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Cells within a genetically identical population exhibit phenotypic
variation that in some cases can persist across multiple generations.
However, information about the temporal variation and familial
dependence of protein levels remains hidden when studying the
population as an ensemble. To correlate phenotypes with the age and
genealogy of single cells over time, we developed a microfluidic
device that enables us to track multiple lineages in parallel by
trapping single cells and constraining them to grow in lines for as
many as 8 divisions. To illustrate the utility of this method, we
investigate lineages of cells expressing one of 3 naturally regulated
proteins, each with a different representative expression behavior.
Within lineages deriving from single cells, we observe genealogically
related clusters of cells with similar phenotype; cluster sizes vary
markedly among the 3 proteins, suggesting that the time scale of
phenotypic persistence is protein-specific. Growing lines of cells also
allows us to dynamically track temporal fluctuations in protein levels
at the same time as pedigree relationships among the cells as they
divide in the chambers. We observe bursts in expression levels of the
heat shock protein Hsp12-GFP that occur simultaneously in mother
and daughter cells. In contrast, the ribosomal protein Rps8b-GFP
shows relatively constant levels of expression over time. This method
is an essential step toward understanding the time scales of pheno-
typic variation and correlations in phenotype among single cells
within a population.

epigenetics � protein expression � single cell assay � yeast

Nearly 150 years ago, Mendel elucidated the fundamental unit
of heredity by tracing and applying statistics to inheritance

patterns in pea plants. In most cases, heritable phenotypic variation
arises from differences in DNA sequence, yet even cells that are
genetically identical can exhibit distinct, heritable states that are
critical during differentiation and development, and possibly in
response to environmental stress. Phenotypic variation that occurs
on time scales shorter than the characteristic cell division time is
known to result from the stochastic processes inherent to gene and
protein expression (1). However, variations in protein levels at
frequencies longer than the typical generation time enable pheno-
typic states to be passed on to genetically identical progeny cells, a
phenomenon known as epigenetic inheritance (1, 2); the time scales
of such multigenerational variation are less well understood. Mech-
anisms that generate phenotypic variation that propagates over
many cell divisions include positive feedback loops in genetic
networks (3–5), protein aggregation (6), and chromatin state (2, 7).
Phenotypic variation may provide a fitness advantage for a popu-
lation of cells in a fluctuating environment (8), and the ability to
inherit phenotype is proposed to benefit populations in conditions
in which the environment changes on time scales faster than genetic
mutations occur (9). Such bet-hedging in microbial populations
may have medical consequences: for example, a subset of ‘‘persis-
tor’’ cells within an actively growing population of bacteria divides
more slowly and shows increased antibiotic resistance (10). Despite
the importance of epigenetic mechanisms of gene regulation, the
time scales of variation at the single cell level remain poorly
understood.

To study the phenotype of single cells in the context of pedigree
demands a method to collect data over many cells and over many
generations. The budding yeast, Saccharomyces cerevisiae, is a good
model eukaryotic system: yeast cells divide rapidly, making it
technically feasible to study multiple generations of cells. Proteome-
wide studies of S. cerevisiae have characterized stationary distribu-
tions of protein levels across a population by microscopy and flow
cytometry, revealing that expression of stress-related genes tends to
be more variable (‘‘noisy’’), whereas housekeeping genes exhibit less
cell-to-cell variation (11–14). However, these measurements cap-
ture neither changes in expression over time nor correlations in
protein levels resulting from age or pedigree relationships among
individuals. To characterize cells and their progeny requires fol-
lowing single cells and their offspring during growth; this can be
achieved by individually separating cells by micromanipulation (15)
or by imaging cells as they grow sandwiched between an agar pad
and a cover glass (5). However, manual manipulation of cells is
laborious, and accurately determining pedigree and protein expres-
sion by microscopy is challenging as cells grow out of the focal plane
after only a few divisions. Various microfluidic devices maintain
cells in a single focal plane as they grow (10, 16–21), but many of
these devices require sophisticated fabrication techniques such as
multilayer fabrication with valves (16, 18), channel height differ-
ences (17), or membranes (10, 21). To optimize the statistical power
of these techniques, the initial placement of cells should be con-
trolled; several other microfluidic devices achieve single-cell trap-
ping (22–24), but these trapping mechanisms are not conducive to
the lineage analysis that we perform here. The ability to robustly
and repeatedly trap, spatially organize, and track the growth of
single cells over many generations in a device that is easy to fabricate
and simple to use would enable the collection of data over many cell
lineages in a single experiment.

Here we introduce a simple microfluidic device for following
lineages deriving from single yeast cells. We seed single parental
cells into channels fabricated at a high density to maximize the
number of lineages tracked in each experiment. To simplify tracking
both pedigree and levels of protein expression, we geometrically
constrain the cells to divide in a line within a single focal plane.
Furthermore, we design the device so that fluid can constantly
perfuse through the device, which allows us to replenish media,
change environmental conditions, and perform other analyses. For
example, we are able to fix and stain the cells in situ. By studying
protein expression in the context of pedigree, we are able to see
patterns of expression where phenotype is correlated over multiple
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generations; such information remains hidden when studying at the
population as an ensemble.

Device Concept. To facilitate analysis of single cells and their
progeny, we designed a microfluidic device in which lineages
deriving from single cells are spatially organized in lines. For nearly
a century, linear arrays of spores encapsulated in natural, rod-
shaped ascal sacs have proven useful for elucidating the mecha-
nisms of Mendelian inheritance (25); more recently, lineages of
bacterial cells in lines have been studied in microfluidic devices (10).
However, when placing cells in chambers of a fabricated device, the
distribution of cells is random, with the number of cells per chamber
dictated by Poisson statistics. To achieve a high proportion of single
cells seeded in the linear chambers, we fabricated an array of
chambers that have a constriction at one end, so cells are trapped
when they flow into the chambers (Fig. 1A). After one cell enters
a chamber, the ratio of flow through the chamber to bypass
channels shifts, increasing the probability that subsequent cells
preferentially enter the bypass channel instead of the growth
chamber (26). Importantly, our device is easily fabricated by using
a single cast of polydimethylsiloxane (PDMS) and requires only a
syringe pump and microscope for operation.

To understand the single cell trapping mechanism, we estimate
the flow rate through the microfluidic device by using lumped
element modeling, an approach often used to analyze simple
electrical circuits. The volumetric flow rate, Q, through the channels
is analogous to electrical current; the pressure drop, �P, is analo-
gous to the voltage drop; and the remaining factors describe the
fluidic resistance that depends largely on the channel geometry.
The trapping (Fig. 1A, blue) and bypass (Fig. 1A, red) channels act
as 2 lumped resistors in parallel; the pressure drop across
both channels must be equal because the end points are the same,
�P1 � �P2 (Fig. 1A). For efficient single cell trapping, the presence
of a cell in the trapping channel should change the flow such that

subsequent cells do not enter. Thus, when the trapping channel is
empty, the flow through the bypass channel, Q2, should be less than
the flow through the trapping channel, Q1; when a single cell is
present in the channel, Q2 should be greater than Q1 so that most
of the flow, and therefore subsequent cells, f low through the
bypass channel (27). We design the device given this criterion
and other geometric requirements, as outlined in the SI Text. For
example, to spatially organize the microcolonies that derive from
the array of single cells and force them to grow in a single focal
plane, we engineered the growth chambers with a square cross-
section that is the width and height of an average single cell,
w1a � h2 � h1a � 5 �m.

Given these prerequisites, we designed the device with an array
of 50 chambers (Fig. 1D); roughly half of these are active chambers
that fill with cells (Fig. 1B). Because 10 or more devices can be
fabricated on each chip (Fig. 1C), hundreds of cells can be trapped,
enabling the simultaneous testing of different flow conditions or
cell types in a single experiment. We loaded cells into the device by
activating 2 syringes that contain the cell suspension and growth
media (Fig. 1D and Fig. S1). To provide greater control between the
2 fluid streams, we fabricated a flow-focusing junction at the entry
to the chamber array: the cells flow down the center while the media
flows in from the sides (Fig. 1B). This geometry prevents cells from
flowing into the media line, and thus maintains a cell-free source
of media for perfusion during the experiment. When single cells are
loaded, we deactivate the cell-loading inlet by disconnecting the
tubing from the syringe. To allow for metabolite exchange during
cell growth, we continually flow media through the device during
the experiment; as the cells are round and the channels are square,
media perfuses through the chambers as cells grow. The continued
media flow also ensures there is constant flow backward through
the cell inlet, preventing cells trapped upstream from entering the
chamber array (Fig. S1).

Fig. 1. Lineage chamber device layout. (A) A single chamber consists of a long channel with a 5-�m width and a 2-�m constriction, as shown in this inset of B. The
flowpatternscanbeunderstoodintermsofanelectrical circuit,withR1a, theresistanceofthetrappingchamber;R1b, theresistanceoftheconstriction;R1c, theresistance
of a single cell; and R2, the resistance of the bypass channel. The pressure drop (P1 - P2) is equivalent for both fluid paths. (B) The chamber array consists of 50 chambers
arranged in parallel, approximately half of which are active and shown in this inset of C. A flow-focusing geometry centers the flow of the cells into the chamber array.
(C)Ten individualdevicesfitontoa50�24-mmcoverslipenablingmultipleconditionsorcell types tobetested inasingleexperiment. (D)Overviewoftheentire lineage
chamber device. Two inlets allow for separate flow paths of the cell suspension and media. Filters eliminate aggregates of cells.
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Results and Discussion
To demonstrate our single cell trapping mechanism, we measure
the flow through the chamber and bypass channels by imaging
tracer particles: when the trapping channel is empty, the volu-
metric f low through the bypass channel, Q2, is approximately
twice that through the trapping channel, Q1: Q2/Q1 � 2.1 � 0.2
(n � 6; Fig. 2 A and B). This value is in excellent agreement with
simple estimates of flow when the trapping chamber is empty
(Eq. 1 and SI Text). Thus, while cells are loading, many of them
pass through the bypass channel, and some cells f low into the
chambers. However, when a single cell is trapped in the lineage
chamber channel, the flow through the bypass channel increases
to Q2/Q1 � 4.0 � 0.8 (n � 9; Fig. 2 A and B) as a result of the
decrease in the cross-sectional area of the trapping channel. The
resulting change in fluidic resistance upon trapping a single cell
increases the probability that additional cells are diverted
through the bypass channel instead of the trapping channel.
Importantly, the continued flow even in the presence of a
trapped cell allows for media exchange during cell growth.

With this method, device loading is complete within 2 to 3 min
with good single cell trapping efficiency: on average, 70% of the
active chambers fill with single cells (Fig. 2 C and D). The majority
of the remaining chambers are empty, and some contain multiple
cells. If the loading of cells were completely random and indepen-
dent of the number of previously trapped cells, the number of cells
per chamber would follow a Poisson distribution whereby, for the
same average number of cells trapped per chamber, the majority of
chambers would be empty, only 40% would have single cells, and
a smaller number would contain multiple cells (Fig. 2C); our
loading mechanism thus achieves much better efficiency than
dictated by Poisson statistics. Note that deviations from ideal
loading with 100% single cells may result from the low flow ratio
between bypass and trapping channels (27), variations in cell size,
asymmetry in cell shape, or differences in cell stiffness that may
affect the extent to which a cell deforms into the constriction and
blocks the channel.

As the cells divide in the long, narrow growth chamber, they are
constrained to grow in a line. To evaluate growth of cells in the
lineage chambers, we acquire images of cells at 10-min intervals

(Fig. 3A). We compare growth of cells in chambers to those on agar
pads, a common method for time-lapse imaging of yeast cells.
Analysis of the time between buddings for single cells shows that
doubling time is similar for cells cultured in the lineage chambers
and on agar pads (Fig. 3B). For a given cell, we observe a relatively
constant division time over the course of the experiment even for
cells at the bottom of the chamber. To determine if media exchange
is hindered by an increasing number of cells per chamber, we flow
a solution containing fluorescent probe through chambers filled
with cells. We observe that all cells along the channel become
fluorescently labeled, showing that liquid penetrates around cells
along the length of the channel, and confirming that fluid exchange
happens on the order of minutes (Fig. S2).

We analyze lineages of cells by using the device in one of 2 ways:
in endpoint mode, in which we acquire a single image at the end of
the growth experiment, or in kinetic mode, in which we quantita-
tively track protein levels in single cells over time. To illustrate the
utility of the device, we investigate the expression of 3 representa-
tive proteins, each with a distinct expression pattern. As an example
of endpoint mode, we first study the expression of the protein
Pho84, a high-affinity phosphate transporter, whose expression is
subject to positive feedback and exhibits bimodal expression when
cells are grown in intermediate phosphate concentrations (28).
Expression of Pho84 is expected to switch between the ‘‘on’’ and
‘‘off’’ phenotypic states at some frequency; yet from images of cells
in bulk acquired at a single time point (Fig. 4A), or from the
stationary distribution obtained by flow cytometry (Fig. S3) (28),
the time of switching between states cannot be determined. To
address this question, we image cells expressing pPho84-GFP after
growth in the lineage chambers. Each line represents a lineage
deriving from a single cell with domains of cells that are closely
related genealogically (Fig. 5, gray bars). The frequency of pheno-
typic variation is easily determined by visually inspecting the lines
of cells, and can be quantified with simple image analysis. In some
cases, entire lineages of cells have a similar phenotype, with either
uniformly high or low Pho84 levels (Fig. 4B). We interpret these
lineages as resulting from seeding by a single ‘‘on’’ or ‘‘off’’ cell;
maintenance of the phenotypic state over multiple cell divisions
results in an entire lineage with relatively uniform expression level.

Fig. 2. Trapping single cells in the lineage chambers. (A) Average volumetric flow rates through the bypass and trapping channels are proportional to the length of
arrows superimposed on this bright-field image. Flow through the bypass channel doubles when a single cell is trapped, increasing the probability for cells to flow
throughthebypasswhilestillallowingforfluidflowthroughthetrappingchannel. (B)Volumetricflowthroughthebypasschannelnormalizedtothetrappingchannel.
Error bars represent SD for n � 6 (bypass) and n � 9 (trapping) channels. (C) After loading, there are 0.8 cells per active chamber. Data shown here are summed over
30 independent experiments. Plotting an equivalent Poisson distribution (� � 0.8) would result in less than 40% chambers containing single cells (gray triangles), as
well as chambers that are empty or contain multiple cells. Other gray symbols represent Poisson distributions for other � values. (D) Bright-field image showing an array
of trapping chambers filled with single cells that are identified by black dots. (Channel width, 5 �m.)
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We also observe clusters of adjacent cells within a lineage that are
either ‘‘on’’ or ‘‘off,’’ which result from a change in expression state
during lineage growth. We quantify the number of cells per cluster,
normalize to the number of cells in the lineage to obtain a ‘‘cluster
index’’ (CI), and plot the CI distribution (Fig. 4C). When the CI is
1, all cells within an entire lineage have similar protein levels,
whereas a CI less than 1 indicates the presence of clusters of cells

that each have a distinct phenotype. Importantly, we observe that
clusters form at all positions along the chambers, and that express-
ing cells may be adjacent to or upstream from non-expressing cells;
if cell-cell communication by soluble factors determined protein
expression patterns, cells downstream from or adjacent to express-
ing cells would consistently exhibit similar protein levels. This very
simple experiment thus shows that we can detect the persistence of
a particular phenotypic state over multiple generations, and thereby
demonstrates the efficacy of our system for the study of cell lineages.

We next investigate the behavior of 2 representative proteins that
show unimodal bulk distributions, but with different variances: the
heat shock protein Hsp12 belongs to a family of stress proteins that
exhibit large variation in expression levels compared with essential
‘‘housekeeping’’ proteins such as the ribosomal protein Rps8b (Fig.
S3) (13, 14). Indeed, imaging the Hsp12-GFP cells in bulk at a single
time point shows that some cells are very bright whereas others
express low levels of protein (Fig. 4A); however, it is not known how
expression levels fluctuate over time. Growing Hsp12-GFP cells in

Fig. 3. Cells grow in a line. (A) Single progenitor cells are constrained to grow
in a line, as shown in this time sequence of bright-field images. (B) Doubling times
are similar for cells grown in lineage chambers (n � 180) versus on agar pads (n �
78). Hsp12-GFP cells in YPD media. Inset, histogram of doubling times. Bin size, 10
min. (Scale bar, 5 �m.)

Fig. 4. Phenotypic variation in lineages of cells. Three different proteins,
pPho84-GFP, Hsp12-GFP, and Rps8b-GFP, as seen by inverted GFP-fluorescence
images (A) and after growth in lineage chambers (B). We observe lines of high- or
low-expressing pPHO84-GFP cells in intermediate phosphate concentration (200
�M phosphate), suggesting that a particular phenotypic state is maintained over
multiple divisions. By contrast, the heat shock protein Hsp12-GFP shows smaller
clusters, indicating that protein levels change on a relatively faster time scale.
Cells that express the ribosomal protein Rps8b-GFP show little variation along
lineages. Images are sequentially thresholded to identify cells with similarly high,
intermediate,or lowfluorescence.Thecluster index(CI) is thenumberofadjacent
cells with similar fluorescence divided by the total number of cells in a lineage,
and provides a qualitative measure of the number of generations that protein
levels persist. CI distributions for n individual cells for (C) pPHO84-GFP (n � 1,309
from 38 tracks); (D) Hsp12-GFP (n � 1,122 from 33 tracks). (Scale bar, 10 �m.)
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the lineage chambers reveals clusters of bright and dark cells within
lineages deriving from single cells (Fig. 4B). In contrast to pPho84-
GFP, clusters of Hsp12-GFP cells with similar expression levels are
typically 2 to 6 cells long and we observe no full lineages of cells with
similar phenotype (CI � 1), indicating that their phenotypic state
varies on a faster generational time scale (Fig. 4D). By contrast,
lineages of cells expressing Rps8b-GFP show little variation (Fig. 4

A and B): all cells within a single lineage have similar protein levels
(CI � 1.0). These results demonstrate the ability of our method to
distinguish expression patterns across multiple generations of cells
among different proteins.

To follow fluctuations in protein levels over time and create a
quantitative lineage map, we operate the device in kinetic mode; to
accomplish this we acquire images at 10-min intervals and track the
cells as they divide using a semiautomated MATLAB program.
Each vertical line in the lineage map denotes the appearance of a
new progeny cell after division; the complete map thus provides
knowledge of each cell’s pedigree and replicative age. To reveal
variations in protein levels among single cells and their kin, we plot
the fluorescence intensity or protein level per cell as a function of
time on the lineage map. The ribosomal subunit protein Rps8b-
GFP shows relatively constant levels over 8 divisions (Fig. 5A).
These observations are consistent with hypotheses that cells tightly
regulate the expression of housekeeping proteins with essential
functions (13, 14). In contrast, levels of Hsp12-GFP fluctuate over
time, exhibiting up to 2.5 times as many changes compared with the
population mean (Fig. 5B). We observe bursts in expression even
under steady-state conditions at room temperature, with no applied
heat shock. The lineage map reveals that bursts in protein levels
appear to be random and do not correlate with extrinsic factors such
as cell volume, cell cycle stage, or replicative age. Neither do these
fluctuations appear to be attributed to low protein copy number per
cell: whereas Rps8b has 1.4 � 104 molecules per cell and Hsp12 has
4.5 � 103 molecules per cell (12), we observe similar fluctuations in
the protein Hxk1-GFP, with 4.8 � 104 molecules per cell (data not
shown). Interestingly, we observe 57% of bursts occur simulta-
neously in mother and daughter cells (n � 48 cell pairs); the
probability that these observations are caused by random fluctua-
tions is very low (�2 test, P �� 0.001; SI Text). The similar behavior
among closely related cells may be attributed to mRNA transferred
between mother and daughter that decays on time scales compa-
rable to division times (29) and/or a chromatin configuration that
is passed on to progeny at cell division. Similar behavior is observed
in yeast cells with an engineered regulation pathway: cells share a
similar expression state to their mother cell, as well as the tendency
to switch between 2 semi-stable states (5). It is notable that our
observations are in a naturally regulated pathway, suggesting that
genealogically shared protein expression patterns may be a wide-
spread phenomenon in eukaryotic protein expression.

Non-periodic bursts in expression are predicted from mathemat-
ical models of transcription together with stationary distributions
obtained by flow cytometry (30) and microscopy (31–33), and are
observed in living systems including bacteria (34), during differen-
tiation in Dictyostelium (35), and following DNA damage in
mammalian cells (36). Protein levels within a single cell can
fluctuate as a result of the stochastic nature of reactions that rely on
components present in low copy numbers. These fluctuations may
also result from transitions in chromatin packing between inactive
and active transcriptional states (32, 37). At the population level,
bursting expression generates cell-to-cell variation among geneti-
cally identical cells, and suggests that average protein levels could
be tuned by changes in the proportion of expressing cells. In the
context of evolution, the ability to propagate a particular expression
state for several generations could allow for adaptation to envi-
ronmental change on time scales faster than genetic mutation (2).
Although the molecular mechanisms underlying temporal patterns
in protein expression in populations of single cells remain to be fully
elucidated, the ability to monitor protein levels in single yeast cells
and their progeny over many generations is a prerequisite for
systematic studies of fluctuations in protein levels over time, as well
as in the context of pedigree.

Conclusion
The simple lineage chamber system that we describe here
enables studies of fluctuations and patterns in protein expression

Fig. 5. Tracking single cells and their progeny. Dynamic lineage maps of (A)
Rps8b-GFP and (B) Hsp12-GFP. Protein levels are normalized to the mean fluo-
rescence of the population. The genealogical identity of each cell is labeled in the
bright-field image (Right) acquired at the endpoint. Bursts in Hsp12-GFP protein
levels are observed; of the 14 bursts observed here, 8 occur concomitantly in
mother-daughter pairs, for example in cells 1 and 15 at 650 min.
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that propagate in single cells over time and over multiple
generations. In addition, it is possible to study any asymmetries
at cell division, correlations between cells caused by their
pedigree, replicative age, or any other physical trait such as
volume. The pedigree analysis software is generally applicable to
any yeast strain, and does not require additional f luorescent
markers for progeny identification. A further benefit of our
device is the ability to fix and stain single suspension cells and
their lineages, allowing morphological phenotypes on subcellular
scales to be resolved, for example, by immunofluorescence or
FISH. With slight modifications in size, the lineage chambers can
also be used for culture of other suspension cells, including
mammalian blood cells or stem cells. More broadly, our device
will enable studies revealing correlations among single cells and
their progeny that remain masked in the ensemble average.

Materials and Methods
Lumped Element Modeling. For a rectangular channel, the relationship between
the pressure drop �P and flow rate Q is given by the Hagen-Poiseuille relation,
�P � 12Q�l/h3w, where � is the dynamic viscosity and w, h, and l are the channel
width,height,and length.Thebypasschannel is consideredasasingleresistor,R2,
withdimensionsw2,h2, and l2. Thetrappingchannelconsistsof2resistors:R1a, the
long channel with dimensions w1a, h1a, and l1a; and R1b, the narrow constriction
neck with dimensions w1b, h1b, and l1b (Fig. 1A). The ratio of flow through the
bypass to trapping channel is expressed as follows:

Q2

Q1
�

R1a � R1b

R2
�

h2
3w2

l2
� l1a

h1a
3 w1a

�
l1b

h1b
3 w1b

� [1]

Microfluidic Device Fabrication. Soft lithography is used to fabricate microfluidic
channels in PDMS (Sylgard 184 silicone elastomer; Dow Corning) (38). Devices are

bonded to Lab-tek II 2-well chambered cover glass (no.1.5 borosilicate glass;
Nalge Nunc no. 62407–052; Thermo Fisher Scientific).

Yeast Cell Culture. Cell strains are from the GFP-library (Invitrogen). The pPHO84-
GFP strain (w303, MATa, pPHO84-yeG::URA3) is a generous gift from the lab of
Erin O’Shea (Cambridge, MA). Liquid cultures are inoculated from a single colony
into yeast extract/peptone/dextrose (YPD) or intermediate phosphate concen-
tration media (39) and are shaken at room temperature for 24 h to a density of
2 to 6 � 105 cells/mL.

Device Operation. Syringe pumps (Harvard Apparatus) control fluid flow. To
track flow velocities through the channels, we flow 0.465-�m polystyrene beads
(Polysciences) throughthedeviceat5�L/handacquire imagesat5,000framesper
second with a high-speed camera (Phantom v7.3; Vision Research).

Growth Rates. Agar pads are made by molding 1.5% wt/wt agar in YPD between
2 glass slides separated by a rubber spacer (Grace Bio-Labs; Sigma).

Imaging. We acquire images of cells every 10 min by using an inverted
microscope equipped with an automated stage (Prior Scientific), �20 objec-
tive, and GFP filter set.

Image Analysis. CI analysis is performed by twice sequentially thresholding the
endpoint image to identify adjacent cells with high, intermediate, and low
fluorescence. To construct complete lineage maps, we acquire a bright field and
fluorescence image at 10-min time intervals and track cells using custom MATLAB
software (MathWorks).
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