Boston University College of Engineering
Division of Materials Science & Engineering
MS (Thesis) Program Planning Sheet

Student Name: ________________________
BU ID: ________________________
Advisor Signature: ________________________

MS (Thesis) and Post-Bachelor PhD students must take 32 credits, all of which must be at the 500 level or higher. This must include **4 Core Courses, 2 Concentration Courses**, and 4 to 8 credits of **ENG MS 954 Thesis** (post-bachelor PhD students may substitute 4 to 8 credits of ENG MS 900) - both ENG MS 954 and ENG MS 900 satisfy the masters Practicum requirement; and up to 4 credits **Elective**. Only one 400-level course may be taken, with advisor approval, if needed as a prerequisite for another course in the program. MS students must maintain a cumulative GPA of 3.00 to remain in good academic standing and to graduate. All graduate courses are counted in the GPA. Grades of C- or lower are not acceptable for the MS degree.

CORE
(Four courses, each from A, B, C and D. Circle the course used for A and D. 16 credits)

| A. | ENG MS 577 Elec, Opt, Mag Prop of Mtls OR CAS PY 543 Introduction to Solid State Physics (by instructor approval only)
| B. | ENG MS 505/ME 505 Thermodynamics and Statistical Mechanics Semester/Grade ______________________________
| C. | ENG MS 503/ME 503 Kinetic Processes in Materials Semester/Grade ______________________________
| D. | ENG MS 574/EC 574 Physics of Semiconductor Materials or ENG MS 504 Polymers and Soft Materials or ENG MS 582/ME 582 Mechanical Behavior of Materials or ENG MS 508/ME 508 Computational Methods in Materials Science Semester/Grade ______________________________ |

CONCENTRATION
(Two courses from one area. 8 credits)

| A. Biomaterials
ENG BE 506 Phys Chem of Cell Structure and Machinery
ENG BE 521 Continuum Mechanics for Biomedical Engineers
ENG MS/BE/ME 523 Mechanics of Biologics
ENG MS/BE/ME 524 Skeletal Tissue Mechanics
ENG BE 533 Biochemistry
ENG MS/BE/ME 549 Structure & Function Extracellular Matrix
GRS CH 550 Materials Chemistry
GRS CH 621 Biochemistry
GRS CH 629 DNA Nanotechnology
ENG MS/ME/BE 726 Fundamentals of Biomaterials
ENG MS/ME/BE 727 Principles & Applications of Tissue Eng
ENG MS/BE 736 Biomedical Transport Phenomena
ENG MS/ME 742 Bio-fluids and Structural Mechanics
GRS PY 744 Polymer Physics
GRS PY 771 Systems Biology for Physical Scientists & Eng |

| B. Electronic/Photonic Materials
ENG EC 560 Introduction to Photonics
ENG EC 575 Physics of Semiconductor Devices
ENG EC 578 Fabrication Tech for Integrated Circuits
GRS PY 741 Solid State Physics I
GRS PY 742 Solid State Physics II
GRS PY 745 Experimental Surface Physics and Chemistry
ENG MS/EC 744 Optical Measurement
ENG EC 770 Guided-wave Optoelectronics
ENG MS/EC 774 Semiconductor Quant. Strctrs & Phot Dev
ENG EC 776 Fundamentals of Nanoelectronics |

| C. Materials for Energy and Environment
ENG MS/ME 527 Trans. Phenomena in Mats Processing
ENG MS/ME 532 Atomic Structure & Dislocations in Mats
ENG MS/ME 535 Green Manufacturing
ENG MS/ME 545 Electrochemistry of Fuel Cells & Batteries
GRS CH 550 Materials Chemistry
GRS CH 631 Structure and Bonding
ENG MS/EC 573 Solar Energy Systems
GRS PY 741 Solid State Physics I
GRS PY 742 Solid State Physics II
GRS PY 745 Experimental Surface Physics and Chemistry
ENG MS/ME 781 Electroceramics |

| D. Nanomaterials
ENG MS/ME 530 Intro to Micro and Nanomechanics of Solids
GRS CH 550 Materials Chemistry
ENG MS/ME 555 MEMS Fabrication and Materials
GRS CH 631 Structure and Bonding
ENG MS/ME 718 Advanced Topics in Nanotechnology
ENG MS/ME 735 Computational Nanomechanics
GRS PY 745 Experimental Surface Physics and Chemistry
ENG EC 777 Nanostructure Optics
ENG MS/ME 778 Micromachined Transducers |

A. ☐ B. ☐ C. ☐ D. ☐ (select area completed)

Course/Semester/Grade ______________________________

Course/Semester/Grade ______________________________

THESIS
(MS 954 Thesis, 4 to 8 credits. Post-Bachelors PhD students may use 4 to 8 credits of MS 900 Research.)

Course/Semester/Grade/Credit ______________________________
Course/Semester/Grade/Credit ______________________________

ELECTIVE
(Optional; if only 4 credits of MS 954 or MS 900 are used to satisfy the Thesis requirement. Circle one course from the list below, or write in from above if not used to satisfy core, concentration or thesis requirement. 4 credits.
Sem/Grade ______________________________)

| ENG MS 500 Special Topics
ENG MS/ME 507 Process Modeling and Control
ENG MS/ME 516 Statistical Mechanical Concepts in Engineering
ENG MS/ME 526 Simulation of Physical Processes
ENG MS/ME 534 Mats Technology for Microelectronics
ENG MS 539 Intro to Materials Science and Engineering
ENG MS/ME/EC 579 Microelectronic Device Mfg
ENG MS/ME 580 Theory of Elasticity
ENG EK 691 Lean and Agile New Product Development
ENG MS 700 Adv Special Topics
GRS PY 745 Experimental Physics and Chemistry
CAS CH 751 Advanced Topics in Physical Chemistry
ENG MS 782 Advanced Materials Characterization
ENG MS 784 Topics in Materials Science
ENG MS 900 PhD Research
ENG MS 925 Graduate Project
ENG MS 951 Independent Study
ENG MS 700 Adv Special Topics
GRS PY 745 Experimental Physics and Chemistry
CAS CH 751 Advanced Topics in Physical Chemistry
ENG MS 782 Advanced Materials Characterization
ENG MS 784 Topics in Materials Science
ENG MS 900 PhD Research
ENG MS 925 Graduate Project
ENG MS 951 Independent Study |

Sem/Gr _______

Sem/Gr _______

Fall 2018