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Escherichia coli and other bacteria use rotating helical filaments to
swim. Each cell typically has about four filaments, which bundle or
disperse depending on the sense of motor rotation. To study the
bundling process, we built a macroscopic scale model consisting of
stepper motor-driven polymer helices in a tank filled with a high-
viscosity silicone oil. The Reynolds number, the ratio of viscous to
elastic stresses, and the helix geometry of our experimental model
approximately match the corresponding quantities of the full-scale
E. coli cells. We analyze digital video images of the rotating helices
to show that the initial rate of bundling is proportional to the
motor frequency and is independent of the characteristic relax-
ation time of the filament. We also determine which combinations
of helix handedness and sense of motor rotation lead to bundling.

The cells of Escherichia coli and Salmonella typhimurium have
several helical propellers, or flagella, which they use to swim.

Each flagellum consists of a rotary motor embedded in the cell
wall, a short (50 nm) flexible hook that acts as a universal joint,
and a helical filament �20 nm in diameter and �10 �m long (1).
The trajectory of an individual swimming cell consists of runs
interrupted by tumbles. For most of a run, the motors turn
counterclockwise when viewed from outside the cell, the fila-
ments wrap into a tight bundle, and the cell swims along a
roughly straight path. Near the end of a run, one or more of the
motors reverses direction, the corresponding filaments come out
of the bundle, and the cell moves erratically, or tumbles. The
tumbling process is complex and involves polymorphic transi-
tions of the filament first from the left-handed ‘‘normal’’ state to
the right-handed ‘‘semicoiled’’ state, and then to the ‘‘curly-1’’
state (2). The first transition reorients the cell body. When the
motors resume their counterclockwise rotation, the curly-1
filaments transform directly to the normal state and rejoin the
bundle, and the cell resumes its initial speed (2).

The chemotaxis strategy of E. coli is to decrease the likelihood
of tumbling during runs that happen to carry the cell toward
higher concentrations of chemoattractants. Thus, the formation
and dispersal of the helical bundle is central to bacterial che-
motaxis. Since the radius of the flagellar filament is well below
optical wavelengths, and the motor rotation is relatively rapid
(100 Hz), it is difficult to study the mechanics of the bundling
process directly. Therefore, we built a macroscopic scale-model
system consisting of flexible rotating helices in a very viscous
fluid. By including the viscous fluid and properly accounting for
the relative strengths of viscous and elastic stresses, our scale
model builds on and extends the work of Macnab, who studied
the geometry of rotating flexible helices in a bundle (3).

Our article begins with a discussion of the material parameters
of bacterial f lagella and how we chose the parameters for the
experimental model. The next section describes the geometry of
bundled helices and the symmetry requirements for bundling,
including helix handedness, motor-rotation sense and relative
speed, and phase relations. Finally, we describe measurements of
the characteristic time scale governing the initial stages of the
bundling process.

Scale Model
E. coli usually has several filaments per cell, but for the purpose
of studying bundling it is simplest to consider the case with two

filaments. Unless the two helices are identical and placed on
diametrically opposite sides of the body (an unlikely occurrence),
the hydrodynamic torque on the rotating helices causes the cell
body to counterrotate to make the total torque on the cell vanish.
This counterrotation plays some role in bundle formation (4, 5),
since it tends to wrap the filaments around each other. However,
this mechanism for bundling does not lead to tight bundles (5).
Furthermore, bundles readily form from filaments of stationary
cells bonded to a surface (H. C. Berg and L. Turner, personal
communication). Therefore, we disregard the effects of body
rotation and translation and consider two helices rotated by
stationary motors. We also neglect the effect of the cell body
itself on the flow.

At the characteristic length and time scales of bacteria, viscous
effects dominate inertial effects (6). To see why, recall that the
Reynolds number Re � �v��� determines the relative impor-
tance of inertia to viscous stresses, where � is the density of the
fluid, � is the viscosity, v is a characteristic f low velocity, and �
is a characteristic length over which the flow varies. Using 30
�m�s as a typical swimming speed, 1 �m as a typical cell body
size, and the density and viscosity of water (� � 1,000 kg�m3, � �
10�3 N�s�m2) yields a Reynolds number of Re � 3 � 10�5. (Using
the typical helix radius � � 0.2 �m and the linear azimuthal helix
velocity v � 2��100 Hz � � yields approximately the same
Reynolds number.) At low Reynolds number, the flow field
induced by a point force falls off inversely with distance (7),
leading to a long-range hydrodynamic interaction between two
rotating helices. (Since the net force on a swimming bacterium
vanishes, the far field flow induced by a swimming bacterium
falls off faster than 1�r, roughly like a dipole, 1�r2.) Another
characteristic of low Reynolds number flow is that the drag per
unit length on a long slender body depends weakly on the
filament diameter and the shape of the cross section (8).

Elastic stresses balance the viscous stresses on rotating bac-
terial f lagella, causing the filaments to bend and twist as they
wrap into a bundle. Filaments can also undergo polymorphic
transformations when the motors turn clockwise; for simplicity,
we do not attempt to include polymorphic transformations in our
macroscopic model. The bending modulus A � EI determines
the resistance of an elastic rod to bending, where E is the Young’s
modulus and I is the moment of inertia of the cross section (9).
There are few measurements of the bending resistance, with
reported values ranging from 10�24 N�m2 (10) to 10�22 N�m2 (11).
Likewise, the value of twist modulus C of the filament is not
precisely characterized, although the twist compliance of �0.2
�m-long filaments attached to the hook and a locked motor has
been measured (12). Since it is difficult to separate the twist
modulus of the hook from the modulus of the filament in this
measurement, we will simply assume that C � A for the filament.
For a filament with axial length L, the product of the charac-
teristic filament relaxation time and the motor angular velocity,
M � ��L4�A, determines the importance of viscous drag relative
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to flexibility (see refs. 13 and 14). Since A � EI � Ea4, where a
is the filament radius, M depends sensitively on the aspect ratio
L�a. To estimate M for the bacteria, we will use L � 7 �m, the
typical length of the filaments of ref. 2. Using � � 100 � 2�
rad�s, � � 10�3 N�s�m2, and A � 10�23 N�m2 yields M � 150 for
the bacterial filaments. Note that the persistence length (15)
�P � A�(kBT) � 2.5 mm is large, allowing us to disregard thermal
fluctuations.

There are three dimensionless numbers that determine the
helix shape: P�L, R�L, and a�L, where P is the helical pitch, and
R is the helical radius. Note that the ratio R�P determines the
pitch angle � via tan� � 2�R�P, and that P and L determine the
number of turns (which need not be an integer). If we consider
two helices with initially parallel axes, then the final geometrical
parameter of interest is the spacing h between the two motors.

Methods
Fig. 1 shows the macroscopic model. Two stationary stepper
motors under independent control rotate f lexible polymer
helices in a tank of silicone oil. The viscosity of the silicone oil
is 100 N�s�m2, or �105 times the viscosity of water. The motors
typically rotate at �0.1 Hz, and the helix radius is �13 mm. For
these parameters, the Reynolds number Re �10�3, not quite as
low as 10�5 but low enough to justify our neglect of inertial
effects. To minimize the effects of the walls of the tank on the
f low near the helices, all experiments are carried out with the
helices near the center of the tank. The base of the tank is 420
mm by 420 mm, and the depth of the silicone oil is 330 mm.
The helices are made by wrapping a Tygon tube around a
cylindrical mandrel and filling the tube with epoxy. Food
coloring is added to provide contrast in the video images. Once
the epoxy hardens, the tube maintains its helical shape but is
also f lexible. We vary the f lexibility by varying the radius of
the Tygon tube. To get appropriate values of M in our model,
we use helices with a filament radius of a few millimeters. The
bending stiffness of each helix is approximately determined by

measuring the def lection under a known force of a straight
tube filled with hardened epoxy; for 2a � 4.0, 4.7, and 5.6 mm,
we found A � (3.46 � 0.14) � 10�3 N�m2, (10.53 � 0.14) � 10�3

N�m2, and (22.50 � 0.14) � 10�3 N�m2, respectively. As in the
case of the bacterial filaments, we assume C � A. Since the
aspect ratio L�a for our model is much smaller than that of
the full-scale bacterial f lagella, our model is not a true scale
model. However, since the drag of a slender body depends only
weakly on the filament radius (8), it is not necessary to attain
exact geometric similarity. We used two representative helical
geometries for our filaments (see Table 1 for a comparison of
the dimensions of our model helices and bacterial f lagella). We
systematically varied the stiffness of the ‘‘semicoiled’’ model.
Note that the (inner) radii of our model helices are all the
same, since both types of helices were formed from the same
mandrel, whereas the helical radius of the bacterial filament
varies from polymorph to polymorph. All experiments re-
ported here were carried out with a motor shaft-to-shaft
separation of h � 61 mm, which would roughly correspond to
the typical spacing of 1 �m in the full-scale bacteria. To allay
concerns about effects of fatigue and plastic deformation of
the helices during the experiments, we compared the def lec-

Fig. 1. Bundling sequence. (Upper) Our left-handed model semicoiled helices (see Table 1) at t � 0, 96, 168, and 264 s. (Lower) The helices shown at the same
times, viewed from the side. The scale bars are 100 mm long; the helices are 310 mm long (from chuck to tip), 4.0 mm in diameter, and turning at 0.1 Hz.

Table 1. Helix parameters

Form Pitch, �m Diameter, �m Handedness

Normal 2.3 0.4 Left
Semicoiled 1.1 0.5 Right
Curly-1 1.0 0.3 Right
Model normal 11 � 104 2.54 � 104 Left
Model semicoiled 6.4 � 104 2.54 � 104 Right and left

Approximate pitch, approximate diameter, and handedness for some poly-
morphic forms of flagellar filaments from ref. 2 and H. C. Berg and L. Turner,
personal communication. We also include the dimensions of our model heli-
ces. For the models, the diameter is the diameter of the mandrel.

15482 � www.pnas.org�cgi�doi�10.1073�pnas.2633596100 Kim et al.



tion of the helices under a known weight before and after
some representative trials and found that these effects were
insignificant.

Bundling in the Scale Model
Fig. 1 shows a sequence of snapshots of two rotating left-handed
helices (with four turns each) at M � 170 (see Movie 1, which
is published as supporting information on the PNAS web site).
The induced flows cause large deflections, and a bundle forms
when the motors turn counterclockwise. Note that the helices
wrap around each other in a right-handed sense; the flow field
generated by each helix tilts the other helix, causing the helices
to roll around each other and form a right-handed wrapping. In
contrast with the case of two helices, the deflection of a single
rotating helix with M � 170 is small, with the axial compression
or extension �10% of the axial length. But an understanding of
the flow induced by a single helix sheds light on the flows that
cause bundling. Consider a left-handed helix. As the helix rotates
counterclockwise as viewed from the helix side of the motor,
apparent helical waves travel along the filament away from the
motor and push fluid elements in the same direction. These fluid
elements also rotate about the vertical axis of the helix in the
same sense as the helix, counterclockwise, leading to a right-
handed trajectory for each fluid element.

Early scale-model experiments by Macnab (3) using steel
helices in air showed that left-handed helices twisted around
each other in a right-handed manner can rotate indefinitely
without jamming, but that left-handed wrapping leads to jam-
ming for clockwise rotation and unwinding for counterclockwise
rotation. Macnab also pointed out that the state of lowest elastic
stress of two left-handed helices with right-handed intertwisting
is one in which the helices are coaxial, in phase, and in contact.
Since this interwound state is unstable in the absence of external
torque, Macnab used a guide at the end of the bundle to keep
the helices from unraveling. In our experiment, viscous drag
provides the stabilizing torques that keep the helices interwound.
Note that the helices rotate against each other, leading to a
region of high shear between the filaments. When the motors
turn counterclockwise, we find that the bundle persists indefi-
nitely as long as the motor speeds are sufficiently low. If the
motor speed is �0.1 Hz, then the Y-shaped junction in the upper
right panel of Fig. 1 migrates up to the motors, causing a jam.
Jams can also form when the motors turning the helices in a
steady-state bundle reverse; if a jam fails to form, the filaments
simply unwind.

In the example shown in Fig. 1, the two helices have no initial
phase difference. Since the motors run at a common constant
velocity and do not slip, the phase difference between the
motor shafts is constant. If there is an initial phase difference,
then the helices must bend and twist to attain the in-phase
interwound state. Typically one helix bends more than the
other, leading to a bundle that is tilted relative to the axis of
rotation of each motor. The motor characteristic in the scale
model, constant speed, differs from that of the bacterial motor,
which for typical loads and temperatures is roughly constant
torque (16, 17). Thus, the phase locking observed in the
bacterial f lagella may arise from a different mechanism than
that observed here.

In the scale model, it is crucial for the rotation speeds of the
two motors to be close for bundling to occur. If the motors’
speeds differ by as little as 8%, left-handed helices rotated
counterclockwise do not bundle. The helices cross each other,
with the faster helix bending more than the slower helix. The axis
of the faster helix waves back and forth, but never wraps around
the slower helix.

Since left-handed helices turning counterclockwise bundle,
symmetry implies that right-handed helices turning clockwise
will also bundle. Indeed, bundles of semicoiled or curly flagella

have been observed in fluorescently labeled filaments (2). On
the other hand, left-handed helices turning clockwise do not
bundle. When the motors driving a bundle reverse, the bundle
unwinds. Once the bundle has unwound, or if the (left-handed)
helices are initially stationary, then the flow induced by the
clockwise rotation causes the helices to roll around each other
and wrap in a left-handed sense. However, the wrapping is not
nearly as tight as the counterclockwise sense. The helices cross,
and the crossing point migrates up to the motors (see Fig. 2).
When the crossing point reaches the motors, instead of jamming,
the helices distort at the proximal ends to allow the rotation to
continue. None of the other combinations of handedness and
sense of rotation led to bundling in our scale-model experiment.
Helices of the same handedness but turning in opposite direc-
tions tilt away from each other and also tilt away from the plane
containing the initial helix axes. Helices of opposite handedness
turning in the same sense cross and do not bundle; helices of
opposite handedness turning in opposite senses tilt away from
each other.

Characteristic Time Scale
There are two natural time scales governing the dynamics of our
system: the motor period 2���, and the elastic relaxation time
scale �L4�A. To determine which combination of these controls
the initial rate of bundling, we measured the deflection of each

Fig. 3. Trajectories of (projected) helix tips in the xy-plane. The spacing of the
dots on each curve corresponds to one revolution.

Fig. 2. Sequence of left-handed helices turning clockwise at 0.075 Hz, at
times t � 102 s, t � 119 s, and t � 146 s. The helices cross, and the crossing point
migrates up to the motor, where the helices periodically distort to escape
a jam.
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helix as a function of time. More precisely, we measured the
position of the projection of the tip of each helix onto the local
axis of rotation for the corresponding helix. Fig. 3 shows the
trajectories of these points projected to the xy-plane. In contrast
to the case of Fig. 1, we used helices with three turns (L � 240
mm) since with short helices it is easier to attain small values of
M. For M �70, the viscous stresses induced by the rotating
helices are too weak to deflect the helices much. The helices
cross when M �70 and begin to wrap around each other when
M �130. Since we focus on the early stages of bundling, we do
not show the complete trajectories for moderate to large M (M
�50). Defining 	 as the distance between ends of the helices in
the side view (yz-plane, where z is parallel to the initial helix axes,
and x is parallel to the line connecting the two motors; Fig. 1),
dimensional analysis implies

	

h
� f
�t ,M,Re,a�L,R�L,P�L,h�L�. [1]

Since we approximate C � A, we omit A�C from the list of
dimensionless groups. In this article we do not report how f
depends on the geometrical parameters R�L, P�L, and h�L; we
present results for semicoiled helices (P�R �5) with three turns,
h � 61 mm, and L � 240 mm. We varied rotation speed � and
filament radius a. The function f depends on � implicitly through
M and Re, and explicitly through �t. Since Re �� 1, we can
approximate Re � 0 and consider f to depend on � only through
M and �t. Likewise, f depends on a implicitly through M and
explicitly through a�L. The explicit a�L dependence of f arises
from viscous drag because the Young’s modulus E � �a4�4
enters through M. Since the drag on a slender body depends
weakly on a�L, and since M depends sensitively on a�L, we
consider f to depend on a only through M. Thus, for the fixed
geometrical parameters described above, we measure f as a
function of �t and M.

Fig. 4 shows 	 as a function of �t for various rotation speeds
and bending moduli, and Table 2 shows the speed correspond-
ing to each 	 vs. �t curve. The ratio of the speeds for the
overlapping gold and blue curves is roughly constant (see
Table 2). Note that the gold and blue curves labeled V do not
overlap as closely as those labeled I, II, and III; correspond-

ingly, �1��2 for the pair V noticeably differs from the ratios for
I, II, and III. Likewise, the blue and green curves labeled IV
do not overlap as closely as those labeled III, leading to the
discrepancy between the �2��3 values for pairs III and IV.
Although M systematically increases as the curve label varies
from I to VII, there is a significant spread in the values of M
for overlapping curves. This spread implies that our identifi-
cation of the bending modulus of a straight tube with that of
a helix with the same diameter tube leads to an uncertainty
greater than that of our measurements of A. Such an uncer-
tainty is not unexpected since we neglect the effects of the helix
twist modulus C for simplicity. Despite the uncertainty in the
helix bending modulus, the data of Fig. 4 and Table 2 are
strong evidence for the scaling behavior of the bundling
helices: two helices of different stiffness but the same shape
will yield the same 	 vs. �t curves for the proper ratio of
rotation speeds. In fact, if we assume that the closely over-
lapping curves of Fig. 4 have the same M, then we can get a
better estimate of elasticity ratios by using A1�A2 � �1��2,
since we can measure the rotation speeds to high accuracy.

A characteristic time of the early stages of the bundling
process is the time at which the separation 	 reaches a maximum.
Fig. 4 reveals that the position of this maximum is proportional
to the motor period and depends only weakly on the elastic
relaxation time scale. Thus, in the early stages of bundling, the
helices follow the induced flow and the motor period determines
the characteristic time scale. The helices begin to bundle after
about six revolutions, in rough agreement with the correspond-
ing time for bacterial f lagella (2).

Conclusion
Our macroscopic scale model demonstrates that the bundling of
bacterial flagella is a purely mechanical phenomenon, arising from
the interplay of hydrodynamic interactions, bending and twisting
elasticity, and geometry. Our model allows us to study how the
bundling phenomenon is affected by parameters that are difficult to
control in the full-scale bacteria, such as the rate and direction of
motor rotation. For fixed values of the geometrical parameters, we
quantitatively characterized the early stages of the bundling process
and found that the initial rate of bundling is determined mainly by
the motor period. Future work should address the role of twisting
vs. bending stiffness, the effect on bundling of the translational and
rotational flow fields induced by a swimming bacterium, and bundle
formation when there are more than two filaments.
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Fig. 4. Side view of (projected) tip separation as a function of time for
rotation speeds and bending moduli; see Table 2 for values. On each curve,
there is a black dot for every revolution. The gold curves are for the 4.0-mm
tube, the blue are for the 4.7-mm tube, and the green are for the 5.6-mm tube.

Table 2. Rotation speeds and ratios for the curves (labeled I–VII)
shown in Fig. 4

Curve label �1, rad�s �2, rad�s �3, rad�s �1��2 �2��3

I 0.314 0.707 0.44
II 0.393 0.943 0.42
III 1.17 2.12 0.56
IV 0.707 1.65 2.83 0.43 0.41
V 1.18 2.36 0.50
VI 1.65
VII 3.06

The columns labeled �1, �2, and �3 correspond to the 4.0-, 4.7-, and 5.6-mm
tubes, respectively. The empty spaces arise because most of the overlapping
sets of curves (except for case IV) consist of just two curves.
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