rough surfaces and that a polygonal

wetted area can be obtained. The three distinct themes of this

paper, drop spreading, one-dimensional imbibition, and two-

dimensional wicking of textures, are represented in a schematic

shown in figure 2. Our paper focuses on three controls, the

shape of the boundary, the equilibrium contact angle, and the

surface roughness, which are inherent to the central theme,

wetting dynamics (figure 2).

2. Inertial imbibition: the early time dynamics of
wetting

In this section we describe the dynamics of a liquid drop

as it contacts and subsequently wets a solid surface. We

Figure 2. Schematic representing the different aspects of wetting we
discuss in this paper: drop spreading, one-dimensional imbibition,
and wicking of textures. The intersections of the circles emphasize
the connections that exist between topics: the shape of a boundary
matters for drop spreading and one-dimensional imbibition, the
equilibrium contact angle affects the dynamics of droplets and
wicking of surface textures, and both one- and two-dimensional
imbibition of microtextured surfaces are influenced by the
topographic features of a surface roughness. Wetting is the central
theme of these areas.

begin by reviewing how a drop spreads on a dry, completely

wetting surface (equilibrium contact angle θeq = 0◦). Next,

we describe how the early wetting behavior is modified when

the surface is partially wetting (θeq > 0◦). This work on

partial wetting adds a few additional details to our recent

paper [9]. Finally, we share new observations and analytical

considerations for the influence of the initial drop shape on the

early time spreading dynamics. In particular, by applying an

electrical potential across the drop, we are able to change the

shape of the drop from spherical to conical prior to contact

with the surface. Immediately after contact, both conical and

spherical drops spread out; however, the spreading dynamics

in the two cases follow different power-law scalings.

2.1. Complete wetting

When a drop of completely wetting liquid contacts a smooth

and dry surface, the drop spreads along the surface in order

to minimize the total potential and surface energy. For small

drops, whose radii are smaller than the capillary length, the

effects of gravity are negligible and spreading is driven by

capillary forces. Figure 3 illustrates via high-speed video

images the dynamics when a water drop contacts a completely

wetting solid. The images show two distinct wetting regimes.

At early times (figures 3(a)–(c)), the surface of the drop

significantly deforms as a capillary wave travels along the

surface of the drop. In this regime the capillary forces due

to the curved surface rapidly drive the spreading process while

the inertia of the fluid resists the deformation [9, 10].

Once the capillary waves have dissipated, the spreading

liquid enters into a second stage of wetting (figures 3(f)–(h)).

In this second regime, the drop continues to spread, but at a

significantly slower rate. Here the spreading drop takes the

form of a spherical cap with a small dynamic contact angle,

2
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Figure 3. A drop of water rapidly spreads upon contacting a completely wetting surface (here a plasma-treated glass slide).

Figure 4. Drops spreading on wet or dry, completely wetting surfaces can partially coalesce forming a smaller drop that itself exhibits similar
coalescence dynamics. The resulting cascade continues until the ejected drop is small enough that viscous effects change the dynamics. Here
a water drop progresses through five iterations before fully coalescing with the thin water film.

and the surface energy gained by spreading is balanced by the

viscous dissipation associated with this motion [3, 11].

Between the two regimes (figures 3(d) and (e)), the

amplitude of the surface deformation is large enough to

separate the drop into two parts. One part remains suspended

by the needle and retracts to form a sphere, and the other

part continues to spread on the surface. This phenomenon is

often referred to as partial coalescence (only part of the drop

coalesces with the surface) so as not to be confused with partial

wetting, which refers to the dynamics that occur when a drop

contacts a solid with a finite contact angle.

If the separated drop breaks free of the needle, or simply

exists in the absence of a needle, the separated smaller drop

falls to the interface where it begins to coalesce with the wetted

surface (figure 4). During the coalescence another smaller

drop pinches off setting up a cascade of partial coalescence,

as investigated by [12, 13]. Viscosity suppresses this partial

coalescence when the Ohnesorge number is sufficiently large,

µ/�ρσ R)1/2 > 0.026 [13]. After five iterations, the size

of the ejected drop in figure 4 is small enough that it fully

coalesces, ending the cascade. Here we have shown that this

coalescence cascade occurs even when only a thin wetting

film on a substrate exists, whereas early work had focused

on coalescence with a deep bath of liquid. This observation

emphasizes that the dynamics are controlled by inertia of the

droplet liquid.

Figures 3 and 4 also demonstrate the similarity between

the dynamics of a drop spreading on a dry, completely

wetting surface and spreading on a wet surface. Experiments

have demonstrated that on completely wetting surfaces a

microscopic film precedes the macroscopic advancing contact

line [3, 14]. This precursor film may explain why spreading

on dry, completely wetting surface is similar to spreading

on a pre-wet surface; in both cases the drop coalesces with

a thin film [10]. However when a drop contacts a dry,

partially wetting surface (θeq > 0), coalescence arguments

are no longer appropriate, and instead contact line dynamics

(e.g. surface energies associated with all three phases) need to

be considered.

2.2. Partial wetting

As a spherical drop begins to spread on a dry, partial wetting

surface, there are three different interfaces that intersect to form

a contact line. Since viscous stresses diverge near the contact

line [15], it might be expected that the capillary spreading is

regulated solely by viscous dissipation. However, recent work

by our group has shown that this is not the case [9].

In order to study the early time dynamics we used water–

glycerol mixtures and modified silicon surfaces using standard

surface chemistry techniques [3, 9]. The liquid is slowly

extruded through the end of a hydrophobic needle to form a

growing pendant drop. As long as the size of the drop is well

below the capillary length, the drop remains nearly spherical

until contact. We observe a striking difference in the spreading

behavior depending on the surface; typical experimental results

are shown in figure 5. Similar results have also been reported

in [16]. When drops are placed on a hydrophilic surface, the

liquid rapidly wets the surface and forms an acute dynamic

contact angle (top row in figure 5). However when the drops

are placed on a hydrophobic surface, the spreading liquid

wets the surface slow enough to form an obtuse dynamic

contact angle (third row in figure 5). To better understand

the dynamics, we vary the fluid dynamic viscosity, µ, and the

initial drop radius, R. We then try two scalings of the data:

(i) inertial and (ii) viscous (figure 6).

Figure 6(a) reports how the wetted radius r grows with

time t once a drop contacts one of the four surfaces shown

in figure 5; results for many different drop radii and three

different fluid viscosities are shown. The results reiterate that

the drop-spreading speed increases as the equilibrium contact

angle of the surface decreases. The plot also reveals that larger

3
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Figure 5. The early time spreading of water drops on partially wetting surfaces, where the contact angle is indicated in each figure. The final
images in each column shows the shape of the drops after a minute, which we assume to be near equilibrium. Figure adapted from [9].

drops spread faster than smaller drops on each of the surfaces.

Changing the viscosity of the fluid by a factor of ten has a

relatively small effect on the spreading rate with the more

viscous drops tending to spread slower than the less viscous

drops.

We can better characterize the spreading behavior by non-

dimensionalizing the data in figure 6(a). The natural length

scale in this problem is the initial radius of the drop R. Yet

there are two possible timescales to consider. If the capillary

forces driving the flow are primarily hindered by viscosity,

then the natural timescale is µR/γ , where γ is the interfacial

tension between the liquid and surrounding gas. However, if

inertia of the liquid is the primary hindrance, then the natural

timescale is �ρR3/γ )
1/2

, where ρ is the density of the liquid.

Figures 6(b) and (c) shows how the results in figure 6(a) are

rescaled with these natural timescales.

The data rescaled with the viscous timescale (figure 6(b))

further separates the results indicating that the spreading

in figure 5 is not viscously dominated. Meanwhile the

data rescaled with the inertial timescale (figure 6(c)) nearly

collapses onto four master curves, each corresponding to a

different equilibrium contact angle. The implication is that

the early moments of spreading on partially wetting fluids can

be inertially dominated, even when there is a distinct moving

contact line. The rescaling in figure 6(c) also shows that

smaller drops spread faster than larger drops relative to their

initial size even though larger drops spread faster than smaller

drops on each of the surfaces in absolute terms.

While figure 6 clearly demonstrates that inertia is

primarily responsible for regulating the speed of the capillary-

driven wetting, it is necessary to further investigate the master

curves to better understand the physical mechanism. When

two drops coalesce, or when one drop spreads on a completely

wetting substrate, the spreading radius in the inertial regime

has a power-law dependence on time, r ∝ t1/2. Therefore

it is natural to investigate whether the partial wetting results

also follow a power-law behavior. As the master curves in

figure 6 show, not only do the results of r versus time follow

a power-law behavior, but the exponent appears to depend on

the equilibrium contact angle (figure 7).

We find that spreading on partially wetting surfaces

follows the power-law r/R = C�t/τ)α, where τ =

�ρR3/γ )
1/2

is the inertial timescale and α is an exponent that

depends on the equilibrium contact angle (figure 7). For small

contact angles, α approaches a value of 1/2, a value also

observed for complete wetting and coalescence. Yet for larger

contact angles, α decreases continuously so that it reaches a

value near 1/4 when the contact angle is approximately 117◦.

In our recent work we proposed that this initial stage

of spreading is regulated by the generation of capillary

waves, similar to the analysis of planar wedges by [17, 18].

The resulting scaling analysis recovers the dynamic wetting

4
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Figure 6. (a) The distance a drop spreads over time depends on the surface chemistry (symbol filling), viscosity (symbol color), and the initial
drop size (symbol shape) as delineated in the legends for parts (b) and (c). (b) Rescaling the data with the viscous timescale spreads out the
data points, whereas (c) rescaling the data with the inertia timescale approximately collapses the data onto four master curves each
corresponding to a different equilibrium contact angle. Figure adapted from [9].

behavior r/R = C�t/τ)α with α = C1

�
F�θeq) + cos θeq.

Here C1 is a proportionality constant and F�θeq) is an unknown

function that only weakly depends on θeq [9]. The scaling

provides no additional insight into why completely wetting

drops spread with an exponent α = 1/2, as a more detailed

analysis would be required to predict the values of the

constants. However, the result is successful in demonstrating

how the equilibrium contact angle is able to affect spreading

power α.

In section 2.3, we return to completely wetting conditions

and investigate how the initial shape of the drop influences the

spreading dynamics.

2.3. Shape matters

To the best of our knowledge, previous drop-spreading

experiments have only considered nearly spherical drop

shapes. Yet, conical drops are surprisingly ubiquitous and

occur naturally when there are electrical charge differences

between the drop and substrate. We investigate the effects

of the voltage difference on the drop shape and subsequent

wetting dynamics through an experiment similar to those

described in the previous two sections.

A stainless steel needle is positioned 1–2 mm above a

glass slide that acted as our target substrate. The glass slide is

rinsed with ethanol, dried with nitrogen gas, and plasma treated

within minutes of the experiments to ensure that the surface

was completely wetting. Both the needle and the slide are

connected to a voltage source so that the voltage across the gap

can be controlled. Water is injected slowly through the needle

to form a growing pendant drop which eventually contacts the

slide (figure 8). Experiments were conducted with either no

applied potential, in which case both the needle and the slide

were grounded, or with a 500 V potential difference. These

experiments were repeated on a thin layer of water coating the

glass slide.

We observe that a potential difference across the drop

significantly modifies the drop shape as it contacts the substrate

5
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Figure 7. The master curves in figure 6(c) obey a power-law
response where the exponent depends on the equilibrium contact
angle. Vertical lines denote two standard errors. To prevent any bias
from viscosity, only the data for µ = 1 cP was included in the
average; the influence of viscosity on the coefficient of the power law
is reported in [9]. Figure adapted from [9].

(e.g. contrast figures 8(a) and (b), 8(c) and (d)). When both

the needle and slide are grounded, the drop remained spherical

as water is injected through the needle. However in the

presence of a 500 V potential difference, the drop begins

spherical but then reaches a critical size and deforms into

a cone (figure 8). Electrocapillary instabilities have been

studied extensively [19], and conical deformations are often

observed [20, 21]. Yet, the spreading dynamics after an

electrically deformed drop contacts a solid or liquid have not

been studied to the best of our knowledge. The electrical

permittivity of water is approximately � = 7 × 10−12 F m−1,

and a typical conductivity is around σ = 5 × 10−4 S m−1.

If we assume that upon contact electrical charges equilibrate at

the charge relaxation timescale �/σ , then following contact the

system would be effectively neutralized within microseconds.

Since our experiments are on the order of milliseconds, we

neglect charge and instead focus on the shape of the interface

following contact.

The spreading dynamics for the drops shown in figure 8

are plotted in figure 9. There is a striking difference in

Figure 9. Experimental data on the spreading time for spherical and
conical drops on both wet and dry surfaces.

the spreading behavior for initially spherical versus initially

conical drops. The spreading of the spherical drops follow

the expected power-law relation r/R ∝ �t/τ)1/2 where τ =

�ρR3/γ )
1/2

is the characteristic inertial timescale. In contrast,

the spreading of the conical drops appears to follow dynamics

much closer to r/R ∝ �t/τ)2/3. In other words, we find that

the change in the initial drop shape effects the exponent of the

power-law behavior, not just the prefactor.

In experiments in which the voltage was uncontrolled,

we found that natural static charges often would deform the

drop and lead to the 2/3 power-law exponent. These charge

effects may be partially responsible for some of the variability

between the spreading exponents reported in the literature,

e.g. [10, 16].

In addition, the spreading dynamics on wet and dry

surfaces are nearly identical for both geometries, suggesting

that a coalescence model is appropriate in both situations.

It has been suggested that when a spherical drop wets a

completely wetting surface, the dynamics are identical to the

drop coalescing with its precursor film [10] (section 2.1). A

similar comparison may be appropriate for the dynamics of an

initially conical drop.

r

r

Figure 8. The early time spreading of spherical and conical drops on both dry and wet surfaces. The shape of the drop is controlled by
varying the electrical potential difference across the drop. (a) Spherical on dry surface. (b) Conical on dry surface. (c) Spherical on wet
surface. (d) Conical on wet surface.

6



J. Phys.: Condens. Matter 21 (2009) 464127 L Courbin et al

Conical drops are unique in that they initially have

zero curvature in the radial direction near the contact point.

Therefore the initial spreading should be independent of the

drop radius, and for dimensional reasons, it follows that in the

absence of viscous effects conical drops should spread as r ∝
�γ t/ρ)2/3. Similar expressions have been deduced analytically

for planar wedges of liquid coalescing [17]. Nonetheless, it is

surprising that the spreading power law continues well beyond

the initial conical region (figures 8 and 9).

Another approach to find the shape dependence on

spreading is to generalize the existing inertially dominated

spreading models [10, 22]. If we assume that the curvature

of the growing meniscus is set by the gap between the

drop and substrate z, then the capillary pressure driving the

spreading scales as γ /z�r), where the height z�r) depends

on the radial position of the meniscus r . Here we assume

that the negative curvature along the meniscus is greater than

the positive curvature around the meniscus. Since viscous

effects are neglected, the dynamics are expressed with the

Euler equations, suggesting that the capillary pressure γ /z�r)

ought to be the same order of magnitude as ρ�∂t r)
2, where ∂t

denotes a time derivative. This balance yields the following

estimate for the spreading distance

r 2z�r) ∝
γ

ρ
t2. (1)

If the shape of the drop at contact is expressed in the form

z/R ≈ �r/R)β , then the predicted spreading rate would follow

r ∝

�
γ Rβ−1

ρ

�1/�β+2)

t2/�β+2), (2)

which can be expressed in non-dimensional terms as

r

R
∝

�
t

τ

�2/�β+2)

, (3)

where τ = �ρR3/γ )1/2 is the characteristic inertial timescale.

For a spherical drop, the shape can be approximated as

parabolic near the contact point. Immediately after contact, the

shape of the spreading drop is perturbed within the meniscus,

but appears stationary outside this region such that β =
2. With this value of β , the spreading law follows the

experimentally observed form r/R ∝ �t/τ)1/2. For a conical

drop, r ∝ z such that β = 1. With this value of β , the predicted

spreading law changes to r/R ∝ �t/τ)2/3.

Here we have discussed the influence of the shape of the

drop on the dynamics of spreading. Similarly, the shape of

fixed boundary conditions, such as the walls of a capillary tube

can also affect the exponents of spreading power laws. Such

effects are discussed in section 3.

3. One-dimensional viscous imbibition

3.1. Traditional imbibition

We now discuss the situation of one-dimensional viscous

wetting and are focusing on the long-time viscous dynamics.

In that situation, the inertial early time imbibition [23] is not

Figure 10. Capillary tube (of radius b) brought into contact with a
wetting liquid: spontaneous imbibition takes place inside the tube.
Here � denotes the position of the meniscus at the time t .

observed and the viscous dissipation at the contact line [24]

is negligible. Let us start with the classical configuration

where a capillary cylindrical tube (of radius b) is brought into

contact with a wetting liquid of surface tension γ and dynamic

viscosity µ (see figure 10). Spontaneous imbibition takes place

inside the tube to minimize energy. The motion of the fluid

can be described by the Darcy’s equation, which balances the

viscous friction against the pressure gradient that drives the

fluid:
µu

k
= −

∂p

∂z
, (4)

where u�z, t) is the average velocity of the liquid and k is the

permeability of the tube (k = b2/8). The pressure gradient is

given by the Laplace pressure at the meniscus over the length

� (
∂p

∂z
= −

2γ cos θeq

b�
) where θeq is the equilibrium contact angle

on the solid. Taking into account that u = d�/dt , the Darcy’s

equation leads to the classical result, often called the Washburn

law [25] or the Lucas–Washburn law [26], which stipulates that

the position of the meniscus increases as the square root of time

� =
√

Dt , where D =
γ b cos θeq

2µ
is a function of the physical

characteristic of the liquid and of the radius of the tube. The

observation and explanation for � ∝ t1/2 originates from a

1906 paper by Bell and Cameron [27]. This result is rather

generic and applies to a wide range of porous homogeneous

media, e.g. paper, sand, and so on [28], and can be extended

to microfabricated materials as discussed in section 3.3 or to

V-shaped open grooves [29, 30].

3.2. Wicking within systems with axial variations of

permeability

Recently, we have studied the influence of a variation

of permeability on the imbibition dynamics [31]. The

permeability was modified by considering tubes of non-

uniform cross section. We demonstrated, experimentally

and theoretically, that shape variations of the channel or

tube, along the flow direction, modify the classical response

generally observed. The analysis relies on a combination

of a one-dimensional approximation using Darcy’s law and

mass conservation. The equations are completed by applying

boundary conditions on the pressure both at the inlet (the

reservoir) and the outlet (accounting for the capillary pressure

reduction that wicks the fluid into the tube).

As an example, we studied in detail the case of imbibition

in conical tubes defined by their initial radius b0 and their

opening angle α (see figure 11(a)). Liquids are characterized

by their surface tension γ and their viscosity µ, and we

determined the progression of the meniscus position � inside

the cones as a function of time t . The analysis leads to the

definition of two dimensionless parameters, a length L =

7
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Figure 11. (a) A cone is defined by two parameters: its initial radius b0 and its opening angle α. (b) Experimental results reported as a log–log
plot of the position of the meniscus inside the cones as a function of time. Experiments have been performed with silicon oil of viscosity
µ = 0.1 Pa s and surface tension γ = 2 × 10−2 N m−1 and realized on four different kinds of cones. The slope 1/2 represents the classical
response for imbibition. (c) Rescaling of the data with the dimensionless parameters, length (L) and time (T ), defined in the text. The
continuous line corresponds to the polynomial solution: 2L4 + 8L3 + 12L2 = 3T . Two regimes are visible: at short times, the motion follows
L ∝ T 1/2, whereas at longer times, the motion is much slower and follows L ∝ T 1/4. Figure adapted from [31].

Figure 12. (a) Silicon surface decorated with a square pattern of micropillars (lattice spacing 10 µm). The bar indicates 50 µm.
(b) Dynamical coefficient of wicking D defined in the text as a function of the height H of the pillars expressed in micrometers. Oil viscosity
is 4.6 mPa s (�), 9.5 mPa s (×), 19 mPa s (�), 48 mPa s (��) and 97 mPa s (◦). (Courtesy of Ishino et al [39].)

α�/h0 and a time T = cγα2t/µh0, where c depends on the

contact angle. In the case of conical tubes, the solution, L�T )

is given by the polynomial solution

2L4 + 8L3 + 12L2 = 3T, (5)

which defines two distinct asymptotic limits:

At short times (T � 1 or L � 1), the meniscus is

close to the cone’s opening and the shape variation of the tube

is not significant. In this limit, it is natural to recover the

classical dynamics obtained with a capillary tube of constant

cross section: L ∝ T 1/2.

On the other hand, at long times (T � 1), when

the meniscus is far from the opening (L � 1), the force

balance is modified and we obtain L ∝ T 1/4. To understand

this difference, we note that first, the viscous dissipation is

localized in the thinnest region of the cone, i.e. the tip. Second,

the pressure drop at the meniscus, which is responsible for

the movement, decreases when the cross section of the tube

increases. Finally, mass conservation between the opening

of the tube and the meniscus leads to a slowing down of the

motion. The combination of these three effects gives different

power-law responses, with exponents uniquely connected to

the details of the geometry.

3.3. Dynamics of wicking within forests of micropillars

(complete wetting)

Micropatterned surfaces have been extensively studied, both as

model systems to understand generic effects of topographic or

chemical heterogeneities on capillarity and wetting phenom-

ena, but also from a material engineering perspective as means

to obtain specific wetting or hydrodynamic effects. Examples

include the creation of ultrahydrophobic surfaces [32, 33], the

design of superoleophobic surfaces [34, 35], the possibility to

generate tunable wetting by using an electric field [36], and the

study of slip in the presence of surface heterogeneities [37, 38].

Here, we consider a microtextured surface brought

into contact with a bath of completely wetting liquid (in

the experiments, often silicone oil is used): the liquid

spontaneously invades the microtexture as it would invade a

capillary tube. In the case of a forest of micropillars, the film

propagates by matching its thickness to the height of the posts.

As previously mentioned, its progression follows the classical

dynamics generally observed in porous media, i.e. the position

of the front increases as the square root of time: � =
√

Dt .

Ishino et al correlate the dependence of the coefficient D

with the geometric characteristics of the microtextures [39]

(see figure 12(a)). The authors showed that the rougher
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Figure 13. (a) Side view of a partially wetting fluid droplet on a microdecorated surface. As indicated by the arrows, spreading occurs by
imbibition of the texture with a non-spreading macroscopic reservoir. The lattice parameters are d = 100 µm, R = 25 µm and H = 30 µm.
(b) When deposited on the surface, the drop rapidly adopts an initial circular shape (∼4 ms) followed by a transient octagon (∼400 ms) and a
final square shape (∼4800 ms). (c) Time dependent spreading of a droplet on a microdecorated surface with identical lattice distance and
posts radii as in (a) but larger height: d = 100 µm, R = 25 µm and H = 60 µm. In contrast with the experiment in (b), the transient octagon
(∼500 ms) does not transform into a square but remains octagonal at the end of spreading (∼1500 ms). The origin of time corresponds to the
impact of the drop on the surface. (d) Evolution of the distance to the reservoir, �, as a function of time. This set of data correspond to the
experiments shown in (b). Shown are the mean value of � along the four facets moving along the diagonals (◦) and the axes (•). The ratio of
the velocities along the diagonals and the axes is Udi/Uax ≈ 1.3. Figure adapted from [44].

the surface, the larger is the driving capillary force. Thus,

increasing the pillar height or diameter, or decreasing the

distance between the pillars, contributes to increasing the

capillary suction. Meanwhile, the resistance comes from the

viscous stresses that accompany flow. One contribution comes

from gradients of velocity established over the height of the

pillars, corresponding to viscous effects between the moving

liquid and the bottom solid surface. For a given imbibition

speed, the smaller the pillar height, the larger is the resulting

viscous stress. In addition, the liquid flows into the forest of

micropillars and viscous effects occur on their sides: in this

case, the viscous force is essentially proportional to the height

of the pillars and inversely proportional to the square of the

lattice distance.

Thus, Ishino et al found that two different limits

characterize the dynamics of wicking. For short pillars

(of height smaller than the lattice spacing), the dominant

viscous effect arises from the bottom solid surface. Therefore

the larger the post, the faster the front progresses. In the

other limit, for relatively tall pillars (of height bigger than

the lattice distance), the viscous force is dominated by the

dissipation on the pillar side so that the resulting imbibition

coefficient D is independent of the pillar height and is mainly

determined by the pillar radius. This analysis is confirmed by

experiments realized on well-defined microtextures (figure 12)

and illustrates that the dynamics of wicking can be tuned

precisely by adjusting the texture geometry.

In this section, we have discussed cases of one-

dimensional viscous imbibition in a tube or within a

microtexture. In this latter situation, the imbibition can occur

along the different lattice directions that define the texture. We

now discuss this situation in the case of partial wetting.

4. Two-dimensional viscous imbibition

As presented in section 3, one-dimensional viscous imbibition

is observed when a completely wetting fluid makes contact

with a microtextured surface. Chemical patterning is often

used to control two-dimensional wetting dynamics as seen in

section 2. In particular, the literature documents ways of using

surface chemistry to control the position, the size, and shape

of drops on substrates [40–42]. Here we illustrate an example

of directionally dependent imbibition of partially wetting on

microtextured surfaces. As discussed in another contribution to

this special issue on wetting, anisotropic spreading of partially

wetting fluids can be obtained by changing the shape of the

posts into triangles [43]. We next summarize our observations

of polygonal footprints and ideas for shape selection during the

spreading of a drop [44].

4.1. Partial wetting of rough substrates

We used the square lattices shown in figure 1(c), and utilized

different liquid that were partially wetting smooth surfaces

made of the same material, with contact angles 10◦ <

θeq < 35◦. For partially wetting fluids, spreading occurs by

imbibition of the roughness with a non-spreading reservoir

(figure 13(a)). Perhaps surprisingly, it is possible that the
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Figure 14. (a) Evolution of the facets sizes ratio Ddi/Dax and velocities ratio Udi/Uax as a function of the angle ϕ. The dashed line
corresponds to Uax/ cosϕ = Udi/ cos �π/4 − ϕ). Inset: top view of an isopropanol droplet spreading on a surface roughness defining the
variables Udi, Uax, Ddi, Dax, and ϕ. (b) Top view of the seven scenario for spreading of partially wetting fluids on a given rough surface. These
seven final shapes are obtained by changing the wettability of the substrate, i.e. cos θeq with 10◦ < θeq < 35◦. The lattice parameters are:
d = 200 µm, R = 50 µm and H = 50 µm. (c) Pinning of a contact line between two rows of posts (inter-post distance � and post height H )
with an equilibrium contact angle θeq. Figure adapted from [44].

footprint of the wetting is no longer a circle. Rather, as we

depict in figure 13(b) the transient spreading of a droplet, starts

from an initial circle, passes through an intermediate octagon,

and finally ends up with an equilibrium square shape. Two

drops of the same partially wetting fluid deposited on surfaces

with identical symmetries, post radii and lattice distances

but different posts heights form different final shapes: a

transient spreading octagon can either become a stable square

(figure 13(b)) or remain an octagon as spreading ends (see

figure 13(c)). Hence, we see that the shape selection depends

on both the topographic features and the liquid through its

equilibrium contact angle.

To explain the shape selection on microdecorated surfaces,

it is crucial to understand the dynamics of spreading. We

present in figure 13(d) the variations of �, the distance from

the moving contact line to the reservoir as a function of time.

Our experiments show that � ∝
√
t in both directions of the

lattice. The results show that the prefactor in this spreading

law is larger for movements along the diagonal. Similarly to

the case of one-dimensional viscous wetting (see section 3), the

dynamics of the imbibition of the texture by partially wetting

fluids can be explained using Darcy’s law [44].

The prefactor in the evolution of the contact line velocity,

U , is a dimensionless function of the geometrical features that

depends on the direction of the lattice; hence, differences can

be observed in the velocities along the diagonals and the axes,

Udi and Uax, as obtained in our experiments (in figure 13(d),

we find Udi/Uax ≈ 1.3).

The selection of a final shape (octagon or square) from

a transient octagon depends of the velocity ratio Udi/Uax. In

order to obtain asymptotically stable shapes, the projections

of Udi and Uax on the line S that separates two sides of the

transient octagon must be equal (see the definition of the

variables in figure 14(a)). This condition is satisfied when

Uax/ cos ϕ = Udi/ cos �π/4 − ϕ), where ϕ is the angle

between the two facets. Our experiments show that Udi > Uax

which implies that ϕ ∈ [π/8, π/4]. Figure 14(a) shows the

dependence on ϕ of both Udi/Uax and of the facets size ratio

Ddi/Dax. When Udi/Uax =
√

2, i.e. ϕ = π/4, the axes

facets grow slowly compared to the diagonal facets which

shrink quickly. As a consequence, the final shape is a square,

Ddi/Dax = 0. In contrast, octagons can be obtained for

Udi/Uax <
√

2. A regular octagon, Ddi/Dax = 1, can be

observed only when Udi/Uax = 1, i.e. ϕ = π/8 (figure 14(a)).

We next release drops of the same size on a given

microdecorated surface and vary the equilibrium contact angle,

θeq. We find five other macroscopic scenarios for wetting

microdecorated surfaces as cos θeq is increased (figure 14(b)).

The observed shapes can be organized into two distinct groups:

three metastable shapes and four stable wetted domains. For
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Figure 15. (a) Drops deposited on the same micropattern form the same shapes of different sizes when different volumes are used. Images
were taken obliquely at an angle of about 45◦. The liquid is isopropanol. (b) Photograph of the final shape (an arrow) obtained after deposition
of a millimeter-size droplet at the boundary between two distinct patterns (a hexagonal and a rectangular lattice) on the substrate. An arrow of
smaller size is obtained when the volume of the drop is decreased. In (a), d = 100 µm, R = 25 µm and H = 60 µm. In (b), the parameters
are d = 200 µm, R = 50 µm and H = 50 µm for the hexagonal array, and R = 50 µm, H = 50 µm, d = 300 µm in the direction of the
arrow and d = 200 µm perpendicularly to this direction for the rectangular lattice.

the first three, the contact line gets pinned in a well-defined

metastable shape, either a circle, an octagon, or a square while

the reservoir remains of finite size. In the four other scenarios,

imbibition empties the reservoir and leaves a stable wetted

domain: a square, an octagon, a rounded octagon, or a circle in

the case of complete wetting, i.e. for θeq = 0◦ (for more details

about the transition from faceted shapes to rounded octagons

and circles, see [44]).

The transition from metastable to stable shapes can be

understood by using simple energetic arguments [45]. Let us

write the change in interfacial energy dE (per unit length of

contact line) related to a small displacement dx of the liquid

front invading the texture: dE = �γs�−γsv)�r−φs) dx+γ �1−
φs) dx , where φs and r are, respectively, the surface fraction of

the top of the posts, φs = π R2

d2 , and the ratio of the true surface

area to the projected one, r = 1+ 2π RH
d2 . In this expression, the

first and the second term are associated to the wetted domain

and the creation of liquid/vapor interface. Imbibition should

occur when energetically favorable, dE/dx < 0, or, in other

words, when the equilibrium contact angle θeq is lower than a

critical angle θeq < θc with cos θc = 1−φs

r−φs
. Using the roughness

parameters of the substrate used in figure 14(b), φs = 0.2 and

r = 1.4, we find θc = 48◦. In our experiments, 10◦ < θeq <

35◦. Therefore, even the fluid with the largest contact angle

should imbibe the texture until the reservoir empties itself in

the porosity and a thermodynamically stable shape is obtained.

Our experiments, however, reveal the existence of a number

of metastable shapes (see figure 14(b)). These shapes can be

understood by considering the front meniscus at the scale of

individual posts. In a first approximation, we consider that

local pinning of the contact line can occur between two rows

of posts with a flat interface contacting the bottom surface with

an angle θ = θeq (see figure 14(c)). This simple approach gives

us a critical contact angle θeq = arctan�H/�) below which

contact lines should get unpinned, the reservoir empties itself

in the texture and a stable shape is formed. For the experiments

shown in figure 14(b), H/� = 0.5 gives a prediction of a

critical angle θeq = 27◦ in very good agreement with the

value we find experimentally: in figure 14(b), the transition

from the circumscribed square to the stable square occurs for

θeq � 27◦–30◦.

Considerations of both the specificity of the lattice

geometry and the dynamics of imbibition of the texture allow

us to (i) understand the variety of metastable shapes and

(ii) provide a ‘shape’ diagram that summarizes our results

(see [44] for more details).

4.2. Further investigations

Various polygonal shapes can be produced depending on the

contact angle and the detailed topography of the surface pattern

(e.g. the ratio of the height to spacing of the posts). In addition,

as illustrated in figure 15(a), the footprint of a wetted shape

is volume independent, which distinguishes these kinds of

topographic wetted shapes from similar shapes obtainable with

chemical patterning (e.g. [41]): the volume of a deposited drop

controls the size of the final shape as shown in figure 15(a)

for octagonal shapes formed on a square lattice and hexagons

formed on a hexagonal lattice.

These observations form the starting point for new

investigations. For example, the design of new geometries

should be an efficient way to increase the number of realizable

shapes. We illustrate this idea in figure 15(b). When a drop
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Table 1. Conclusion tables that summarize our results and draw connections between our findings.

of partially wetting liquid is deposited at the boundary of

two micropatterns of distinct geometries, new shapes can be

produced. In the example shown in figure 15(b), a millimeter-

size drop of isopropanol deposited at the boundary of a

hexagonal lattice and a rectangular lattice of posts spreads

over each of the two microtextures to form a final shape that

resembles an arrow. As shown in this figure, this shape is

independent of the volume delivered.

Although the scope of this paper focuses on the

phenomenon of wetting, it is worthwhile mentioning that our

observations also suggest that these experiments could be

an efficient way to generate heterogeneous nucleation of gas

microbubbles. Indeed, we observe upon impact of a drop with

the surface anisotropic air trapping inside the surface texture:

individual microbubbles get trapped between two posts (see

figure 16). The assembly of microbubbles forms a domain

whose shape strongly depends on the topographic and impact

parameters. For example, microbubbles can form a cross-

like structure or a shape resembling a four-leaf clover (in

figure 16, the white spots are the microbubbles and the darker

domains indicate the location of liquid on the substrate). Future

investigations might explain how the size of the microbubbles

and the shape of the domains depend on the impact parameters

and the surface topography.

5. Conclusion

Here we have demonstrated variations in the dynamics of

wetting for three distinct configurations: (i) spreading of drops

(ii) imbibition by complete wetting fluids of one-dimensional

and two-dimensional porosities, and (iii) polygonal spreading

by imbibition of partially wetting fluid on rough substrates.

This research highlights the diversity of capillary-driven

phenomena, while also noting parallels between these systems.

We summarize these ideas in table 1. Specifically, we have

shown that the equilibrium contact angle can influence both

the spreading dynamics of drops and the shapes of imbibing

fronts of fluids in microtextures. Similarly, wetting dynamics

are influenced by the shape of interfacial boundary of spreading

drops and the wall geometry of wetted tubes. Finally, our

results show that diffusive imbibition can explain the wetting

of tubes and cones (at short time of spreading), and the one-

dimensional and two-dimensional wicking of microtextured

substrates.

Adding complexity in the combination of changes in the

shape of boundaries, equilibrium contact angle, and surface

roughness, may simplify ways to control wetting dynamics in

a variety of situation. Further investigations could combine

some of these ideas such as the effect of change in equilibrium

contact angle on the spreading of a conical drop. Finally, future

work could expand the ideas of shapes and surface chemistries

to other recently explored wetting configurations [46, 47].
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