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Massachusetts Green 
High Performance 
Computing Center

• BU’s research computing 
resources are housed at 
the MGHPCC.

• Collaboration with 
Harvard, MIT, 
Northeastern, UMass and 
BU.

• World-class computational 
infrastructure

• Powered by Green
energy!



Super-Computing 
Resources at BU

• World Class Resource at BU
• It is free for you and easy to 

gain access!!
• It can help you with your research 

and make you happy! 

This is the same resource used, e.g., by the particle physicists 
evaluating the ATLAS experiment at CERN to evaluate 
Petabytes of data …



Advantages of using the BU Shared 
Computing Cluster (SCC)

• Access many processors simultaneously: 
• You can complete your computer jobs faster. 
• You can complete many jobs at once. 

• Access from any computer (or phone?) 
• Check on your jobs. 
• Start them with new parameters.

• Super-computers don’t get restarted.
• Look cool – impress friends (and potential employers)! 



Why and when to use 
the SCC?

• Obviously, speed, but there are some caveats.

• Each individual core may not be much (or at all) faster than 
your desktop or even laptop.

• Main advantage of SCC is memory and access to many 
processing cores (CPUs).

• Memory: 
• E.g. you work in Stata with a dataset that is 50 GB large… 

Need that much RAM or use SAS …
• CPUs

• Get access to (potentially multiple) computing nodes 
with up 28 cores.

• GPUs



When do multiple CPUs help?
• Ideally: 2 x N(CPU) = 2 x Speed
• But most software is written to run on a single core (thread).
• To use multiple cores in parallel requires some thoughtful 

programming.
• For our purposes there are essentially 2 ways:
• Implicit parallelization 
à your software environment does the work for you.
• Explicit parallelization 
à you tell your software environment exactly what and how to parallelize.



Example 1: Stata
• Stata MP provides implicit 

(automatic) parallelization 
of your code.
• E.g. matrix multiplication.

• Decent speed-up out of the 
box, no work needed.
• Stata MP licenses restrict 

number of cores. 
• On SCC MP 8 core available.

• Can run multiple jobs in 
parallel, …



Example 1: Stata
• Maybe particularly useful 

for working with large 
datasets.
• Up to 1024 GB possible. 

• Let jobs run for long time, 
…
• E.g. estimating model with 

many many fixed effects 
on hundreds of millions of 
observations … (AKM).



Example 1: Stata – Explicit Parallelization
• User created tool: parallel
• https://github.com/gvegayon/parallel

• Allows you to break out work into 
individual pieces and run in parallel.
• This works by spawning stata child 

processes that run their own version of 
Stata. The parallel package automates this 
process.
• Suppose you have a large dataset to clean.
• Parallel package makes it easy to run 

cleaning code on separate slices of data in 
parallel.
• Also works well for bootstrapping.

https://github.com/gvegayon/parallel


Stata: parallel package -- Bootstrapping
clear 
sysuse auto 
timer clear 
set processors 1 
timer on 1 
bs, reps(5000) nodots: reg price c.weig##c.weigh foreign rep 
timer off 1 
set processors 4 
timer on 2 
bs, reps(5000) nodots: reg price c.weig##c.weigh foreign rep 
timer off 2 
parallel initialize 4, f 
timer on 3 
parallel bs, reps(5000): reg price c.weig##c.weigh foreign rep 
timer off 3 
timer list 

. timer list
1:     12.50 /        1 =      12.5040
2:     13.03 /        1 =      13.0340
3:      5.29 /        1 =       5.2950

Speedup around by around x2.4.
No benefit from MP alone



Example 2: Matlab – Global Optimization
• Suppose you want to estimate a 

complicated dynamic model via 
GMM.
• Optimization problem:

min
!

(𝑚 𝜉 − (𝑚)′𝑊(𝑚 𝜉 − (𝑚)

• If objective function is convex this is 
easy. 
• Just use minimizer (e.g. fmincon) and 

you should be good.
• But what if this function is non-

convex?
• With large parameter vector 𝜉 this 

becomes a very complicated problem 
(curse of dimensionality).



Example 2: Matlab – Global Optimization
• Optimization problem:

min
!

(𝑚 𝜉 − (𝑚)′𝑊(𝑚 𝜉 − (𝑚)

• If non-convex need to search 
through parameter space in some 
way. 
• E.g. pick 1000 random starting 

vectors and run local minimizer on 
them.
• Best overall point might be close to 

global optimum.
• This lends itself well to 

parallelization.



Example 2: Matlab – Global Optimization

for j = 1:noSearchInits 
x0 = searchInits(:,j); 
options = optimset('Display', 'iter','Algorithm','interior-point'); 
try 
[paramHats(:,j), sse(j), exitFlag(j),outputf(j)] = ... 

fmincon(@objFun,x0,[],[],[],[],lb_res,ub_res,[],options) 
catch 
warning('Problem in fmincon'); 
disp('Initial Values: '); 
disp(x0); 
exitFlag(j) = -1; 

end 
end 

for j = 1:noSearchInits 
x0 = searchInits(:,j); 
options = optimset('Display', 'iter','Algorithm','interior-point’,    

'UseParallel','always'); 
try 
[paramHats(:,j), sse(j), exitFlag(j),outputf(j)] = ... 

fmincon(@objFun,x0,[],[],[],[],lb_res,ub_res,[],options) 
catch 
warning('Problem in fmincon'); 
disp('Initial Values: '); 
disp(x0); 
exitFlag(j) = -1; 

end 
end 

parfor j = 1:noSearchInits 
x0 = searchInits(:,j); 
options = optimset('Display', 'iter','Algorithm','interior-point'); 
try 
[paramHats(:,j), sse(j), exitFlag(j),outputf(j)] = ... 

fmincon(@objFun,x0,[],[],[],[],lb_res,ub_res,[],options) 
catch 
warning('Problem in fmincon'); 
disp('Initial Values: '); 
disp(x0); 
exitFlag(j) = -1; 

end 
end 



Example 3: Python

• Similarly to Stata and Matlab, there are many ways to parallelize code.
• Implicit: Underlying numerical libraries parallelize some operations. E.g. MKL, 

OpenBlas, …
• Unless you work with very large matrices this is neat, but also probably not 

dramatically helpful.

• More promising is explicit parallelization as in Matlab.
• E.g. Global Maximization with PyGMO
• PyGMO is a neat global optimization library.
• Developed by the European Space Agency to find interplanetary spacecraft 

trajectories.



Example 3: Python - PyGMO

• Global Maximization with PyGMO
• Easy to set up maximization problem that is distributed over many cores.
• Idea that each core is an island that runs an optimization algorithm over 

potentially many initial starting values.
• Each round the candidates from each island are moved between islands. 
• This way different algorithms can work together to find the best solution:

• Gradient based algorithms (Newtonian,…), 
• Genetic algorithms, 
• Particle swarms, 
• Simulated Annealing, …



Some optimization can go a long way

• Before throwing lots of cores at a 
problem it’s worthwhile spending 
some time optimizing your code.
• Vectorization:
• Explicit loops (for i in (1,2,3) …) are 

very slow in interpreted languages 
like Matlab and Python.
• Much faster to use operations on 

vectors since those are heavily 
optimized in underlying C code.

i = 0;
tic 
for t = 0:.01:100
i = i + 1; 
y(i) = sin(t);

end 
toc 
Elapsed time is 0.003418 seconds.

tic 
x = sin(0:.01:100 ); 
toc 
Elapsed time is 0.001414 seconds.



Compiling Code for Speed

• Interpreted languages usually come with a big speed penalty .
• One way to avoid this is to program in a compiled language like C or Fortran.
• Downside: you have to learn C or Fortran.
• Programming in C or Fortran is a bit harder. E.g. need to know about pointers, 

memory allocation, …
• You lose the ease of use / debugging of a Matlab or Python environment

• Various options:
• Matlab à Mex functions 
• Stata à Mata
• Julia à NKOTB
• Python à Numba



Compiling Python: Numba
import numpy as np
from numba import njit, prange

A = np.random.rand(10**7)

''' Simple Python Implementation '''
def fun_python(A):

s = 0
for i in range(A.shape[0]):

s += A[i]
return s

''' Numba – Just in Time Compilation'''
@njit
def fun_numba(A):

s = 0
for i in range(A.shape[0]):

s += A[i]
return s

''' Numba - parallel w/ prange '''
@njit(parallel=True)
def fun_numba_prange(A):

s = 0
for i in prange(A.shape[0]):

s += A[i]
return s

Speed Comparison:
• Python only  -- Elapsed Time: 1.909
• Numba plain  -- Elapsed Time: 0.012
• Numba Prange -- Elapsed Time: 0.003



Compiling Python: Numba

• Numba can dramatically speed up your code.
• Real world example:

• Structural life-cycle model of labor supply
• Numba runs about 25 times faster than pure Python or Matlab code.

• Numba gets close to the performance of writing directly in C or 
Fortran but with all the benefits of doing so in a Python environment.

Runtime Ratios

Steps Runs Matlab
Pure 
Python Numba

Matlab / 
Pure

Matlab / 
Numba

1 100 0.938 0.950 0.037 0.99 25.39
6 10 8.988 6.022 0.748 1.49 12.01

12 10 312.820 41.768 11.219 7.49 27.88



How to get Access

• Graduate students cannot have their own account. 
• You can be added to a faculty account, or to the department account. 
• Use faculty accounts for joint work or research assistance with a faculty 

member. 
• Use the department account for your own work. 

• To get access: 
Send e-mail to the RCS Liaison with your full name, your login name 
(Kerberos), and the e-mail address that you want to use. 
Currently Stephen Terry is the RCS Liaison.



SCC organization

Around 900 nodes with 
~12,000 CPUs and ~200 
GPUs

File Storage
Login nodes

Compute nodes

Private Network

Public Network

SCC1 SCC2 GEO SCC4
~3.4PB of Storage



Remote Access
• There are several ways (SFTP, SSH, …).
• Easiest way is browser based version: 
• scc-ondemand.bu.edu
• à Amazing! Can access SCC from anywhere (phone, ipad, laptop,…) without 

extra software!

• You can open interactive versions of most software environments 
right there in your browser!
• You can also upload and download filed, access a terminal, start 

scripts, …

https://scc-ondemand.bu.edu/


SCC Queue system
• The SCC uses a centralized job management system to allocate 

computing resources called “qsub”.
• You submit a job to qsub specifying the resources you need and the 

script to execute.
• E.g. “need 16 cores, 96 GB of RAM, and want to run structuralEst.m using 

matlab”

• This is done using the “qsub” command and by writing a bash script 
that provides some additional settings.
• This adds your job to the queue and once the resources are available 

your job starts automatically.



Typical workflow might be:
• Develop your script (do file, matlab, python, …) either on your local 

machine or in an interactive session. 
• E.g.: start_structural_model.m

• Write a bash script that calls the matlab script. 
• E.g.: run_batch

• Submit the bash script to the SCC Queuing system “qsub”.
• E.g.: qsub -pe omp 16 ./run_batch
• Note “-pe omp 16” means that you are requesting 28 computing cores.

• This will submit the job request to qsub where it now lines up in the queue. 
As soon as a node with 16 cores is available the job will start running.
• You can configure the “run_batch” file so that you receive an email when the job 

starts and finishes.



Example Set-up for SCC Job Submission
Command to submit script to qsub:
qsub -pe omp 28 ./run_batch

File: run_batch
#!/bin/bash -l
#$ -pe omp 28
# set default value for n; override with qsub -v at runtime
#$ -M johannes.schmieder@gmail.com
#$ -m beas

#$ -N StructEst_Test

# Load the newest version of matlab on SCC
module load matlab
# Additional qsub options here . . .
matlab -nodisplay -r "runBatchJob($NSLOTS); exit" 

File: runBatchJob -- Matlab file to start main program
function runBatchJob(n, nslots) 

% redirects /.matlab PCT temp files to TMPDIR on the compute
% node to avoid inter-node (compute node <--> login node) I/O
myCluster = parcluster('local') % cores on compute node to be 

"local"
if getenv('ENVIRONMENT') % true if this is a batch job
myCluster.JobStorageLocation = getenv('TMPDIR') % points to 

TMPDIR
end 

% Create a parallel pool with the number of CPU cores requested 
on the cluster

parpool(myCluster, nslots) 

% Run main matlab code
estimate_structural_model

% Shut down parallel pool
delete(gcp('nocreate')); 

end 



Example Set-up for SCC Job Submission

• See the queue: 
• qstat

• See the jobs submitted under your username: 
• qstat -u <username> 

• Delete a job: 
• qdel jobNumber. 



Resource Limits
• Cores: most nodes have 8, 16 or 28 cores. You should write your code 

targeting these numbers and being mindful of what you need.
• Requesting 17 cores makes no sense since you are effectively blocking a 28 

core machine.
• Requesting 16 cores if you only run StataMP (8-core) also makes no sense.

• Wall clock time limit:
• On the shared computing nodes jobs will automatically terminate after 12 

hours.
• You can request longer run times, but there are fewer nodes that offer that.
• Write your code so that not everything is lost if it does not finish by then.



A little Linux goes a long way …

• The cluster runs on Linux.
• Worthwhile to work through a little tutorial.
• Learn some basic commandline commands:
• ls
• Cp
• Mv



Conclusion

• There is some learning curve but a huge payoff.
• The research computing service team offers great support and 

documentation:
• http://www.bu.edu/tech/support/research/
• http://www.bu.edu/tech/support/research/system-usage/running-jobs/
• By reading online you can learn a lot.
• RCS also offers classes for scientific computing taught be experts (Matlab, 

Python, R, GPU programming, Linux, …)

• Ultimately you learn by doing and experimenting.

http://www.bu.edu/tech/support/research/
http://www.bu.edu/tech/support/research/system-usage/running-jobs/

