ENG EC571 - Digital VLSI Circuit Design

Term: Spring 2020

Lectures: Mon-Wed 12:20 – 2:05 pm in CAS B18

Recitation/Lab Sessions: Monday 4:30 - 6:15 pm in PHO 307

Please apply for the PHO 305 and PHO 307 room access online through the Zaius Room Access System by Friday - January 24th, 12:00 pm.

Number of Credits: 4

Pre-requisites: EC 311 and EC 410 or equivalents are pre-requisities for this course. Please talk to us if you have any questions about pre-requisities.

Course Objectives

By the end of the course, students should be able to:

- Design a digital CMOS circuit that performs some arbitrary logical function to a given area, power, and performance metric.
- Build an intuition for tradeoffs between these performance metrics and iterate on the design to optimize them.

Staff Information

Instructor:

Name:	Rabia Yazicigil Kirby
Office address:	PHO 329
Office phone number:	617-353-2815
E-mail address:	rty@bu.edu – Include EC 571 in the subject line
Office hours:	PHO 329, Monday 3:30 pm to 4:30 pm, Wednesday 11:00 am to 12:00 pm
	or by appointment

Name: Vaibhav Bansal E-mail address: vhansal@hu.edu Include EC 571 in the subject line	Lab Assistant/Grader:	
E mail address:	Name:	Vaibhav Bansal
$\frac{1}{\sqrt{1}}$ E-mail address. $\frac{\sqrt{1}}{\sqrt{1}}$	E-mail address:	vbansal@bu.edu – Include EC 571 in the subject line
Office hours: PHO 305, Monday and Wednesday 6:30 pm to 7:30pm or by appointment	Office hours:	PHO 305, Monday and Wednesday 6:30 pm to 7:30pm or by appointment

Course Learning Goals:

By taking this course, students should be able to:

- (1) Understand the MOSFET basics and their fabrication and the layout design rules.
- (2) Understand the operation of MOS transistor.
- (3) Understand the static characteristics of MOS inverters.
- (4) Design, implement and simulate: Inverter Sizing and Noise Margin Calculation.
- (5) Understand the switching characteristics and interconnect effects of MOS inverters.
- (6) Understand the implications of internal and external loading.
- (7) Design, implement and simulate: Buffer Chains used to drive big loads.
- (8) Understand Combinational MOS logic circuits.
- (9) Understand Sequential MOS logic circuits.
- (10) Understand Dynamic logic circuits.

- (11) Understand the working of ROM and RAM.
- (12) Understand limitations of the technology: Short channel effects.
- (13) Understand the use of chip I/O circuits.
- (14) Understand the design for manufacturability and testability.
- (15) Design, implement and simulate: Sequential circuits
- (16) Understand the fundamental concepts and technology implications of very short channel devices
- (17) Achieve proficiency with aspects of Cadence design suite.

Course Resources

• Text Book (strongly recommended):

Digital Integrated Circuits - A Design Perspective, Second Edition. Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, Prentice Hall. ISBN 9780130909961 – The book is on reserve for class use in Science and Engineering library.

• Text Book (optional):

CMOS VLSI Design: A Circuits and Systems Perspective, Fourth Edition. Neil Weste, David Harris. ISBN 9780321547743 – The book is on reserve for class use in Science and Engineering library.

• Announcements, course material, tutorials, and other useful links will be posted on Blackboard (<u>http://learn.bu.edu/</u>)

Evaluation

Grading criterion:	Two midterm exams - 15% each, Final Exam - 30%, Project - 20%, Homeworks
	and Lab Assignments - 20%.
Homework:	Homework assignments are to be submitted before the beginning of the class on
	the date specified. You can discuss your work in abstract with other students in
	the class, but you should write-up the solutions on your own.
Exams:	There will be two midterm exams and one final exam.
Project:	Details will be discussed in class and recitation/lab session.

Course Policy

- Homework: The homework assignments must be the result of your individual work. You may discuss the contents and general approach to a problem with your classmates but not the detailed solution. You are expected to formulate your approach and write the solutions of homework problems by yourself. Copying the solution and/or answer from another student is considered cheating. Two identical homeworks with same mistakes are considered cheating. No extensions on homeworks will be provided. Homework received up to 24 hours late will receive maximum 50% credit. Homework received beyond 24 hours late will not be accepted.
- Makeup exams: Makeup exams will be provided if the student takes prior permission from the instructor. Emergencies will be dealt on a case-by-case basis. Note that oversleeping, being not ready, overload due to projects or coursework in other classes are not valid excuses for requesting a makeup exam.
- Exam/Homework grade discussion: Grade discussion/corrections should be done within one week after the graded exam or homework is distributed. No grade changes will be made after one week, or after the last day of class.
- I and W grades: As per University policy.

- Honor Code: It is expected that Boston University's Honor Code will be followed in all matters relating to this course. If you are found cheating on homeworks or examinations, you will be brought up on charges before the **Student Academic Conduct Committee** whose punishment may include suspension from the University without the right to transfer credits for courses taken elsewhere.
- Students are responsible for understanding the University's Honor Code policy and must make proper use of citations of sources for writing papers, creating, presenting, and performing their work, taking examinations, and doing research.
- Full text of the honor code policy and fundamental standard: <u>Boston University's Academic Conduct</u>
 <u>Code</u>

Tentative Schedule for EC571 – Lectures, Recitation/Lab Sessions, Homeworks, Project, and Exams					
Lec #	Date	Topic Description	Text Ref	Out	Due
1	1/22	Introduction, MOS Manufacturing Process	Chapter 1, 2		
2	1/27	MOS Manufacturing Process, Transistor Model	Chapter 2, 3	Hw1	
Lab1	1/27	Recitation / Lab Session			
3	1/29	Interconnect Parameters and Electrical Wire Models	Chapter 4		
4	2/3	CMOS Inverter Design and Analysis - I	Chapter 5	Hw2	Hw1
Lab2	2/3	Recitation / Lab Session			
5	2/5	CMOS Inverter Design and Analysis - II	Chapter 5		
6	2/10	Combinational Logic Gates - I	Chapter 6	Hw3	Hw2
Lab3	2/10	Recitation / Lab Session			
7	2/12	Combinational Logic Gates - II	Chapter 6		
	2/17	No Class: Presidents' Day Holiday			
	2/17	No Recitation / Lab Session: Presidents' Day Holiday			
	2/18	No Class: ISSCC 2020			
	2/19	No Class: ISSCC 2020			
8	2/24	Combinational Logic Gates - III	Chapter 6	Hw4	Hw3
9	2/24	Make-up Class: Sequential Logic Circuits - I	Chapter 7		
11	2/26	Sequential Logic Circuits - II	Chapter 7		
12	3/2	Sequential Logic Circuits - III	Chapter 7		
Lab4	3/2	Recitation / Lab Session			
13	3/4	Exam 1			
	3/9	No Class: Spring Break			
	3/9	No Recitation / Lab Session: Spring Break			

	3/11	No Class: Spring Break			
14	3/16	Interconnect: Capacitive, Resistive, and Inductive Parasitics	Chapter 9	Hw5	Hw4
Lab5	3/16	Recitation / Lab Session			
15	3/18	Memory – I	Chapter 12		
16	3/23	Memory – II	Chapter 12		
Lab6	3/23	Recitation / Lab Session			
17	3/25	Memory – III	Chapter 12		
18	3/30	Arithmetic Building Blocks – I	Chapter 11	Hw6	Hw5
Lab7	3/30	Recitation / Lab Session			
19	4/1	Arithmetic Building Blocks – II	Chapter 11		
20	4/6	Arithmetic Building Blocks – III	Chapter 11	Hw7	Hw6
Lab8	4/6	Recitation / Lab Session: Project Description		Project	
	4/8	Exam 2			
21	4/13	Timing Issues in Digital Circuits – I	Chapter 10		
Lab9	4/13	Recitation / Lab Session			
22	4/15	Timing Issues in Digital Circuits – II	Chapter 10		
	4/20	No Class: Patriots' Day Holiday			
	4/20	No Recitation / Lab Session: Patriots' Day Holiday			
23	4/22	Timing Issues in Digital Circuits – III	Chapter 10		Hw7
24	4/27	Project Presentation			
25	4/29	Project Presentation			
	TBD	Final Exam			