BU BME Department

Graduate Handbook for Masters Students

Fall 2018
College of Engineering Graduate Students Academic Standards Policy

Academic Standards
The academic progress of every graduate student is reviewed at the end of each semester. Failure to make satisfactory progress and remain in Good Standing can result in Academic Probation, Suspension for a stated time or until stated conditions are met, or Dismissal, as detailed below.

Grades of C– or lower are not acceptable for Masters students.

Good Standing
Students maintain good academic standing when they: (1) earn a semester GPA of at least 3.0 (students enrolled only in Pass/Fail courses are exempt from the semester GPA standard); and (2) maintain a cumulative GPA of at least 3.0.

Academic Probation
A student is put on Academic Probation when s/he earns a semester or cumulative GPA below 3.0. Students on Academic Probation may have their financial aid discontinued. In the event that the semester or cumulative GPA is below a 2.0, a student may be dismissed from the program.

Students are reviewed after one semester on Academic Probation. Those who earn a semester and cumulative GPA of 3.0 or above will return to Good Standing. Those students who do not achieve Good Standing (as defined above) after the probationary semester will be subject to Academic Suspension, Dismissal, or an additional semester of Academic Probation as determined by the College on a case-by-case basis.

Academic Suspension
A student on Academic Probation faces Academic Suspension or Dismissal when s/he has not achieved Good Standing (as defined above) after the most recent semester of Academic Probation. Specifics regarding Dismissal or the duration and terms of the Academic Suspension will be determined by the College on a case-by-case basis. Dismissal results in permanent separation from the University. Appeals of Dismissal or Suspension are directed to the Associate Dean for Academic Programs.

Reinstatement after Academic Suspension
Students who have fulfilled their period of Academic Suspension must meet with their academic advisor and must also reestablish their standing in the College by contacting the College of Engineering Graduate Programs Office (enggrad@bu.edu; 617-353-9760).

College of Engineering GPA Requirement for Awarding Graduate Degrees
Masters students must earn a grade point average of at least 3.0 in the set of courses used to satisfy the program requirements for the degree.

Auditing Courses
An auditor is a student who attends a class to acquire knowledge but not to earn credits or a grade. Audited courses do not count toward completing degree requirements. An auditor may not change his or her status after the fifth week of classes for standard courses. Auditors must attend classes regularly, complete assigned reading and participate in discussions but they are excused from examinations.

Auditors are admitted to a course on a space-available basis and with the approval of the instructor. Auditors are subject to the full tuition and fees of the course. Students may not audit ENG 900-level, language, physical education, studio or laboratory courses.
The College of Engineering offers an Engineering Practice degree option to students in all of its Masters programs. Engineering Practice is a valuable opportunity for a student at the Masters level to complete an approved internship integral to their program of study, thereby allowing them to develop additional technical and professional skills. Students interested in the Engineering Practice degree option must apply and meet the requirements outlined below. Students successfully completing the Engineering Practice degree option of their program will earn the accompanying degree designation (e.g., Master of Science in Biomedical Engineering with Engineering Practice).

Internships used to complete the degree requirements must be relevant to the student’s program of study and must go through a program-level approval process. Satisfactory completion of the requirement is determined by the program and then formally recorded by the Graduate Programs Office (enggrad@bu.edu; 617-353-9760).

Requirements and Grading
- An internship site and project must be approved by the student’s Academic Advisor.
- A mid-point review between the student and the Internship Supervisor must be conducted and submitted.
- Before the end of the semester in which the internship takes place, a final report must be submitted and reviewed by the Academic Advisor.
- Students receive a grade of Pass or Fail. The final grade is based on satisfactory completion of all requirements and is determined by the Academic Advisor in consultation with the Internship Supervisor.

For International Students
- International students must have completed two semesters in full-time status to be eligible to begin an internship in the United States, and they must complete additional paperwork with the BU International Students and Scholars Office (ISSO) after registration.
- International Students with an off-campus internship must complete the Curricular Practical Training (CPT) form, and bring the approved Engineering Practice Approval form and the CPT form to the ISSO for review and approval for off-campus Curricular Practical Training.

Summary of Course Requirements for BME Graduate Students

Note: The courses listed under the Technology Leadership electives section below, as well as ME 518 and PH 825, do not meet the requirement of a technical elective. Students may also petition for a course offered outside of ENG to count as a technical elective.

MEng Students:

BE 694 Biomedical and Clinical Needs Finding
BE 695 Advanced Biomedical Design and Development
Three Graduate-Level Biomedical Engineering Electives (BE 695 satisfies one, these courses must be taken within BME department, BE Prefix)
Two Graduate-Level Technical Electives (may include additional BE coursework)
Math Requirement selected from approved list (located in the handbook and online)
Two Technology Leadership Electives from the list below (BE 695 satisfies one):

ENG ME 502 Invention: Technology Creation, Protection, and Commercialization
ENG ME 517 Product Development
ENG ME 525 Technology Ventures
Students in the MEng degree program are required to complete a minimum of **32 credits** of approved coursework. No thesis is required. The practicum requirement is satisfied through BE 695. All students are required to submit a finalized Program Planning Sheet for approval by the Director of BME Masters Programs when applying for graduation, indicating the courses they took to fulfill the curriculum requirements. A cumulative grade point average of 3.0 must be maintained. The department permits only four credit hours of C or C+ to be applied toward the degree. Grades of C- or lower are not acceptable. Technical electives do not have to be taken within College of Engineering; hard science courses offered through other BU Colleges may be approved using the BME petition form. Technical Leadership electives outside of the provided list must be approved by the MEng program director and Academic Advisor, Prof. Jonathan Rosen.

MEng Program Completion Time Schedule

Each student has a **maximum of five (5) years** from the time of matriculation to complete the requirements for the MEng degree. If a student has still not finished the required courses in this time, the student must reapply and be accepted again to the department in order to continue.

MS with Thesis Students:

Math Requirement selected from approved list (located in the handbook and online)
BE 605 *Molecular Bioengineering* or BE 606 *Quantitative Physiology for Engineers*
BE 790 *Biomedical Engineering Seminar*
Three Graduate-Level Biomedical Engineering Electives (these courses must be taken within BME department, BE prefix)
Two Graduate-Level Technical Electives (may include additional BE coursework)
BE 954 *Thesis Research* (8 credits)

Students in the MS degree program are required to complete a minimum of **36 credits** and successfully propose and defend an original MS thesis. MS students are required to hand in their finalized Program Planning Sheet when applying for graduation to be approved by both Research Advisor (Academic Advisor if the research advisor is off-campus) and the Director of BME Masters Programs. A cumulative grade point average of 3.0 must be maintained. The department permits only four credit hours of C or C+ to be applied toward the degree. Grades of C- or lower are not acceptable. Technical electives do not have to be taken within the College of Engineering; hard science courses offered through other BU Colleges may be approved using the BME petition form.

MS with Project Students:

Math Requirement selected from approved list (located in the handbook and online)
BE 605 *Molecular Bioengineering* or BE 606 *Quantitative Physiology for Engineers*
BE 790 *Biomedical Engineering Seminar*
Three Graduate-Level Biomedical Engineering Electives (these courses must be taken within BME department, BE prefix)

Three Graduate-Level Technical Electives (may include additional BE coursework)

BE 952 Mentored Project (4 credits)

Students in the MS degree program are required to complete a minimum of 36 credits and complete the required 4 credit Mentored Project. A suitable project must be identified and approved by the Director of BME Masters Programs. The mentored project must be supervised by a primary BME faculty member or an approved outside advisor. MS students are required to hand in their finalized Program Planning Sheet when applying for graduation to be approved by both Academic Advisor and the Director of BME Masters Programs (if not already the Academic Advisor). A cumulative grade point average of 3.0 must be maintained. The department permits only four credit hours of C or C+ to be applied toward the degree. Grades of C- or lower are not acceptable. Technical electives do not have to be taken within the College of Engineering; hard science courses offered through other BU Colleges may be approved using the BME petition form.

MS with Focus in Nanomedicine (Project or Thesis option) Students:

Math Requirement selected from approved list (located in the handbook and online)

BE 605 Molecular Bioengineering or BE 606 Quantitative Physiology for Engineers
BE 790 Biomedical Engineering Seminar
EK 481
BE 745

Two Graduate-Level Biomedical Engineering Electives selected from approved list of Nanomedicine electives below

One Graduate-Level Technical Elective selected from approved list of Nanomedicine electives below *

*Two are required if with Project
BE 952 (4 credits) or BE 954 (8 credits)

Approved List of Nanomedicine Electives:

ENG BE 504 Polymers and Soft Materials
ENG BE 511 Biomedical Instrumentation
ENG BE 515 Introduction to Medical Imaging
ENG BE 517 Optical Microscopy of Biological Materials
ENG BE 526/726 Fundamentals of Biomaterials
ENG BE 527/727 Principles and Applications of Tissue Engineering
ENG BE 535 Cell Mechanics
ENG BE 560 Biomolecular Architecture
ENG BE 565 Molecular Biotechnology
ENG BE 566 DNA Structure and Function
ENG BE 569 Next Generation Sequencing
ENG BE 765 Biomedical Optics and Biophotonics
CAS BI 551 Biology of Stem Cells
CAS BI 576 Carcinogenesis
GRS CH 629 DNA Nanotechnology
ENG EC 577 Electrical, Optical and Magnetic Properties of Materials
ENG EC 777 Nano-Optics
ENG ME 555 MEMS: Fabrication and Materials
ENG ME 528 Biological Physics
ENG ME 546 Introduction to Micro/Nanofluidics
Credit for Courses Taken Elsewhere:

Students may “place out” of required courses (but not electives, BE 952 or BE 954), if they have taken equivalent courses elsewhere at the graduate level, as long as those courses were not used to meet the requirements of an undergraduate or previous degree. For example, students who have taken a grad-level physiology course may receive permission not to take BE 606. Students with extensive experience in quantitative molecular biology may receive permission not to take BE 605. This permission must be granted by submitting a BME petition BEFORE the end of the Add/Drop period.

Though students may place out of specific course requirements, this does not alter the total number of credits a student must earn at Boston University (32 for MEng students and 36 for MS students) to meet the degree requirements.

Courses that Fulfill the BME Math Requirement:

Students must complete one 4-credit or two 2-credit math courses (BE 601-604) from the list below and pass with a B+ or higher. Students may petition for a different course (500-level or higher) to satisfy the math requirement.

CAS MA 565 Mathematical Models in the Life Sciences An introduction to mathematical modeling, using applications in the biological sciences. Mathematics includes linear difference and differential equations, and an introduction to nonlinear phenomena and qualitative methods. An elementary knowledge of differential equations and linear algebra is assumed.

CAS MA 579 Numerical Methods for Biological Sciences An introduction to the use of numerical methods for studying mathematical models of biological systems. Emphasis on the development of these methods; understanding their accuracy, performance, and stability; and their application to the study of biological systems.

CAS MA 684 Applied Multiple Regression and Multivariable Methods Application of multivariate data analytic techniques. Multiple regression and correlation, confounding and interaction, variable selection, categorical
predictors and outcomes, logistic regression, factor analysis, MANOVA, discriminant analysis, regression with longitudinal data, repeated measures, ANOVA.

CAS PY 501 Mathematical Physics An introduction to complex variables and residue calculus, asymptotic methods, and conformal mapping; integral transforms; ordinary and partial differential equations; non-linear equations; integral equations.

students are required to take BE 601 plus BE 602, BE 603 or BE 604 to satisfy the requirement. Rudimentary programming skills are necessary for these modules

ENG BE 601 Linear Algebra The first of four math modules designed to reinforce basic mathematical and computer programming concepts pertinent to graduate research in biomedical engineering. This course will emphasize the five cornerstones of applied linear algebra: Linear combinations, decompositions, orthogonality, metric, and linear transformations. Topics include LU and QR factorizations, finite difference methods for solving partial differential equations (PDEs), least squares, Fourier series and wavelets, solid mechanics, Markov chains, principal component analysis, and signal processing techniques. This course will provide the necessary linear algebra background needed to solve problems in BE 602, 603 and 604.

ENG BE 602 Ordinary Differential Equations This math module will focus on four key ODE concepts: Linear dynamical systems, nonlinear conservative and excitable systems, discrete- time state machines, and generalized Fourier series solutions to Sturm-Liouville problems. Topics include: Filters, enzymatic networks, mechanical models for biomaterials, oscillators and limit cycles, phase- locked loops, nonlinear Leslie matrices, Legendre polynomials, Bessel functions, and a prelude to solving PDE problems associated with heat transfer, diffusion, and electrostatics. Prior exposure to linear algebra (BE 601 or equivalent), and working knowledge of a programming language (Matlab, Python, etc.) is helpful.

ENG BE 603 Partial Differential Equations This math module will focus on elliptical and parabolic PDEs associated with transport phenomenon problems in biomedical engineering. We will visit four PDE concepts: Separation of variables, integral transform solutions, superposition principles, and numerical approximations using finite-difference schemes. Topics include: 2D and 3D anisotropic Laplace's, Poisson's, and the heat equations in different coordinate systems, Fourier and Laplace transform solutions, 2D ADI methods, Green's functions, and the method of images. Prior exposure to linear algebra (BE 601 or equivalent), ODEs (BE 602 or MA 226 equivalent), Fourier series, Fourier and Laplace transforms (BE 401 equivalent), and working knowledge of a programming language (Matlab, Python, etc.) is highly recommended.

ENG BE 604 Statistics and Numerical Methods This math module will focus on how linear algebra, ODEs, statistics, and signals & systems techniques can be used to interrogate data from biological and engineering experiments. The lecture topics include: Jacobi, Gauss-Seidel, and SOR iterative solvers for large linear systems; Gauss-Newton iterations (nonlinear least-squares); the ANOVA table, multi- factor regression, and intro to the general linear model (GLM); data deconvolution; Monte Carlo, bootstrap, and kernel density estimation. Prior exposure to linear algebra (BE 601 equivalent), basic probability and statistics (BE 200 equivalent), and working knowledge of a programming language (Matlab, Python, etc.) is highly recommended.

ENG BE 747 Advanced Signals and Systems Analysis for Biomedical Engineering Introduction to advanced techniques for signals and systems analysis with applications to problems in biomedical engineering research. Time-domain and frequency-domain analysis of multiple input, multiple output systems using the fundamental matrix approach. Hilbert transform relations; applications to head- related transfer functions. Second-order characterization of stochastic processes: power density spectra, cross-spectra, auto- and cross-correlation functions. Gaussian and Poisson processes. Models of neural firing patterns. Effects of linear systems on spectra
and correlation functions. Applications to models of the peripheral auditory system. Optimum processing applications. Applications to psychophysical modeling. Introduction to wavelets and wavelet transforms. Wavelet filter banks and wavelet signal processing.

ENG ME 566 Advanced Engineering Mathematics Introduces students of engineering to various mathematical techniques that are necessary in order to solve practical problems. Topics covered include a review of calculus methods, elements of probability and statistics, linear algebra, transform methods, difference and differential equations, numerical techniques, and mathematical techniques in optimization theory. Examples and case studies focus on applications to several engineering disciplines. The intended audience for this course is advanced seniors and entering MS engineering students who desire strengthening of their fundamental mathematical skills in preparation for advanced studies and research.

GRS MA 681 Accelerated Introduction to Statistical Methods for Quantitative Research Introduction to statistical methods relevant to research in the computational sciences. Core topics include probability theory, estimation theory, hypothesis testing, linear models, GLMs, and experimental design. Emphasis on developing a firm conceptual understanding of the statistical paradigm through data analyses.

Finding a Research Home

Research Opportunities in the Department
Most students choose to do their research with a faculty member from the BME Department or affiliated research centers (Biological Design Center, Biomolecular Engineering Research Center, Hearing Research Center, Nanotechnology Innovation Center, Neurophotonics Center, Precision Diagnostics Center). To find out more about specific research programs, please visit the individual faculty member webpages. Faculty, scientists or researchers (holding a PhD or MD) within or outside of the University can be approved using the [MS Supervisor Approval form](#) to be a student’s principal research advisor if they have an active research collaboration with a primary BME faculty member who will agree to be the student’s research co-advisor.

Research Project
A major requirement for the MS with Thesis is a research-based thesis. Each student is responsible for finding a research project, conducting scientific studies under the guidance of an approved faculty member, presenting the [proposal](#) and results to the general scientific community in a public [defense](#) and submitting a thesis.

Academic vs. Research Advisors
All incoming Masters students will be advised by Prof. Jonathan Rosen unless otherwise specified. Students participating in the Focus in Nanomedicine option will be advised by Prof. Mark Grinstaff. The student’s academic advisor can provide general information about the University and help the student to complete his/her course registration for the first year.

If a student chooses the MS with Thesis option, his/her research advisor automatically becomes the student’s academic advisor as well. However, if the student’s principal research advisor is not a BME full-time primary or affiliated faculty member (but has an active research collaboration with a primary BME faculty member), then a BME co-advisor is required. A primary BME faculty member with an active research collaboration with the off-campus research advisor will become the student’s Academic Advisor and research Co-Advisor. This Academic Advisor is expected to be a member of the student’s committee.

Who Can Be a Research Advisor
Any full-time member of the BME faculty, or any affiliated or adjunct faculty member who has an appointment with the department, is eligible to serve as a Research Advisor unless otherwise noted. Other faculty, scientists or researchers (those holding a PhD or MD) within or outside of Boston University can be approved to be a
student’s principal research advisor if they have an active research collaboration with a primary BME faculty member who will agree to be the student’s research co-advisor. Students should submit a Supervisor Approval form. This form should be submitted as soon as the potential advisor is selected.

After approval, and as the thesis project progresses, MS with Thesis students must identify one additional primary faculty member within the BME department to serve as another member of the MS Thesis Committee.

Finding a Research Advisor and Project
Occasionally students enter the program with a specific research advisor in mind and may even plan to work on a specific project. The majority of students, however, will utilize the first two semesters to determine what their specific interests are in the field of biomedical engineering and identify potential labs.

Another valuable way of learning more about specific research opportunities is through the required BE 790 seminar series and to speak with other graduate students who are currently working in the department’s various labs. The best measure for learning about working in a specific lab is to make an appointment to speak with the faculty member in charge of a lab you are interested in. Once a student finds a research opportunity and has the consent of a faculty member to be his/her advisor, the process of developing a thesis project begins.

Off-Campus Thesis
Thesis research is usually carried out in laboratories and centers of BME faculty located on campus. In cases of non-BU advisors (see section above regarding required approval) the research is often performed off-campus, in the lab of the principal research advisor. There may be special problems that arise due to intellectual property and other conflicts of interest, which must be addressed prior to starting the work.

Invention and Copyright Agreements
Students who receive support from sponsored research programs or who make significant use of University funds and facilities are required to sign the BU Intellectual Property Agreement. Seek counsel with your faculty advisor about this policy. Christen Bailey can provide you with the necessary form for the Charles River Campus.

MS Thesis Committee Membership
After identifying a research advisor and project, each student forms a thesis committee. Any of these three members can be the primary advisor. The MS Thesis Committee must have a minimum of three (3) members:

- Two members must be from the primary BME faculty
- One member must be from outside the department (BME Affiliated faculty, Research faculty and Research Associates with a PhD and sufficient experience may count as the “outside” member)

MS Thesis Proposal
A brief written proposal (3-5 pages) of the MS research project must be submitted and defended no later than the semester before the student defends his/her thesis. It is the student’s responsibility to schedule a formal meeting with his/her Thesis Committee members for discussion and approval of the proposal document. The student must present the MS Proposal and Thesis Committee Approval Form to his/her thesis committee during this meeting. If the proposal is approved, the faculty members must sign the form, thereby indicating their willingness to participate on the thesis committee. The student must submit the signed approval form and the proposal document to Christen Bailey. It is required that the student’s committee meet with the student regularly (at least annually) throughout the remainder of his/her thesis research.

MS Thesis
An MS Thesis must be written and defended successfully for completion of the MS degree. In order for a student to make full use of the critiques on the proposal offered by his/her committee, students are not permitted to
defend the final thesis the same semester in which the proposal was submitted. A full description of the format requirements for the written thesis is included in "A Guide for the Writers of Dissertations and Theses". Mugar Library will not accept the thesis if it does not follow the required format!

It is the student’s responsibility to confirm a date and time of the presentation with his/her committee members. The MS Thesis Defense Approval Form must be completed and submitted to Christen Bailey two weeks prior to the presentation date. She will process announcement of the MS Thesis Defense to the BME faculty and graduate students via email and add the event to the BME calendar.

The format of the defense is not rigid and is decided on by the Chair of the MS Defense Committee. The student can expect to give a 30-40 minute seminar presenting the results of the completed project. There may be questions during the presentation or after the student has completed the presentation, depending on the decision of the committee.

Following a reasonable question period, the audience is dismissed, so that the committee may ask questions of the student privately; then the student is dismissed and the committee remains to complete its assessment of the thesis defense. The MS Defense Committee must vote unanimously to pass the student. The results are noted on the MS Thesis Defense Form and submitted to Christen Bailey.

Submission of the Final Thesis
The student will then follow the electronic submission guidelines provided by Mugar Library. Christen Bailey will provide departmental electronic approval for the student upon receiving the original signatures page.

Christen Bailey will coordinate the binding with an outside vendor but the student is responsible for printing the copies themselves. The cost for hardbound copies is $10 per copy (subsidized by the department). Theses to be hardbound are sent to an external bindery once a year (early fall). Students should be sure to leave a correct forwarding address after graduation so that their copy or copies can be mailed.

MS Program Completion Time Schedule
It is up to the student and their research advisor to complete the project in a reasonable amount of time for a MS thesis. Most students graduate from the MS with Thesis program in two years after entering, which usually includes at least one year of full-time work on the research project. It is important to keep track of the numerous deadlines that have been established to ensure that students planning to participate in graduation ceremonies are not disappointed for being prevented from participating due to missed deadlines. Please contact Christen Bailey if you have any questions about graduation requirements and deadlines.

Each student has a maximum of five (5) years from the time of matriculation to complete the requirements for the MS degree. If a student has still not finished the required courses and research thesis in this time, the student must reapply and be accepted again to the department in order to continue.

Relation of the MS Program to the PhD Program
Often students who enter the MS program later decide that they would like to pursue a PhD. The student must formally apply to the PhD program; however, the MS program is designed so that a transition into the PhD program is straightforward:

- If admitted to the PhD program, the student who completed the MS degree in BME requires one additional physiology/biology course, BE 792 Literature Review plus the completion of two graduate-level electives (at least one BE), to satisfy the curriculum requirements of the doctoral program.
- MS students wishing to continue on for a PhD with the intent to extend their MS research will be encouraged to modify their MS Thesis as necessary into a PhD Prospectus. If a student wishes to change
research topics, then a prospectus appropriate for the new topic will be required. It is important to note that all students must have passed the BME PhD oral qualifier exam prior to submitting and defending a PhD Prospectus.

Planning for Graduation

An MS student cannot defend his/her thesis and/or graduate the same semester in which the MS proposal was submitted. In order to graduate, students must be registered in the semester in which they complete degree requirements and in the preceding semester.

Financial Information

Students receiving any form of financial support for graduate studies are not permitted additional employment without prior written approval from both the student’s advisor and the department.

Masters Research Assistantships

It is important to first recognize that Masters Research Assistantships (MRA’s) are not guaranteed for MS with Thesis students. MRA’s are offered by individual faculty members with sponsored research grants. Students interested in off-campus Masters Research Assistantships should speak with the Director of BME Masters Programs for departmental approval (to ensure that the research project is appropriate and that there is direct involvement of a BME faculty member).

A Masters Research Assistant (MRA) is a member of a research group in a laboratory or center. The position offers close association with members of the faculty and is a very effective arrangement for graduate study. The association and the work with the lab or center usually lead to other opportunities. Work on the thesis is normally part of an assistant’s assignments. MRA’s are expected to work full-time, with time allowed for courses during the academic year. An MRA carries no tuition support.

Logistical Information

BME Graduate Student Lounge

The BME Lounge is located on the second floor of 44 Cummington Mall near the elevator. The mailing address is: *Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215*.

BME Kitchenette

There is a small kitchenette (including a refrigerator) that is available for faculty, graduate students and staff in ERB 407. A copy machine is available for students.

Getting to the BU Medical School Campus

BME students often take courses, perform research or attend lectures at the BU School of Medicine campus, which is located at 80 E. Concord Street in Boston. Traveling between Boston University’s Charles River campus and the Medical Campus is now easy thanks to the enhanced *Boston University Shuttle (The BUS)* service. The Shuttle runs every 10-30 minutes (depending on the day and time). IT IS FREE! Call 877-355-1555 to receive recorded information about The BUS service, including current reports of transportation delays and service interruptions. The closest stop to the BME department is at the corner of Blandford St and Commonwealth Ave. [Schedules and real-time bus locations](#) can be found online.
Staff Directory

BME Graduate Programs Administration

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamal Sen</td>
<td>kamalsen@bu.edu</td>
</tr>
<tr>
<td>Jonathan Rosen</td>
<td>jir10@bu.edu</td>
</tr>
<tr>
<td>Christen Bailey</td>
<td>christen@bu.edu</td>
</tr>
<tr>
<td>Corinne Rosseel</td>
<td>crosseel@bu.edu</td>
</tr>
<tr>
<td>Associate Chair for Graduate Programs</td>
<td></td>
</tr>
<tr>
<td>Director of BME Masters Programs</td>
<td></td>
</tr>
<tr>
<td>Graduate Programs Administrator</td>
<td></td>
</tr>
<tr>
<td>Masters Program Administrator</td>
<td></td>
</tr>
</tbody>
</table>

BME Department General and Financial Administration

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>John White</td>
<td>jwhite@bu.edu</td>
</tr>
<tr>
<td>Matthew Barber</td>
<td>meb@bu.edu</td>
</tr>
<tr>
<td>Allie Gustin</td>
<td>allieg@bu.edu</td>
</tr>
<tr>
<td>Irene Orzechowski</td>
<td>ireneo@bu.edu</td>
</tr>
<tr>
<td>Nicole Ford Burley</td>
<td>neford@bu.edu</td>
</tr>
<tr>
<td>Fallon Fernandes</td>
<td>fallonf@bu.edu</td>
</tr>
<tr>
<td>Tara Sorrentino</td>
<td>tarmac@bu.edu</td>
</tr>
<tr>
<td>Laura Prusaitis</td>
<td>laurapru@bu.edu</td>
</tr>
<tr>
<td>Lauren Daley</td>
<td>ldaley@bu.edu</td>
</tr>
<tr>
<td>Will Reich</td>
<td>willr@bu.edu</td>
</tr>
<tr>
<td>Senior Program Coordinator</td>
<td></td>
</tr>
</tbody>
</table>

College of ENG Administration – Dean's Office & GPO

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenneth Lutchen</td>
<td>klutch@bu.edu</td>
</tr>
<tr>
<td>Dean</td>
<td>sre@bu.edu</td>
</tr>
<tr>
<td>Catherine Klapperich</td>
<td>catherin@bu.edu</td>
</tr>
<tr>
<td>Linda Hession</td>
<td>hession@bu.edu</td>
</tr>
<tr>
<td>Stacey Herman</td>
<td>smherman@bu.edu</td>
</tr>
<tr>
<td>Lisa Lho</td>
<td>lholh@bu.edu</td>
</tr>
<tr>
<td>Andrew Butler</td>
<td>acbutler@bu.edu</td>
</tr>
<tr>
<td>Kirstie Miller</td>
<td>kimiller@bu.edu</td>
</tr>
<tr>
<td>Assistant Director, Financial Aid</td>
<td></td>
</tr>
<tr>
<td>Assistant Director, Enrollment Operations</td>
<td></td>
</tr>
<tr>
<td>Director of Professional Education & Corporate Relations</td>
<td></td>
</tr>
</tbody>
</table>