Schwager, Grinstaff Win Faculty Awards


By Mark Dwortzan

Professor Mark Grinstaff (BME, Chemistry, MSE)
Professor Mark Grinstaff (BME, Chemistry, MSE)

Honoring senior and junior faculty each year for major contributions to their fields and to society at large, the College of Engineering has bestowed its inaugural Charles DeLisi Award and Lecture on Professor Mark Grinstaff (BME, Chemistry, MSE), and its Early Career Excellence Award on Assistant Professor Mac Schwager (ME, SE).

Assistant Professor Mac Schwager (ME, SE)
Assistant Professor Mac Schwager (ME, SE)

The Charles DeLisi Award and Lecture recognizes faculty members with extraordinary records of well-cited scholarship, senior leaders in industry and extraordinary entrepreneurs who have invented and mentored transformative technologies that impact our quality of life, and provides the recipient with a public forum to discuss his or her work before the Boston University academic community and the general public. Grinstaff will present the 2015 Charles DeLisi Distinguished Lecture on Thursday, April 2 at 4 p.m. in the Photonics Colloquium Room (PHO 906).

The Early Career Research Excellence Award celebrates the significant, recent, high-impact research achievements of exemplary tenure-track faculty who are within 10 years of receiving their PhD.



Charles DeLisi Award and Lecture

For two decades, Grinstaff has pursued highly interdisciplinary research aimed at elucidating underlying fundamental chemistry and engineering principles, and applying them to develop new materials and devices for clinical applications. Supported by the Grinstaff Group, a lab with more than 20 graduate students and postdoctoral fellows, and funded by the National Institutes of Health, National Science Foundation, The Wallace H. Coulter Foundation, Advanced Energy Consortium, the Center for Integration of Medicine & Innovative Technology, and other agencies, he has advanced several major biomaterials that range from a joint lubricant that could bring longer- lasting relief to millions of osteoarthritis sufferers, to a highly absorbent hydrogel that not only seals wounds, but can later be dissolved and gently removed.

He has co-founded four companies to translate some of his ideas into clinical products. The first, Hyperbranch Medical Technology, produces biodegradable surgical sealants that are already widely used by surgeons. The others, advancing products that have not yet completed clinical trials, are Flex Biomedical (a synthetic polymer to treat osteoarthritis), Acuity Bio (flexible films to prevent tumor recurrence after surgical resection) and Affinergy (leading edge assays and research tools aimed at improving scientific and diagnostic outcomes).

Grinstaff has published more than 200 peer-reviewed manuscripts, garnered more than 10,000 citations, filed more than 200 patents, and delivered more than 275 oral presentations. His students and fellows have given more than 100 oral presentations and 300 posters at national and international meetings. He is a Fellow of the American Academy of Nanomedicine, American Institute for Medical and Biomedical Engineering, and National Academy of Inventors.  His numerous awards include the ACS Nobel Laureate Signature Award, NSF Career Award, Alfred P. Sloan Research Fellowship, Pew Scholar in the Biomedical Sciences, Camille Dreyfus Teacher-Scholar, and Edward M. Kennedy Award for Health Care Innovation. He received his PhD from the University of Illinois and was an NIH postdoctoral fellow at the California Institute of Technology.

At BU Grinstaff directs the Center for Nanoscience and Nanobiotechnology (CNN) and NIH-funded Translational Research in Biomaterials program, and is the inaugural College of Engineering Distinguished Professor of Translational Research and inaugural recipient of the Innovator of the Year Award from BU’s Office of Technology Development. He was also named a College of Engineering Distinguished Faculty Fellow and a Kern Faculty Fellow.

“Mark has shown tremendous dedication to being an intellectual leader in his field and has successfully harnessed his substantial creative power to translate his ideas to products that impact society,” said Professor Sol Eisenberg, who heads the Biomedical Engineering Department. “He is an iconic exemplar of translational research in the College of Engineering and at Boston University, and a tremendous example of what we value in our faculty.”

Early Career Research Excellence Award

A member of the BU faculty since January, 2012, Schwager is working to optimize how groups of robots work together to accomplish specified tasks. These range from deploying a swarm of autonomous helicopters to provide surveillance of a city, to sending a fleet of robots to search for and rescue survivors at a disaster site. To enable efficient coordination among multiple robots, he designs distributed control, perception and learning algorithms for each robot, and tests their performance and safety in his Multi-robot Systems Laboratory.

The technology Schwager is developing is designed to empower multi-robot systems such as UAVs not only to monitor their environment but to control it as well. Such systems could be used to collect data over large areas for scientific, security and defense purposes; fight forest fires; clean up oil spills; plant, water and harvest crops; air-drop medicines; and perform other vital functions.

A principle investigator (PI) or co-PI on National Science Foundation and Office of Naval Research grants totaling $3 million, Schwager received an NSF CAREER award in 2014 for his project, “Controlling Ecologically Destructive Processes with a Network of Intelligent Robotic Agents.” His published work, which includes a journal article that won the Best Paper Award at the Conference on the Simulation of Adaptive Behavior in 2008, has already garnered 1,308 citations. He received his PhD in Mechanical Engineering from MIT in 2009.

“The sky is the limit for this technology, and Mac Schwager has the vision to identify the important problems, the skill to overcome the key technology barriers, the ambition and energy to compete and prevail in both academia and business, and the personal charisma and communication skills to sell his vision at all levels,” said Professor Alice White, who heads the Mechanical Engineering Department.