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Abstract—We present an extension to ExaFMM, a Fast
Multipole Method library, as a generalized approach for fast
and scalable execution of the Force-Directed Graph Layout
algorithm. The Force-Directed Graph Layout algorithm is a
physics-based approach to graph layout that treats the vertices
V as repelling charged particles with the edges E connecting
them acting as springs. Traditionally, the amount of work re-
quired in applying the Force-Directed Graph Layout algorithm
is O(|V |2 + |E|) using direct calculations and O(|V | log |V |+
|E|) using truncation, filtering, and/or multi-level techniques.
Correct application of the Fast Multipole Method allows us to
maintain a lower complexity of O(|V | + |E|) while regaining
most of the precision lost in other techniques. Solving layout
problems for truly large graphs with millions of vertices still re-
quires a scalable algorithm and implementation. We have been
able to leverage the scalability and architectural adaptability of
the ExaFMM library to create a Force-Directed Graph Layout
implementation that runs efficiently on distributed multicore
and multi-GPU architectures.

Keywords-Force directed graph layout; Fast multipole meth-
ods; Multi-GPUs

I. INTRODUCTION

Force-Directed Graph Layout (FDGL) is a popular al-
gorithm for automatically generating aesthetically pleasing
2D and 3D visualizations of large sparse graphs [1], [2].
FDGL is a physics-based approach to graph layout that treats
the vertices as repelling charged particles and the edges
connecting them as springs. Given a graph G = (V,E)
consisting of a set of vertices V and a set of undirected
edges E, a graph layout algorithm associates a position
xd for each vertex v in V . FDGL works by assigning an
initial random position x0 to each vertex and interactive
forces between each vertex (usually an electromagnetic-style
repulsion between each vertex modeled after Coulomb’s
Law and attractive linear springs among edges modeled
after Hooke’s Law), then using either global optimization
heuristics to find a configuration of minimal potential energy,
where the system’s potential energy P is computed by
summing the repulsive vertex-vertex potential interaction
energies Pv and the edge potential energies Pe over all
vertices.

A common heuristic for minimizing potential energy
is simulated annealing, [1], [3] where a “warm” system
with vertices allowed to freely move is gradually “cooled”
allowing the algorithm to occasionally escape local minima
in optimizing P . There are several commonly used stopping

criterion; [3] bases their approach on total system energy,
while [1] relies on a direct temperature cooling technique.
Additionally, there are a large variety of force models
for interactions, some can be easily connected to existing
physical models, while others rely on purely mathematical
constructions.

Calculating the repulsive interactions naı̈vely using direct
integration requires O(|V |2) computations [1], [2]. Addi-
tionally, O(|E|) computations per iteration are needed for
spring calculations. Given that graphs are usually sparsely
connected (|E| � |V |), much effort has been directed at
improving the repulsive interaction time complexity from
O(|V |2) to O(|V | log |V |) by using various techniques such
as grid modeling [1], Multi-Level Clustering [4], Barnes-
Hut Oct-tree [3], Sub-Graph Fixing [5], Fast Multipole
Multilevel methods [6], [7], and Edge Filtering [8].

There is also continued interest in pushing the frontier of
large graph layout problems; several promising applications
such as the display of complex high-dimensional relation-
ships data such as those found in protein-to-protein inter-
actions, disease time studies, network (components and/or
traffic) topologies, and global social network realizations
remain just over the horizon. An important distinguishing
characteristic of these relationships is that they follow a
power law function in the distribution of edges to vertices,
with some vertices having many connections and most
vertices having a few connections. This disparity gives rise
to the need to optimize for clarity and readability and also
leads to strong non-uniformity in the input data.

Much recent work has been concentrated on creating
better heuristics for faster convergence (less iterations) to
an optimal layout, such as design of a temperature de-
crease/decay function [3], clustered initial layout strategy
[6], edge filtering [8], and multiscale eigenvector compu-
tations for energy minimization [9]. It has become clear
that this increased exploration of the design space requires
a commensurate increase in computational throughput.

There have been several efforts to improve the perfor-
mance of layout computations and to take advantage of
GPU acceleration. Notably, early CPU parallelization at-
tempts by Tikhonova [5] handled systems with almost 300
thousand vertices, and an implementation featuring single
GPU parallelization by Godiyal [6] has computed layouts
for graphs with nearly 500 thousand vertices and almost 1



million edges. Jia’s edge filtering technique was able to lay
out graphs featuring 1 million vertices and 7 million edges
[8], and multiscale eigenvector computations allow rough
solutions of systems with 7 million vertices and 15 million
edges [9].

In this work, we describe an open, efficient, easily ex-
tensible, and error-bounded implementation of the FDGL
algorithm, enabling experimentation and design of new tech-
niques by domain experts. Our code leverages the ExaFMM
library, a scalable Fast Multipole Method (FMM) library
built specifically for solving n-body problems that allows
us to compute each iteration in O(|V | + |E|) time without
loss of precision. The implementation’s open framework
allows easy modification of the core kernels, allowing it
to be extended as a comparative testbed for many different
algorithms. Additionally, accurate bounds allow designers
greater confidence in reproducing their experiments. We
demonstrate the capability of our implementation on graph
problems containing as many as 10 million vertices with
a max per-iteration runtime of 10−5 sec/vertex on a single
CPU and 3×10−6 sec/vertex on a single GPU. Our approach
enables visualizing truly massive datasets such as the entire
Facebook social graph and protein-protein interactions using
traditional or GPU-accelerated supercomputing facilities.

II. FAST MULTIPOLE METHOD

The repulsion between vertices is modeled by a Coulomb
potential, which is a long-range potential that considers
the effect of all-pairs of vertices. The direct summation of
an all-pairs interaction requires O(|V |2) for |V | vertices,
and becomes prohibitive for large graphs. Fast Multipole
Methods (FMM) approximate the far field and near field
using multipole expansions and local expansions, respec-
tively. This brings the complexity down to O(|V |), while
the approximation error remains bounded as a function of
the order of expansion p. This reduction in the complexity of
the algorithm allows us to handle graphs of unprecedented
sizes.

?
A schematic of the flow of calculation of the FMM is

shown in Figure 1. In order to illustrate the difference
between treecodes used by previous FDGL calculations[3],
[6] and our current FMM, we show the stages for both
methods. There are 6 different stages in the O(|V |) FMM
and 4 different stages in the O(|V | log |V |) treecode. First,
at the P2M stage, the charge of each particle in the leaf
cell is transformed to a multipole expansion at the center of
the cell. Then, the multipole expansions are shifted to the
center of larger cells in the tree structure at the M2M stage.
Up to this point treecodes and FMMs are identical. Once
all multipole expansions are calculated treecodes evaluate
the effect of the multipole expansion the particles directly in
the M2P stage. On the other hand, FMMs first transform the
multipole expansions into local expansions at well-separated

cells (M2L). Then, the local expansions are shifted to the
center of smaller cells in the tree (L2L). Finally, the local
expansions at the leaf cells are used to evaluate the effect on
each particle (L2P). Note that the multipole expansion does
not converge in the vicinity of the target particles so these
neighboring particles must be calculated directly (P2P).

FDGL is a challenging application for FMMs because the
distribution of vertices are often clustered, which results in
a highly adaptive tree structure in the FMM. Furthermore,
vertices can move much faster than other applications in
physics, since the temporal resolution does not need to
be very high in order to achieve an optimal graph layout.
This means that the tree structure changes rapidly at every
iteration, and incremental load-balancing techniques that
repartition based on the previous load imbalance become
useless.

In the current work, we use a highly scalable adaptive
FMM library for heterogeneous architectures ExaFMM [10].
The ExaFMM library has a suite of optimized kernels for
both Cartesian and Spherical expansions on both CPUs and
GPUs. ExaFMM can also select between an O(|V | log |V |)
treecode, an O(|V |) FMM, or a hybridization of the two
with a single compile option. It also has an auto-tuning
mechanism which selects between P2P, M2P, and M2L
kernels based on the runtime of each kernel on the given
architecture. Further discussion of ExaFMM can be found in
[11], [12].

Our approach has been tested for up to 10 million
vertices and 20 million edges on a modern multi-core
multi-GPU workstation Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz and nVidia Corporation
GF100 [Quadro 5000] and on the TSUBAME 2.0
GPU Supercomputer at Tokyo Institute of Technology.
Given the stability and scalability of FMM to 8 billion
nodes [13], we aim to eventually scale the implementation
further to even larger graphs.
ExaFMM runs serially or in parallel on workstations and

distributed-memory supercomputers. Additionally, ExaFMM
can access on-node acceleration of CPU+GPU architectures
that support the CUDA programming interface. ExaFMM
is implemented as a library that services one time step
in adaptive FMM, leaving the remaining implementation
details to the application user. A unit_test example
fdgl.cxx has been provided to showcase one of the many
ways to take advantage of the library and to support FDGL
requirements following the basic techniques specified by
Fruchterman and Reingold [1], with several improvements
noted below.

The authors in [1] calculated the maximum velocity
for vertices at each time step using a limiter approach:
min(t, |v.disp|). In physical annealing, the temperature acts
as a dampening factor on molecular vibrations (displace-
ment) while here it is acting as a simple limiter, acting
as a blocking force only to vertices that have a higher
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Figure 1. FMM and Treecode Algorithm Operations

displacement than the current temperature. We have changed
our version of the implementation to use temperature in the
sense of dampening the movement across all vertices rather
than halting it at a specific distance for some vertices. Addi-
tionally, the original work limited the new vertex positions
within walls with a user specified frame length and a tuning
constant. Given the progress in visualization software since
1991, we were able to avoid restricting ourselves to pre-
defined walls, and consequently found several aesthetically
improved layouts that had previously suffered from this
restriction. Finally, we also separated the tuning parameter
for spring calculation from repulsive calculations, giving us
the freedom to tune each independently.

We choose to simplify the parallelization and commu-
nication process by fixing a shadow copy of the vertices
and mapping them into the available cores using static
parallelization. We also keep a static copy of the edges
with their associated source vertices. At each completed
FMM time step, the shadow vertices are updated with their
electrostatic forces before the rest of the FDGL algorithm
is run against the shadow vertices. Keeping the simple
vertex division static across the cores allows for simple
communication patterns for the positions of the destination
vertices. Although, this process can likely be improved using
more advanced techniques, we have found that both commu-
nication and spring calculation take a negligible amount of
time when compared to electrostatic calculations. Given this
is only an example extension, we have chosen to maintain
the simple model for this paper.

Spring attraction force computation capability is not
present in ExaFMM, so the attraction forces are directly
added at the end of each FMM iteration (this code runs
on the CPU only). This addition to the framework results
in a total time complexity of O(|V | + |E|). Because the
output of the single repulsion iteration is always returned to
the CPU, the FMM tree gets rebuilt on each subsequent
call. Unfortunately, this does not take full advantage of
GPU caching, and we notice a performance degradation in
comparison with [6].

III. PERFORMANCE ANALYSIS

We have conducted a performance analysis on several
well-known community graphs (Fig. 2a) as well as arti-
ficial graphs (Fig. 2b) generated by a modified version
of pywebgraph-2.72 [14]. Although the pywebgraph
library can generate random graphs featuring power law
connectivity relationships reflective of networks, protein

Table I
SOURCE DATA

Graph Vertices Edges Source
103 103 2× 103 pywebgraph [14]
104 104 2× 104 pywebgraph
105 105 2× 105 pywebgraph
106 106 2× 106 pywebgraph
107 107 2× 107 pywebgraph

add32 4,960 9,462 Walshaw [4]
4elt 15,606 45,878 Walshaw

finan512 74,752 261,120 Walshaw
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Figure 2. Runtime Breakdown using a single core and GPU on the local Workstation

interactions, and social graphs, we modified the library to
generate graphs with both a specific requested number of
vertices and a minimum number of edges while maintaining
a pseudorandom power law connectivity relationship to the
graph. Previously, the library could only generate graphs
with a specified maximum number of edges. We have no-
ticed that most of the available datasets online reflect a low
edge density while this library permitted us to test at higher
and controlled vertex count and edge density. All generated
datasets have been used for most of our time analysis. We
also verified our approach against several standard test graph
datasets. This comparison is summarized in Table I.
ExaFMM has several tuning parameters that allow it to

take advantage of the different architectures [11]. In Fig. 2
we compare a single iteration run on a single CPU vs. that
for a single core/GPU on the local workstation for different
data sizes. The runtime is normalized by the number of
vertices |V |, and the datasets are sorted according to |V |
as well. For each dataset there are two bars; one for the
CPU runtime, and the other for the GPU runtime. Different
colors in the bar represent different stages of the FDGL
calculation. It can be seen that the repulsion dominates the
runtime for all cases, however, the runtime per vertex varies.
For smaller datasets the runtime per vertex is larger due
to the overhead of tree construction and data copies in the
FMM. This trend is more prominent on the GPUs since there
is a large overhead for the data copies between the host and
device.

In Figure 2a the data sets are in ascending order as
shown in Table I. The timings are averaged over 100 steps.
Each data set has a different connectivity pattern, where
add32 is a computer component design for a 32-bit adder,
4elt is a finite element mesh, and finan512 is a linear
programming matrix. The different connectivity results in
different vertex distribution at later time steps. On the other

hand, all graphs in Figure 2b are power law graphs generated
by pywebgraph, and have similar connectivity. This is
why we see the runtime per vertex increase in Figure 2a,
whereas the runtime per vertex decreases in Figure 2b.

For a more thorough investigation of the dependence of
the problem size on the runtime of the FMM, we tested for
a broader range of data sizes in smaller increments. The
runtime of the FMM on the CPU and GPU are shown in
Fig. 3, where |V | is the number of vertices. On the CPU the
strong scaling of the FMM is quite poor until |V | > 105.
On the GPU, good strong scalability is achieved only when
|V | > 106.

The breakdown of the CPU and GPU runtime for |V | =
107 is shown in Fig. 4. The runtime is multiplied by the
number of cores/GPUs for better visibility of the breakdown.
The dashed line represents perfect strong scaling. Both the
“Electrostatic force” and “Spring force” include the com-
munication time. The “Spring force” is always calculated
on the CPU, and takes a significant portion of the runtime
when using many GPUs.

Fig. 5 shows the overall speedup of the FDGL code on up
to 32 CPU cores/GPUs for |V | = 107. Super-linear scaling is
observed in the GPU runs, which is consistent with previous
reports on FMMs on GPUs. [11]

IV. COMPARATIVE ANALYSIS

Godiyal et. al. [6] implements FM3, a CPU Fast Mul-
tipole Multilevel Method [7], on a single GPU. To reduce
the running time of the system the authors decided to skip
the local expansion, making the hierarchical computation
equivalent to a Barnes & Hut’s treecode [15]. Their work
starts by finding an optimal placement of vertices in close
Euclidean distance to their connected vertices. Then, the
authors solve the problem at a coarse mesh level and use
the result to solve downwards to the finer level until the
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Figure 5. Speedup on TSUBAME for |V | = 107

complete graph is displayed.
The displayed graphs by Godiyal look appealing and

the running times are compelling (though the number of
iterations is not available, making direct comparison im-
possible). The authors hand modify the tuning parameters
until they get the optimal graph and convergence speed.
We can not be certain that the idea of pre-placing the
vertices is helpful given that the tuning parameters are
still being hand modified. Per our experience with several
of the community graphs, a small modification in even
a single tuning parameter is enough to cause the layout
algorithm to vary from quick convergence (∼ 100 iterations)
to slow convergence (> 1000 iterations) or even a failure
to converge. Equally concerning is the sensitivity in graph
quality to tunable parameters; slightly adjusting a parameter
can result in twisted or otherwise poor layouts.

ExaFMM has a scalable multi-GPU adaptive FMM im-
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plementation that does not skip over the local expansion
calculations, thus allowing for further scaling up the size of
the graphs (though with a time penalty on smaller graphs).

Tikhonova et. al. [5] implements an algorithm that runs
on multi-processors and balances the load by pinning edges
with their vertex on the same processor. Tikhonova then
balances allocation on the different processors using the
sum of the number of vertices and edges. Given the cost
of repulsion being orders of magnitude larger than the
calculation of springs, balancing only the number of vertices
should give a better overall load balance. The imbalance in
the edge calculations will not have a significant impact on
the overall runtime, since it consumes only a very small
fraction. A better technique would be to also keep as much
of the connected vertices on the same machine as possible.
ParMETIS, a parallel graph partitioner by Karypis et. al.
[16], handles this problem in an efficient and robust manner.

Tikhonova also uses the idea of partial graph layouts.
Their approach is different from Godiyal’s in that they are
introducing a subset of vertices at each stage and making
all the previously added vertices static to cut down the cost
of computing the repulsion forces. No further optimizations
have been made, and their work focused primarily on the
parallelization of the algorithm, thus the count of iterations
is given but a convergence test is not done.

Tikhonova’s work on the BigBen - Cray XT3, 2.4
GHz system required 64 CPUs 7.89 seconds to compute 100
iterations for a test problem. On the same problem, we were
able to compute the same number of iterations on a single
CPU in 6.32 seconds, GPU acceleration brought this number
further down to 2.43 seconds. The highly tuned exaFMM
library grants us a clear performance advantage even without
its added capability of distributed-memory parallelization.

V. LIMITATIONS AND FUTURE WORK

FDGL has many tunable parameters and heuristics that
play a direct role in the efficiency and quality of the layout
algorithm. This current state makes research in the area cum-
bersome and repetitive. Amalgamating the different solutions
into a centralized repository will allow for more concentrated
work on improving the heuristic for not only the current set
of test graphs, but graphs beyond the capabilities of today’s
approaches.

The amount of movement that the vertices experience on
each iteration is high, so it is impractical to assume the
distribution of the vertices across processes to be the same
from one time step to the next. Instead, the building of
the FMM tree is repeated on each time step. To keep the
costs of running FMM reasonable, vertex migration from
one processor to the next should be done during the tree
build phase of the algorithm.

One promising strategy is to use ACE’s multi-scale eigen-
vector computation [9] for a fast and coarse preplacement,
then distribute the vertices and their edges using ParMETIS

across processors by minimum edge cuts. We hope that this
will correspond to a better initial heuristic in the distribution
of vertices and their later movements, lowering both per
iteration runtime and the total number of iterations.

VI. CONCLUSION

In the present work, a scalable adaptive FMM on het-
erogeneous architectures is used to accelerate the repulsion
calculation in the FDGL. With the current FMM implemen-
tation we are able to reduce the complexity from the current
state-of-the-art at O(|V | log |V | + |E|) to O(|V | + |E|)
per iteration. The particular heuristics to accelerate the
convergence of FDGL is beyond the scope of this study.
The aim of this work is rather to provide a fast repulsion
calculation technique, which accelerates all flavors of FDGL
regardless of the convergence rate.

We have tested on graphs with up to 10 million vertices
and 20 million edges, and found that the runtime per vertex
remains somewhat constant for large enough graphs. On
a single node, we observed that the repulsion dominates
the runtime, and the spring force calculation is insignif-
icant. On the other hand, on multiple MPI processes the
communication for the spring calculation takes a significant
amount of time. On multi-GPUs the spring communication
time consumes a larger portion of the total runtime since
the repulsion is accelerated on the GPU. Strong scalability
tests for 10 million vertices show 70 % parallel efficiency for
CPUs, and 76.6 % parallel efficiency for GPUs. The runtime
on a single CPU is 10−5 sec/vertex and 3×10−6 sec/vertex
on a single GPU. Our work shows significant speed up of a
single iteration of FDGL, allowing domain experts to take
advantage of the highly scalable FMM library in furthering
their work on visualizing their ever increasing datasets.
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