Tentative Syllabus

The following is a tentative logically-ordered syllabus for EC504. The actual material covered may be a subset or superset of this syllabus, depending on class progress and makeup, and will likely follow a different order. Please see the CourseSchedule topic for an updated schedule of course topics.

I. Fundamentals
 o Software
 ■ Java Language basics
 ■ Object-orientation
 ■ Exceptions
 ■ Generics, collections
 ■ Threads, concurrency, events
 ■ Lambdas (closures), annotations, reflection
 ■ engineering
 ■ version control
 ■ peer review
 ■ agile development
 ■ Applications
 ■ networking
 ■ databases
 ■ graphics
 ■ Android
 o Analysis
 ■ Recurrences
 ■ Asymptotic notation
 ■ $O, \Omega, \Theta, o, \omega$
 ■ limits, properties, limitations
 ■ Master method
 ■ Annihilators
 ■ Approaches
 ■ Worst case
- Best case
- Expected case
 - Probability
 - Distributions
 - Expected value
 - Chernoff bounds
- Amortized
- Core algorithms
 - Selection
 - linear-time
 - randomized
 - Sorting
 - information theoretic bounds
 - comparison-based
 - insertion, selection, bubble, merge, heap, quick
 - non-comparison
 - counting, bucket, radix
- Core data structures
 - stacks
 - queues
 - linked lists
 - binary search tree
 - binary heap

II. Containers
- Balanced search trees
 - randomized
 - rotation-based
 - AVL, Red-black
 - misc
 - B-trees, B+-trees
 - Splay trees
- Priority queues
 - heaps: Binomial and Fibonacci
 - leftist, treaps
- Hash-based structures
 - hashmap
 - chaining
 - Simple Uniform Hashing
 - open Addressing
 - load factor
 - Expected analysis
 - probing
hash chains
• applications
 • Bloom filters
 • cryptocurrency

III. Graphs and Networks
• Representations
• Traversals
 • breadth first
 • depth first search
 • constrained
• Minimum spanning trees and routing
• Shortest paths
 • Single-source
 • All pairs
• Disjoint-set data structures
 • Relaxation
 • Specialized graphs
• Minimum Flow
• Linear algebra
 • eigenvalues/eigenvectors
 • exponentiation
• Applications
 • networking
 • data reconciliation

IV. Miscellaneous
• Query processing
 • String search
 • Finite automata, KMP, Boyer-Moore
 • Regular expressions
 • SQL and query algebra
 • join strategies, concurrency
 • substring alignment
• Optimization
 • Dynamic Programming
 • Optimal substructure
 • Integer Knapsack
 • Edit distance * “Big data”
 • Map-reduce
 • Linear programming
 • FFT
 • Optimization
• Parallelization
- multi-threaded models
- Computational complexity
 - Turing machines
 - NP completeness and reductions
 - Approximations
 - Complexity classes
- Security and number theory
 - Rainbow tables
 - RSA encryption and challenges
 - Elliptic curve cryptography
- Computational geometry and graphics
 - Line segment intersection
 - Convex hull