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1 Introduction

Kejriwal and Perron (2010, KP henceforth) provided a comprehensive treatment of the prob-

lem of testing for multiple structural changes in cointegrated regression models. A number

of test statistics were developed, including tests against a prespeci�ed number of breaks,

an unknown number of breaks subject to an upper bound and a sequential procedure to

estimate the number of breaks. Their framework allows for both nonstationary [I(1)] and

stationary [I(0)] regressors as well as serial correlation and conditional heteroskedasticity in

the errors. A variety of models were considered depending on whether all coe¢ cients are

allowed to change [pure structural change] or a subset of coe¢ cients is held �xed [partial

structural change]. The limiting distributions of the test statistics were shown to be pivotal

under the null hypothesis of no structural change and the relevant critical values tabulated.

Partial structural change models are useful in that they allow for more powerful testing

procedures, as illustrated via simulations by Kuo (1998). In the stationary framework of

Bai and Perron (1998), tests of partial parameter stability remain asymptotically valid even

in the presence of breaks in coe¢ cients that are not under test. This invariance property

facilitates the interpretation of the outcome of these tests and serves to identify the source of

instability in the regression model. Such a property, however, no longer holds in the presence

of I(1) regressors so that the partial tests of KP can signal the presence of instability as long

as any of the coe¢ cients are unstable, including those that are not being tested.

In this note, we �rst show that the limit distributions of the test statistics in the partial

structural change models are not invariant to changes in the coe¢ cients not being tested. In

fact, the test statistics diverge as the sample size increases. To address this issue, we propose

a simple two step procedure to test for partial parameter stability. The �rst step entails the

application of a joint test for the stability of all coe¢ cients as in KP. Upon a rejection, the

second step conducts a stability test on the subset of coe¢ cients of interest while allowing the

other coe¢ cients to change at the estimated breakpoints. Its limit distribution is standard

chi-square. The relevant asymptotic theory is provided along with simulation evidence that

illustrates the adequacy of the performance in �nite samples.

In a related paper, Hsu and Kuan (2001) studied the problem of distinguishing between

intercept and slope breaks in a model with a bounded deterministic trend with a stationary

noise component. They showed that the limit distributions of partial break test statistics are

non-pivotal and depend on the magnitude of the coe¢ cient break (intercept or slope) not

under test. A similar result was demonstrated by Hsu (2008) in the context of cointegrated
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regressions. In both studies, however, the asymptotic analysis was conducted in a framework

in which the break size shrinks to zero as a function of the sample size at a rate ruling out

consistent estimation of the break fractions, thereby invalidating a two-step testing approach.

In contrast, our asymptotic framework allows the break fractions to be consistently estimated

ensuring the large sample validity of the two step procedure.

This note is structured as follows. Section 2 presents the model and the test statistics.

Section 3 details the proposed two step procedure to test for partial parameter stability.

Monte Carlo simulation results are reported in Section 4 to assess the performance of the

procedure in small samples and Section 5 provides brief concluding remarks. All proofs are

provided in Appendix A. As a matter of notation, �
p!�denotes convergence in probability,

� d!�convergence in distribution and �)�weak convergence under the Skorohod metric.

2 Model and Test Statistics

The dependent variable yt is generated according to the linear regression model withm breaks:

yt = cj + z
0
ft�fj + z

0
bt�bj + ut; t = Tj�1 + 1; :::; Tj (1)

for j = 1; :::;m + 1, (m + 1 being the number of regimes) where T is the sample size (by

convention T0 = 0, Tm+1 = T ), zft and zbt are (qf �1) and (qb�1) vectors of I(1) regressors,
de�ned by: zft = zf;t�1 + u

f
zt, zbt = zb;t�1 + u

b
zt, for t = 1; :::; T; with zf0 and zb0 assumed to

be �xed constants or Op(1) random variables. Equation (1), labelledModel A, represents a
pure structural change model with all regression coe¢ cients including the intercept allowed

to change. The null hypothesis of stability is H0;A: cj = c; �fj = �f ; �bj = �b for all j. We

also consider the following two partial structural change models, obtained as special cases

of (1), by restricting a subset of the parameters to be �xed across regimes; namely Model
B: yt = c + z0ft�f + z

0
bt�bj + ut and Model C: yt = cj + z

0
ft�f + z

0
bt�b + ut. In Model B,

the objective is to test the stability of the coe¢ cients of zbt; i.e., H0;B: �bj = �b for all j.

Similarly, the null hypothesis of interest in model C is the stability of the intercept: H0;C :

cj = c for all j. KP considered two additional partial break models: one with the null

hypothesis of joint stability of (cj; �bj) while holding �fj �xed across regimes; the other a

special case of Model B, which does not include the regressors zft. They also considered

allowing both I(1) and I(0) regressors and a variety of partial break submodels. For brevity,

we do not consider these extensions but note that the two step procedure we advocate remains

valid in these cases. We also focus on the single break case (m = 1) since the extension
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to multiple breaks is straightforward. KP proposed sup-Wald test statistics for each of

H0;A; H0;B and H0;C : For a given break fraction � = T1=T; the Wald statistic for testing

H0;i is FT;i(�) = [SSR0 � SSRi(�)]=�̂2i (�), where SSR0 and SSRi(�) [i = A;B;C] are the
sum of squared residuals under the null hypothesis of stability and that under the alternative

of model i; respectively. The scaling factor �̂2i (�) is an estimate of the long-run variance of

ut. Following KP, it is computed as

�̂2i (�) = T
�1PT

t=1 eu2t + 2PT�1
j=1 w(j=bT )T

�1PT
t=j+1 euteut�j

where eut are the residuals from the regression under the null hypothesis and w(�) is a contin-
uous and even function with jw(:)j � 1; w(0) = 1 and

R1
-1w

2(x) < 1. KP proposed using
the quadratic spectral kernel with the bandwidth chosen via the rule bT = 1:3221(â2T )

1=5

advocated by Andrews (1991), where â2 = 4�̂
2=(1 � �̂)4, �̂ =

PT
t=2 ûtût�1=

PT
t=2 û

2
t�1, with

ût the residuals from the regression under the alternative hypothesis. This is a hybrid non-

parametric estimate that employs residuals under both the null and alternative hypotheses

which ensures that the test statistic is adequately sized while bypassing the problem of non-

monotonic power that plagues the Lagrange Multiplier type tests (see KP for more details).

For some arbitrary small positive number �, de�ne the set �� = f� : � � � � 1 � �g. The
sup-Wald test is then de�ned as supFT;i(�) = sup� 2��FT;i(�). Let �t = (ut; u

f 0
zt; u

b0
zt)

0, a vec-

tor of dimension n = qf + qb + 1: Our analysis is based on the following set of assumptions,

where here, and throughout, true values are denoted with a subscript 0:

�Assumption A1: The vector �t satis�es the following multivariate Functional Central
Limit Theorem (FCLT): T�1=2

P[Tr]
t=1 �t ) B(r), with B(r) = (B1(r); Bfz (r)

0; Bbz(r)
0)0 is a n

vector Brownian motion with symmetric covariance matrix


 =

0BBB@
�2 
f1z 
b1z


fz1 
ffzz 
fbzz


bz1 
bfzz 
bbzz

1CCCA
1

qf

qb

= lim
T!1

T�1E(STS
0
T ) = � + � + �

0

where ST =
PT

t=1 �t, � = limT!1 T
�1PT

t=1E(�t�
0
t) and � = limT!1 T

�1PT�1
j=1

PT�j
t=1 E(�t�

0
t+j).

Also �2 > 0 and p limT!1 T
�1PT

t=1 u
2
t = limT!1 T

�1PT
t=1E[u

2
t ] � �2u.

�Assumption A2: The matrix

0@
ffzz 
fbzz


bfzz 
bbzz

1A is positive de�nite.

�Assumption A3: Let 0j = (c0j ; �
00
fj; �

00
bj)

0
, j = 1; 2 and DT = diag(1; T�1=2Iqf ; T

�1=2Iqb).
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Then 02 � 01 = DT�vT where � = (�c; �
0
f
; �0

b
)0 is independent of T and vT > 0 is a scalar

satisfying vT ! 0 and T 1=2vT !1.
Assumptions A1-A2 are standard and the same as in KP. Assumption A3 adopts a

shrinking shifts asymptotic framework whereby the magnitude of the break shrinks to zero

as T increases with the coe¢ cients of the I(1) regressors shrinking faster than the intercept

break (see Bai, Lumsdaine and Stock, 1998, Kejriwal and Perron, 2008a). The speci�ed rates

ensure that the true break fraction � 0 = T 01 =T can be consistently estimated and allows the

construction of con�dence intervals for the break date. KP derived the limit null distribution

of the test statistics for models A, B and C under Assumptions A1-A2 and showed that they

are pivotal, allowing the tabulation of critical values to perform the tests. In particular,

the limit distributions pertaining to the partial break statistics are derived assuming that

all parameters are stable under the null hypothesis (i.e., � = 0 in Assumption A3), including

the subset not under test. The following result shows that the asymptotic size of these test

statistics is not invariant to changes in the subset of parameters not being tested.

Theorem 1 Under Assumptions A1-A3, 
f1z = 

b
1z = 0 and �

0 2 ��: a) If �c 6= 0 and/or
�f 6= 0 and H0;B holds, supFT;B(�) is Op(b�1T T ) if bT�2T

p!1, and Op(T�2T ), otherwise. (b)
If �f 6= 0 and/or �b 6= 0 and H0;C holds, the same results hold for supFT;C(�).

Theorem 1 shows that the sup-Wald statistics have 100% asymptotic size when the in-

stability comes from the set of parameters not part of the null hypothesis. Hence, the partial

break statistics can be expected to su¤er from considerable size distortions in �nite samples

so that a rejection cannot be attributed to a change in the parameters under test. Monte

Carlo simulations reported in Section 4 con�rm the relevance of this result in �nite sam-

ples. Note that a similar result holds when the break magnitude is �xed (independent of T ),

namely supFT;B(�) and supFT;C(�) are Op(b�1T T ).

Theorem 1 is derived under the assumption of strictly exogenous regressors, i.e., 
f1z =


b1z = 0. This is not necessary and is only imposed to simplify the analysis. Endogenous

I(1) regressors can be accounted for using the dynamic least squares estimator (DOLS)

which entails augmenting the regression with leads and lags of the �rst-di¤erences of the

I(1) regressors (see Saikkonen, 1991) with the number selected using some information cri-

teria (Kejriwal and Perron, 2008b). KP considered a general regression framework which

allows for both I(1) and I(0) regressors. It can be shown that the asymptotic size of the par-

tial break KP statistics is again not invariant to changes in a subset of the parameters even

when testing the stability of the I(0) coe¢ cients. This size contamination does not occur in
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the stationary regression framework of Bai and Perron (1998) and is due to the presence of

I(1) regressors. In contrast, the two step procedure proposed below remains valid whether

one is interested in testing the stability of the intercept, the I(1) or I(0) coe¢ cients, or any

combination of these three sets of parameters.

3 Two Step Procedure

The analysis in the preceding section shows that the partial break KP statistics cannot be

used to evaluate the stability of a subset of parameters in the presence of changes in the set

of parameters that are not under test. Rather, a rejection by these statistics can only be

interpreted as signaling instability in any of the model parameters. Thus, if the objective

is not only to test for overall model stability but also to determine which particular subset

of parameters is unstable, an alternative approach is needed. To achieve this, we propose

the following two step procedure: 1) Conduct the test supFT;A(�) of joint stability of all

parameters in regression (1). If the null hypothesis is not rejected at the desired level of

signi�cance, stop the procedure and conclude there is no evidence of instability. Otherwise,

obtain the break date estimate �̂ by minimizing the sum of squared residuals from (1) and

proceed to the following step; 2) Conduct a F test using chi-squared critical values for the

equality of the coe¢ cient across regimes on the subset of coe¢ cients of interest allowing

the others to change at the estimated breakpoint. Upon a rejection, conclude in favor of a

structural change in the subvector of interest, otherwise the stability cannot be rejected.

The asymptotic validity of the two step procedure follows from (i) the test in the �rst

step is asymptotically pivotal under the null and consistent against alternatives involving a

change in at least one parameter and (ii) the break fraction is consistently estimated as long

as any of the parameters are subject to a break. The second fact ensures that the F test in the

second step converges to a chi-square distribution under the null hypothesis of no structural

change in the subvector of interest. This basically follows since the estimate of the break

fraction is fast enough to ensure that the limit distribution of the parameter estimate is the

same that would prevail if the break date was known. We thus have the following result

where F (2)T;i (�̂) denotes the second step test of the null hypothesis H0;i [i = B;C].

Theorem 2 Suppose Assumptions A1-A3 hold, 
f1z = 
b1z = 0 and � 0 2 ��: Under the
conditions of Theorem 1(a), resp, 1(b), a) F (2)T;B(�̂)

d! �2(qb), resp., b) F
(2)
T;C(�̂)

d! �2(1).
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4 Monte Carlo Evidence

This section presents the results of Monte Carlo experiments designed to assess the �nite

sample adequacy of the theoretical results. These will show that (i) the KP partial break

test statistics are subject to substantial over-rejections when the data generating process

(DGP) involves a change in the subset of parameters outside those pertaining to the null

hypothesis, and (ii) the two step procedure proposed has good size and considerable power

in detecting deviations from stability. The design is similar to that in Kuo (1998). The

dependent variable yt is generated by: yt = ct + �tzt + ut; zt = zt�1 + uzt; uzt
i:i:d:� N (0; 1).

Four DGPs are considered: DGP-1: ct = 1; �t = 1 for all t; DGP-2: ct = 1 for all t; �t = 1 if

t � [� 0T ] and 1+��, otherwise; DGP-3: ct = 1 if t � [� 0T ] and 1+�c, otherwise, �t = 1 for

all t; DGP-4: ct = �t = 1 if t � [� 0T ], otherwise, ct = 1 + �c and �t = 1 + ��. For the

errors ut, we consider three di¤erent cases: (a) (i.i.d. errors) ut
i:i:d:� N (0; 1); (b) (AR(1)

errors) ut = 0:5ut�1+ et, et
i:i:d:� N (0; 1); (c) (MA(1) errors) ut = et� 0:5et�1, et

i:i:d:� N (0; 1).
The breakpoint is set at � 0 = 0:5. The regressor zt is assumed to be strictly exogenous, i.e.,

uzt and us are independent for all t and s. The trimming � is set at 15%. In all cases, tests

with a nominal 5% size are used. The number of replications throughout is 100,000.

In the �rst set of simulations, we compare the size and power of the partial break KP

statistics and the two step procedure for T 2 f120; 240g. The break magnitudes are set at
�c = 1;�� = 0:4: Table 1 presents the results. Panel A reports the rejection frequencies

when testing for a break in slope (�) so that DGPs 1 and 3 pertain to size and DGPs 2 and

4 to power. While the partial break KP test has adequate size for DGP-1, size distortions

are evident for DGP-3, irrespective of the error structure, which increase with T , consistent

with the result in Theorem 1. In contrast, the proposed two step procedure exhibits much

better size control across T and error structures, the exact size never exceeding 10%. A

seemingly counterintuitive feature of the two step approach is that for DGP-3b [AR(1)

errors], the empirical size need not approach the nominal size monotonically as T increases.

We investigate this issue in detail later. Panel B reports the rejection frequencies when

testing the stability of the intercept c. Here DGPs 1 and 2 correspond to size and DGPs

3 and 4 to power. Similar to the results in Panel A, the two step test has adequate size in

all cases, while the one step KP test is subject to substantial size distortions under DGP-2

(a change in the slope parameter). In DGP-2b with positively serially correlated errors, the

rejection frequencies of the two step test increase with T , as in Panel A. As expected, there is

sometimes a loss in power using the two step test relative to the partial break KP test; e.g.,
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DGP-2 in Panel A, DGP-3 in Panel B, since in these cases the KP test is already tailored

to have power against alternatives speci�ed by the DGP. The di¤erence in power is more

prominent with AR(1) errors but less so otherwise. Notwithstanding its two step nature,

our recommended procedure retains respectable power that increases noticeably with T .

We also consider DGPs involving both I(1) and I(0) regressors given by: yt = �t+�txt+

�tzt+ut, where xt
i:i:d:� N (1; 1), zt = zt�1+uzt and uzt

i:i:d:� N (0; 1). Four DGPs are considered:
DGP-5: �t = �t = 1, �t = 1 if t � [� 0T ], otherwise �t = 1:4; DGP-6: �t = 1, �t = �t = 1, if
t � [� 0T ], otherwise �t = 3, �t = 1:4; DGP-7: �t = �t = 1 and �t = 1 if t � [� 0T ], otherwise
�t = 2; DGP-8: for t � [� 0T ], �t = �t = �t = 1, and for t > [� 0T ], �t = 2, �t = 3, �t = 1:4.
For each DGP, we are interested in testing the stability of the I(0) coe¢ cient �t. Thus DGPs

5 and 7 correspond to size while DGPs 6 and 8 correspond to power. The same three error

structures are allowed for ut as described above. The results are presented in Panel C of

Table 1. For DGPs 5 and 7, the size of the two-step procedure is near the nominal 5% level,

except when the sample size is small with AR(1) errors, though the distortions in this reduce

considerably as T increases. For DGPs 6 and 8, the results show substantial power. The

standard KP test is again rejecting far too often, indicating its non-robustness even when

testing the stability of I(0) coe¢ cients.

The second set of simulations examines the impact of the break magnitude and T on test

size. We focus on DGPs 2b-3b for which we observed an increase in size distortions for the two

step procedure as T increased from 120 to 240 for a �xed break magnitude. Table 2 presents

the results. Panel A reports the rejection frequencies for T between 60 and 600 with the

break magnitude �xed. We include the �rst step, second step and �nal rejection frequencies

for the two step procedure to investigate the contribution of each to the �nal test outcome.

The following patterns are worth noting. First, the magnitude of the size distortions incurred

by the two step approach does not monotonically decrease as T increases, i.e., it initially

increases and then decreases. Second, while the increase in the �rst step rejection frequencies

re�ects the expected increase in power, the second step rejection frequencies decrease as T

increases, re�ecting the reduced estimation uncertainty about the break date. The evolution

of the �nal rejection rate (the product of the �rst and second stage rates) as a function of

T thus depends on the rate of increase in �rst stage power vis-a-vis the rate of reduction

in second stage size distortions. This observation explains the pattern of results reported in

Table 1 for DGP-2b and DGP-3b. Panel B of Table 2 explores the behavior of test size as a

function of the break magnitude when T = 120. The results resemble those in Panel A, with

a hump-shaped pattern for the �nal rejection rate, caused by an increase in the �rst-stage
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power accompanied by a reduction in sampling uncertainty about the break date, as the

magnitude of the break increases. Figure 1 summarizes the results in Table 2 graphically,

plotting the �rst, second and �nal stage rejection rates as a function of T for a given break

size (�c = 1;�� = 0:4) and as a function of break size for a given sample size (T = 120).

5 Conclusion

This note dealt with testing for partial parameter stability in cointegrated regression models.

Using an asymptotic framework for the break magnitude ensuring consistent estimates of the

break fractions, we �rst showed that existing partial break sup-Wald tests diverge with T

when the coe¢ cients not being tested are subject to change. We proposed a simple two

step procedure which �rst tests for joint parameter stability and subsequently conducts a

standard chi-squared stability test on the coe¢ cients of interest allowing the other coe¢ cients

to change at the breakpoints estimated by minimizing the sum of squared residuals in the

pure structural change model. The relevant asymptotic theory is provided and simulations

showed the procedure to work well in a variety of scenarios.
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Table 1: Size and power of the KP and two-step tests (�100), 5% nominal level

T = 120 T = 240
DGP 1 2 3 4 1 2 3 4

Panel A: Testing for a partial change in the coe¢ cient of an I(1) regressor (�t)
a (i.i.d. errors) KP 3.66 98.83 50.92 93.44 4.28 100 73.93 99.82

Two-step 2.29 97.06 8.02 97.39 2.63 100 7.05 100
b (AR(1) errors) KP 2.80 75.90 10.98 66.83 3.67 98.78 27.21 95.20

Two-step 1.42 59.27 3.96 61.27 1.79 97.10 6.86 97.48
c (MA(1) errors) KP 2.70 99.92 65.80 96.82 1.88 100 85.26 99.97

Two-step 3.92 99.70 4.77 99.74 2.02 100 2.97 100
Panel B: Testing for a partial change in intercept (ct) with an I(1) regressor
a (i.i.d. errors) KP 4.43 81.31 84.72 84.88 4.79 92.64 97.12 93.56

Two-step 2.31 8.40 59.94 66.24 2.64 6.21 81.53 82.19
b (AR(1) errors) KP 4.27 44.74 28.86 50.09 4.87 71.55 59.32 73.90

Two-step 1.70 8.95 11.89 27.95 2.12 9.34 33.49 52.35
c (MA(1) errors) KP 1.10 88.69 97.27 91.44 1.08 97.74 99.94 98.09

Two-step 2.98 3.88 81.33 82.66 1.63 2.53 94.76 94.20
Panel C: Testing for a partial change in the coe¢ cient of an I(0) regressor (�t)

DGP 5 6 7 8 5 6 7 8
a (i.i.d. errors) KP 47.25 95.36 33.82 97.92 81.10 97.11 64.79 98.78

Two-step 6.42 99.86 5.07 99.88 6.17 100 6.33 100
b (AR(1) errors) KP 38.51 93.27 20.31 97.16 72.86 96.8 44.14 98.08

Two-step 1.80 68.5 0.33 70.24 3.89 99.67 1.61 99.66
c (MA(1) errors) KP 48.32 95.73 33.7 98.24 82.59 97.53 62.76 98.84

Two-step 6.46 99.95 6.07 99.95 5.61 100 5.85 100

Table 2: Rejection rates of the KP and two-step tests for DGP-2b, 3b

as a function of the sample size and break magnitude, 5% nominal level

Panel A: �c = 1, �� = 0.4, with di¤erent T .
T 60 120 180 240 300 360 480 600

DGP-2b KP 19.77 44.86 61.29 71.20 77.54 81.72 86.32 88.81
Final 5.77 9.12 10.03 9.29 8.44 7.77 7.27 6.92
1st step 22.81 65.56 89.91 97.85 99.61 99.94 100 100
2nd step 25.31 13.91 11.16 9.49 8.47 7.77 7.27 6.92

DGP-3b KP 5.87 11.14 18.85 27.10 34.55 41.29 52.32 60.16
Final 2.95 3.87 5.51 6.76 7.71 8.15 8.40 8.26
1st step 8.54 15.75 29.72 44.54 56.91 66.55 79.63 86.87
2nd step 34.58 24.55 18.53 15.17 13.55 12.25 10.55 9.51

Panel B: T = 120, with di¤erent break magnitude �� of the parameter not under test.
�� 0.1 0.2 0.3 0.4 0.5 1 1.5 2

DGP-2b KP 12.12 27.72 39.06 44.60 47.84 44.51 39.44 36.58
Final 3.16 5.82 7.81 9.01 9.88 8.96 8.10 7.82
1st step 8.67 27.78 48.94 65.42 78.23 98.72 99.96 100
2nd step 36.46 20.96 15.95 13.77 12.64 9.08 8.11 7.82

DGP-3b KP 3.29 4.27 5.87 8.31 11.21 26.36 33.64 35.26
Final 1.53 1.86 2.37 3.10 3.91 7.06 7.62 7.36
1st step 2.85 4.18 6.48 10.42 15.73 57.18 85.56 96.32
2nd step 53.65 44.38 36.50 29.76 24.87 12.34 8.90 7.64
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Figure 1: Rejection rates of two-step test for DGP-2b and DGP-3b as a function of sample size/break magnitude.
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Appendix

For any matrixWT�q = (w1; :::; wT )
0, de�ne the projection matrices PW = W (W

0
W )�1W

0
,

MW = IT�q � PW and the matrix �W that diagonally partitions W at T1, i.e., �W =
diag(W1;W2); where Wi = (wTi�1+1; :::; wTi)

0 (i = 1; 2) with T0 = 0 and T2 = T . Also, let
Y = (y1; :::; yT )

0, �T�1 = (1; :::; 1)0, u = (u1; :::; uT )0, Zf = (zf;1; :::; zf;T )0, Zb = (zb;1; :::; zb;T )0.

Proof of Theorem 1: We prove the result for case (a), as the proof of case (b) follows
using similar arguments. Throughout, the true values are denoted with a superscript 0. Let

� = (0; :::; 0| {z }
1�[�0T ]

; �c�T + z
0
f;[�0]T+1�fT

�1=2�T ; :::; �c�T + z
0
f;T�fT

�1=2�T| {z }
1�[(1��0)T ]

)0

and ��0b = (�
00
b1; �

00
b2)

0. Under H0;B, �
0
b1 = �

0
b2 = �

0
b so that the DGP is

Y = c01�+ Zf�
0
f + Zb�

0
b + u+ � = c

0
1�+ Zf�

0
f +

�Zb��
0
b + u+ �: (A.1)

Let G0 = [�; Zf ; Zb] = (G0;1; :::; G0;T )0. The restricted sum of squared residuals is

SSR0 =
PT

t=1 eu2t = (u+ �)0MG0(u+ �) = (u+ �)
0(u+ �)� (u+ �)0PG0(u+ �)

= u0u+ 2u0� + �0� � (u0PG0u+ 2u0PG0� + �0PG0�): (A.2)

De�ning JT = diag(T�1=2; T�1Iqf ; T
�1Iqb), we have

T�1=2��1T JTG
0
0� =

PT
t=1 JTG0;tT

�1=2��1T �t = T
�1PT

t=[�0T ]+1f(T 1=2JT )G0;tgf��1T �tg

) (
1R
�0
(�c + �

0
fB

f
z (r))dr;

1R
�0
Bf 0z (r)(�c + �

0
fB

f
z (r))dr;

R 1
�0
Bb0z (r)(�c + �

0
fB

f
z (r))dr)

0 = Op(1):

Then it follows that T�1u0u = Op(1), T�1=2��1T u
0� = T�1=2u0(��1T �) = Op(1)

T�1��2T �
0� = T�1(��1T �)

0(��1T �) = Op(1)

u0PG0u = u
0G0(G

0
0G0)

�1G00u = fu0G0JTgf(JTG00G0JT )�1gfJTG00ug = Op(1)
T�1=2��1T u

0PG0� = fu0G0JTgf(JTG00G0JT )�1gfT�1=2��1T JTG00�g = Op(1)
T�1��2T �

0PG0� = fT�1=2��1T �0G0JTgf(JTG00G0JT )�1gfT�1=2��1T JTG00�g = Op(1): (A.3)

Let G1 = [�; Zf ; �Zb]. The unrestricted sum of squared residuals evaluated at � 2 �� is

SSRB(�) =
PT

t=1 û
2
t = u

0u+ 2u0� + �0� � (u0PG1u+ 2u0PG1� + �0PG1�) (A.4)

where the orders of u0PG1u, u
0PG1� and �

0PG1� are the same as those of u
0PG0u, u

0PG0� and
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�0PG0�; respectively, stated in (A:3). Combining (A:2) and (A:4), we have:

SSR0 � SSRB(�)
= (u0PG1u+ 2u

0PG1� + �
0PG1�)� (u0PG0u+ 2u0PG0� + �0PG0�)

= [Op(1) +Op(T
1=2�T ) +Op(T�

2
T )]� [Op(1) +Op(T 1=2�T ) +Op(T�2T )] = Op(T�2T ) (A.5)

For the long-run variance estimate �̂2B(�), we have

�̂2B(�) = T
�1PT

t=1 eu2t + 2PT�1
j=1 w(j=bT )T

�1PT
t=j+1 euteut�j (A.6)

= [T�1
PT

t=1 u
2
t +Op(�

2
T )] + 2

PT�1
j=1 w(j=bT )T

�1PT
t=j+1 utut�j +Op(bT�

2
T ) (A.7)

= T�1
PT

t=1 u
2
t + 2

PT�1
j=1 w(j=bT )T

�1PT
t=j+1 utut�j + op(1) +Op(bT�

2
T ) (A.8)

= �2 +Op(bT�
2
T )

The equality of the �rst term in (A:6) with the term within square brackets in (A:7) follows
from (A:3): For the second term in (A:6), note that, for a given j, eut�j = (ut�j + �t�j) �
G00;t�j(G

0
0G0)

�1G00(u+ �). It follows that

T�1
PT

t=j+1 euteut�j = T�1PT
t=j+1[(ut + �t)�G00;t(G00G0)�1G00(u+ �)][(ut�j + �t�j)

�G00;t�j(G00G0)�1G00(u+ �)]
= T�1

PT
t=j+1[utut�j + ut�t�j + �tut�j + �t�t�j

� (ut + �t)G00;t�j(G00G0)�1G00(u+ �)� (ut�j + �t�j)G00;t(G00G0)�1G00(u+ �)
+ (u+ �)0G0(G

0
0G0)

�1G0;tG
0
0;t�j(G

0
0G0)

�1G00(u+ �)]

= T�1
PT

t=j+1 utut�j + T
�1[Op(T

1=2�T ) +Op(T
1=2�T ) +Op(T�

2
T )

+Op(T�
2
T ) +Op(T�

2
T ) +Op(T�

2
T )]

= T�1
PT

t=j+1 utut�j +Op(�
2
T ), uniformly in j. (A.9)

Using b�1T
PT�1

j=1 jw(j=bT )j !
R +1
0
jw(x)jdx <1 (e.g. Andrews, 1991), we have from (A:9),

(bT�
2
T )
�1f
PT�1

j=1 w(j=bT )T
�1PT

t=j+1 euteut�j �PT�1
j=1 w(j=bT )T

�1PT
t=j+1 utut�jg

� b�1T
PT�1

j=1 jw(j=bT )j sup
j�1

jv�2T T�1
PT

t=j+1 euteut�j � v�2T T�1PT
t=j+1 utut�jj

= [b�1T
PT�1

j=1 jw(j=bT )]Op(1) = Op(1); (A.10)

which establishes (A:8).
Combining the results of the numerator (A.5) and the denominator (A.8) of the statistic

FT;B(�), we have: FT;B(�) = Op(T�
2
T )=[�

2 + Op(bT�
2
T )] = Op(b

�1
T T ) if bT�

2
T

p! 1, and is
Op(T�

2
T ) otherwise. This result naturally extends to supFT;B(�) = sup�2��FT;B(�), which

completes the proof.
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Proof of Theorem 2: We only prove (a), as the proof of (b) follows using similar arguments.
We �rst show that F (2)T;B(�

0) has a limiting �2(qb) distribution. For the restricted regression
under H0;B, we denote the design matrix as X0(�

0) = [��0; �Z0f ; Zb], where ��
0 [ �Z0f ] is a matrix

which diagonally partitions � [Zf ] at the true break point T 01 . For the unrestricted regression,
we similarly have X1(�

0) = [��0; �Z0f ;
�Z0b ]. For notational simplicity, we simply drop the index

� 0 in X0(�
0) and X1(�

0). First, we note that Zb = �Z0bE, where E = (Iqb ; Iqb)
0. Note that

X0 = X1H, where H = diag(I2(1+qf ); E2qb�qb). It then follows that

SSR0(�
0)� SSRB(� 0) = u0MX0u� u0MX1u = u

0(PX1 � PX0)u:

Note that PX01 = PX1�PX0 is an orthogonal projection matrix since the column space ofX0 is
included in that of X1. Hence, there exists a (T � qb) matrix X01 with rank qb that satis�es
PX01 = X01(X

0
01X01)

�1X 0
01. Then, applying a central limit theorem conditional on X01,

we have that [SSR0(� 0) � SSRB(� 0)]=�2 = u0PX01u=�2
d! �2(qb). Since the limit does not

depend on the conditioning matrixX01, it is also the unconditional distribution. Finally, since
�̂2B(�

0)
p! �2 underH0;B, it follows that F

(2)
T;B(�

0) = [SSR0(�
0)�SSR1(� 0)]=�̂2B(� 0)

d! �2(qb).

We next prove that F (2)T;B(�̂) = F
(2)
T;B(�

0) + op(1). Let T̂1 be the estimated break date,
i.e., T̂1 = [T �̂ ]. From Kejriwal and Perron (2008a, Theorem 2), �̂ is T�2T -consistent for
� 0. Thus T̂1 = T 01 + Op(�

�2
T ). Let T̂1 = T 01 + [s�

�2
T ], z1f;t = (1; z0f;t)

0, �cf = (�c; �
0
f )
0,

Dcf;T = diag(1; T�1=2Iqf ). Denote SSR as the sum of squared residuals from estimating the
model without breaks, i.e., �c = 01�1, �b = 0qb�1 and �f = 0qf�1. Following Bai (1997,
Lemma A.5), consider T̂1 � T 01 . Then we can write

SSR0(�
0)� SSR0(�̂)

= [SSR� SSR0(�̂)]� [SSR� SSR0(� 0)]
= ��0cf [�2TDcf;T (

PT 01
t=T̂1+1

z1f;tz
0
1f;t)Dcf;T ]�cf + 2�

0
cf [�TDcf;T

PT 01
t=T̂1+1

z1f;tut] + op(1)

) �jsj�0cf

0@ 1 W f
z (�

0)0(
ffzz )
1=2

(
ffzz )
1=2W f

z (�
0) (
ffzz )

1=2W f
z (�

0)W f
z (�

0)0(
ffzz )
1=2

1A�cf
+2�0cf

0@ �Wc(�s)

�Wc(�s)(
ffzz )1=2W f
z (�

0)

1A � L1(s); (A.11)

where Wc(:) and W f
z (:) (qf � 1) are independent Brownian motions on [0;1). Let G0;t =

(1; z0f;t; z
0
b;t)

0 = (z01f;t; z
0
b;t)

0 and DT = diag(1; T
�1=2Iqf ; T

�1=2Iqb). Under H0;B, �b = 0qb, and

SSRB(�
0)� SSRB(�̂) = �[�0cf ; 00qb ](�

2
TDTf

PT 01
t=T̂1+1

G0;tG
0
0;tgDT )[�

0
cf ; 0

0
qb
]0

+ 2[�0cf ; 0
0
qb
](DT�Tf

PT 01
t=T̂1+1

G0;tutg) + op(1)) L1(s): (A.12)
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Thus, from (A:11) and (A:12); we have

SSR0(�̂)� SSRB(�̂) = SSR0(� 0)� SSRB(� 0) + op(1)

which also holds for the case T̂1 > T 01 using a symmetric argument. For �̂
2
B(�̂), following

similar arguments as in the proof of Theorem 1, we can decompose �̂2B(�̂) into its variance and
covariance components and adapt the technique used in (A.11) to show that each component
converges to the corresponding component of �̂2B(�

0). The details are omitted. Combining
these results, the proof is complete since

F
(2)
T;B(�̂) =

SSR0(�̂)� SSRB(�̂)
�̂2B(�̂)

=
SSR0(�

0)� SSRB(� 0) + op(1)
�̂2B(�

0) + op(1)

= F
(2)
T;B(�

0) + op(1)
d! �2(qb)
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